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Abstract

The fronto-parietal network (FPN) is crucial for cognitively demanding tasks as it

selectively represents task-relevant information and controls other brain regions. To

implement these functions, it has been argued that it is a flexible hub that

reconfigures its functional connectivity with other networks. This was supported by

a study in which a set of demanding tasks were presented, that varied in their sen-

sory features, comparison rules, and response mappings, and the FPN showed

greater reconfiguration of functional connectivity between tasks than any other net-

work. However, this task set was designed to engage the FPN, and therefore it

remains an open question whether the FPN is in a flexible hub in general or only for

such task sets. Using two freely available datasets (Experiment 1, N = 15, Experiment

2, N = 644), we examined dynamic functional connectivity during naturalistic cogni-

tion, while participants watched a movie. Many differences in the flexibility were

found across networks but the FPN was not the most flexible hub in the brain, during

either movie for any of two measures, using a regression model or a correlation

model and across five timescales. We, therefore, conclude that the FPN does not

have the trait of being a flexible hub, although it may adopt this state for particular

task sets.
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1 | INTRODUCTION

The fronto-parietal network (FPN) is crucial for many tasks, and in

particular those that are cognitively challenging (Duncan, 2001). One

critical role of the FPN is to flexibly represent what is most important

about a stimulus or task context (Dehaene, Kerszberg, &

Changeux, 1998; Duncan et al., 2000; Freedman, Riesenhuber,

Poggio, & Miller, 2001). The FPN also modulates many brain systems

(Norman & Shallice, 1986), directing attention by enhancing the most

relevant stimulus features or internal representation, which is particu-

larly important when there are distractions. To achieve these, the FPN

is highly interconnected with the rest of the brain. These connections

have been shown to be important for behavior, with an individual's

fingerprint of FPN connectivity predictive of their performance in

challenging tasks (Finn et al., 2015).

In recent years, a growing number of studies have examined the

dynamic changes in functional connectivity over time (Hutchison,

Womelsdorf, Gati, Everling, & Menon, 2013). The FPN in particular

shows flexibility in its connectivity, engaging with the brain systems

most relevant for the task at hand (Rowe, Friston, Frackowiak, &

Passingham, 2002). A recent study by Cole et al. (2013) quantified the

adaptability of each brain network, and concluded that a core feature
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of the FPN is that it forms a “flexible hub” for the brain. They mea-

sured functional connectivity of several brain networks during a set of

challenging tasks, and found that the connectivity of the FPN to other

brain networks was strongly task-modulated. This shifting pattern of

functional connectivity across tasks, supports the idea that regions of

the prefrontal cortex adapt to the cognitive task by not only trans-

forming information, but by channeling what is most relevant else-

where in the brain (Duncan et al., 2000). However, Cole et al. (2013)

did not investigate the generality of their conclusion that the FPN is a

flexible hub, as brain connectivity was only measured during a set of

tasks specifically designed to engage executive functions, with con-

stantly changing complex requirements (Cole et al., 2013). They

factorially combined four comparison rules, four sensory features and

four response fingers, to give a combination of 64 different tasks

(Cole et al., 2013; Ito et al., 2017). For instance, the participants could

be presented with two stimuli and be asked to judge if they both had

the same color, and to respond with the index finger. As only this task

set was examined, it is unclear whether the FPN acts as a flexible hub

in general, or whether it only acts as a flexible hub in the context of

these challenging tasks.

The current study tests the hypothesis that the FPN exhibits a

distinctive trait compared with the other networks, by changing its

connectivity in a more flexible way than other networks, in general

across many task contexts. We hypothesized that this is an intrinsic

characteristic of the FPN, and not a behavior elicited by a particular

narrow set of tasks. To test this hypothesis, we characterized the

dynamic functional connectivity while participants were engaged in

naturalistic cognitive scenarios more representative of everyday life,

movie watching. Movies were chosen as they engage us in a similar

way to everyday life, in which “the brain makes sense of continuous

and complex inputs from the external world” (Spiers &

Maguire, 2007), while at the same time satisfying the need to remain

motionless in an magnetic resonance imaging (MRI) scanner. We

argue that the complexity and concatenation of many scenes into a

meaningful plot activate a range of implicit tasks and therefore would

require changing patterns of connectivity between brain networks.

We applied an analysis pipeline similar to Cole et al. (2013) to two

open datasets: the first acquired during the presentation of a full

movie (Forrest Gump; Hanke et al., 2014); and the second one during

the presentation of a highly engaging short movie by Alfred Hitch-

cock, which has previously been shown to engage the frontal and

parietal areas (Naci, Cusack, Anello, & Owen, 2014).

2 | EXPERIMENT 1: STUDYFORREST

2.1 | Methods

2.1.1 | MRI data

Experiment 1 used a freely available, high-resolution functional mag-

netic resonance imaging (fMRI) dataset from 15 participants recorded

at ultra-high field during prolonged stimulation with an audiovisual

film (http://studyforrest.org). The participants underwent an MRI scan

while watching a full movie (“Forrest Gump”). Functional MRI data

were acquired on a 7-Tesla Siemens MAGNETOM, and structural

images were obtained using a 3-Tesla scanner. A detailed description

of the dataset and data preprocessing can be found in Hanke

et al. (2014). All MRI data used in this study were publicly available

and anonymized. A proportionate ethical approval was obtained from

the ethics committee of the School of Psychology, Trinity College

Dublin.

2.1.2 | Stimuli

Participants were presented with the movie “Forrest Gump”
(R. Zemeckis, Paramount Pictures 1994), with a description for visually

impaired people, which was identical to the normal German version of

the movie except for narration by a male speaker who describes the

visual content of a scene when there is no dialog or other relevant

audio content. In order to keep the fMRI sessions under 2 hr, some

scenes judged as less relevant to the plot, were removed (for a

detailed description of which scenes were deleted see Hanke

et al. (2014)). The remaining parts of the movie were then divided into

eight segments, each approximately 15 min long. The movie was pres-

ented to all participants in full but divided into two different sessions

on different days.

2.1.3 | MRI acquisition

T1 and T2 structural images were acquired with a 3-Tesla Philips

Achieva equipped with a 32 channel head coil. T1-weighted images

were acquired with the following parameters, 274 sagittal slices (field

of view 191.8 � 256 � 256 mm), voxel size was 0.7 mm with a

384 � 384, in-plane reconstruction matrix; a 3D turbo field echo

sequence was used and repetition time was 2,500 ms, inversion time

was 900 ms, a flip angle of 8�, echo time was 5.7 ms, and bandwidth

was 144.4 Hz/px.

To acquire fMRI, T2*-weighted echo-planar images were acquired

during audio-visual stimulation using a whole-body 7-Tesla Siemens

MAGNETOM magnetic resonance scanner equipped with a local cir-

cularly polarized head transmit and a 32 channel brain receive coil

(Nova Medical, Inc., Wilmington, Massachusetts). The following

parameters were used: 36 axial slices (thickness 1.4 mm,

1.4 � 1.4 mm in-plane resolution, 224 mm field-of-view, anterior-to-

posterior phase encoding direction) with a 10% inter-slice gap were

recorded in ascending order gradient-echo, 2 s repetition time, 22 ms

echo time, 0.78 ms echo spacing, 1,488 Hz/Px bandwidth, generalized

autocalibrating partially parallel acquisition (GRAPPA) with an acceler-

ation factor of 3, 24 Hz/Px bandwidth in phase encoding direction.

The field-of-view was centered on the approximate location of

Heschl's gyrus.
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2.1.4 | Image pre-processing

Data pre-processing was conducted by Hanke et al. (2014). Motion

was assessed during the whole session. The median L2-norm of the

estimated translation vector did not exceed 1.8 mm and estimated

median L2-normed rotation did not exceed 1� (Hanke et al., 2014).

The raw MRI images were converted from DICOM to NIfTI format,

then, a group-specific template volume for EPI images was calculated

in order to aid anatomical alignment across brains. The first volume

was extracted as a reference image from each movie segment record-

ing, resulting in 152 images. All images from an individual brain were

aligned to its respective reference image from the first movie segment

using a rigid body transformation implemented in MCFLIRT30 and

averaged to create a template image for each brain. Then, all brains

were aligned, by means of an affine transformation using FLIRT30, to

the one individual brain with the least root mean square difference to

the average image across all brains prior to alignment. The initial align-

ment target volume was slightly upsampled to 1.2 mm isotropic voxel

size to account for spatial oversampling across individuals and movie

segments. The alignment target for all subsequent iterations was pro-

duced by computing the average image across all aligned brains for

each respective iteration. Three more iterations with affine transfor-

mations were then followed by 10 nonlinear alignment iterations

using FNIRT31 global nonlinear intensity model with bias and 1 cm

warp-field resolution while holding the base affine transformation

constant. Lastly, the resulting average image was cropped to the

region with maximum overlap across individual brains to create the

group EPI template volume. For all subsequent analyses, all data from

the 152 movie segments were aligned to this template independently.

For each run, the average volume across all time points was computed

and aligned to the template through an affine transformation deter-

mined by FLIRT while reslicing to 1.2 mm isotropic resolution. In addi-

tion, this affine transformation was combined with a nonlinear

warping derived by FNIRT and, images were resliced to 1.2 mm iso-

tropic resolution. The entire procedure was implemented in the

Nipype framework32 and the source code of the full pipeline is also

available at https://openneuro.org/datasets/ds000113/versions/1.

3.0.

2.1.5 | Functional connectivity and statistical
analysis

Statistical analysis was conducted using Python 3.7.3 (Python Soft-

ware Foundation, http://www.python.org). In Cole's original flexible

hub analysis, functional connectivity was contrasted between differ-

ent task rules (64 in total). Instead of using rule-division, we divided

the movie into small chunks of 30 s (a similar length as used in Cole's

analysis). For our design, the choice of window length is somewhat

arbitrary, but limited by a number of factors. To achieve good sensitiv-

ity to changing connectivity, the window cannot be too short. It

should correspond to a timescale for which there were changes in the

“implicit task” of the movie. A timescale of tens of seconds is one in

which previous work (Zacks, Speer, & Reynolds, 2009) has shown cor-

responds approximately to single scenes but there will be differences

between movies, and it is not clear exactly what chunk length best

corresponds to FPN variation. We therefore report results from differ-

ent chunk lengths in the Appendix S1. We are sharing the code used

to compute this analysis (https://github.com/chiaracc/

FPNflexiblehubs).

In Experiment 1, for comparability with other studies using the

StudyForrest dataset, we used the activation time-courses provided

for 268 ROIs from the Shen atlas (Shen et al., 2013). Subsequent anal-

ysis then comprised four stages. The first stage used linear regression

analysis to simultaneously estimate context-independent connectivity,

task-activity, and context-dependent connectivity for each edge that

connects every possible pair of ROIs.

To calculate the regression, we defined a vector to select chunk c:

sc tð Þ¼1 ifd�c≤ t< d� cþ1ð Þand
sc tð Þ¼0 otherwise

ð1Þ

where t is time in volumes (zero-based), d is chunk duration, c is

chunk number (zero-based).

The regression equation was

A j,tð Þ¼ β 0ð Þ i, jð ÞA i,tð Þþ
XC�1

c¼0
β 1ð Þ
c i, jð Þsc tð Þþ

XC�1

c¼0
β 2ð Þ
c i, jð Þsc tð ÞA i,tð Þþ ε tð Þ

ð2Þ

where A is BOLD activation, ε is the error, j is the target region

for which connectivity is being modeled, i the source region, and

C the total number of chunks. Coefficient β 0ð Þ modeled the stationary

component of connectivity, coefficients β 1ð Þ
c the chunk-specific activ-

ity in region j, and coefficients β 2ð Þ
c the chunk-specific connectivity. In

Stage 1 of our analysis, these coefficients were estimated for each

pair of regions by fitting across all timepoints with ordinary least

squares.

A chunk size of 30 s (i.e., d¼15 volumes) was used for the first

analysis. Stage 2 of the analysis estimated the extent to which a

region's connectivity was flexible and changed across chunks, by cal-

culating the SD of the coefficients β 2ð Þ
c i, jð Þ across chunks c for each

pair of ROIs i, jð Þ and for each participant.

In Stage 3, as in Cole's study (Cole et al., 2013), ROIs were

grouped using Power's network division by allocating each ROI of the

Shen atlas to the network of the closest region in Power's atlas. We

then calculated two different indices for flexibility of the networks:

the global network variable connectivity (GVC) and the between-

network variable connectivity (BVC). The GVC is the mean variability

in connectivity of each region within a network to every other region

in the brain irrespective of whether it was in the same or a different

network. In contrast, the BVC only included connections across net-

works. We calculated both of the indices as Cocuzza, Ito, Schultz,

Bassett, and Cole (2020) found that they could give distinct patterns,

with regions within the FPN becoming less connected with each other

as a function of task.
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In Stage 4, ANOVA was used to check if the networks were sig-

nificantly different from each other, and in particular to test the

hypothesis that the frontal parietal network presents bigger changes

in connectivity if compared with the other networks.

The full analysis is openly available (https://github.com/chiaracc/

FPNflexiblehubs).

The analysis was also repeated for different window lengths

(60, 90, 120, 180, and 240 s), and these additional results are reported

in the Appendix S1. These window sizes were selected as it has been

previously demonstrated that the average correlation values within

and between RSNs stabilize at approximately 240 s (van Dijk

et al., 2009).

Cocuzza et al. (2020) also calculated connectivity using chunk-

by-chunk correlation, rather than regression, and found in some

cases this provided stronger evidence that the FPN was a flexible

hub. Therefore, as an additional analysis we computed the same

analysis pipeline, except for Stage 1, that we replaced with a corre-

lation model. The results from this analysis are reported in the

Appendix S1.

2.2 | Results

2.2.1 | Global variable connectivity

The mean across subjects for each network shown in Table 1.

Figure 1 shows for each network the median, inter quartile range

and distribution across subjects of the within-subject error. A

repeated-measures ANOVA revealed a difference between net-

works, F(10,154) = 4.3964, p < .0001. But, the pattern did not sup-

port the hypothesis, and in fact in the mean, the FPN had

numerically lower flexibility than the average of the brain, or than

five other regions (DAN, Motor, SAN, Subc., and Vis). Many of the

pairwise differences between networks were significant (Figure 2a),

showing that the method does have sufficient sensitivity to detect

differences in the flexibility of networks. The FPN showed less

flexibility than the DAN (T = 3.996, p = .016, FDR corrected). But,

no significant difference was found between the mean functional

connectivity of the whole brain and the FPN. In this analysis, we

used a chunk length of 15 volumes (30 s). In the Appendix S1 we

report longer chunk lengths (60, 90, 120, 180, and 240 s), which

give a similar pattern of results.

2.2.2 | Between-network variable connectivity

This result also generalized to another measure, the BVC, shown in

Table 1 and Figure 1. A repeated-measures ANOVA revealed a differ-

ence between networks, F(10,154) = 5.5356, p < .001. Again, many

pairwise comparisons were significant (Figure 2b). The DAN

(T = 4.3247, FDR corrected p = .0208), as well as the Motor

(T = 3.6332 FDR corrected p = .0208) and the VAN (T = 2.9535 FDR

corrected p = .0105) differed from the average SD of functional con-

nectivity of the whole brain. No other network differed from the

whole brain connectivity or from the FPN, again providing no support

that the FPN acts as a flexible hub during naturalistic cognition. The

DAN again showed greater flexibility than the FPN (T = 3.8669, FDR

corrected p = .0208).

2.3 | Discussion

We did not find that the FPN had the highest variability in connectiv-

ity to the other networks during naturalistic stimulation. Both our

measures of network flexibility [including within-network connectivity

(GVC) or not (BVC)] did not show a difference in the FPN network

flexibility, providing no evidence that it acted as a flexible hub during

naturalistic stimulation.

The lack of effect for the FPN does not appear to be due to an

overall lack of sensitivity as other networks were found to be signifi-

cantly different from each other. Furthermore, for both the GVC and

BVC, the DAN showed greater flexibility than the FPN.

TABLE 1 GVC and BVC mean and
standard deviation across participants for
each network is shown for: frontal
parietal network (FPN), cingulo opercular
network (CON), salience network (SAN),
dorsal attention network (DAN), ventral
attention network (VAN), default mode
network (DMN), motor network (Motor),
auditory network (Aud.), visual network
(Vis.), subcortical network (Subc.), whole
brain (WB)

Studyforrest CamCAN

GVC BVC GVC BVC

Aud. 0.4137 (0.0137) 0.4187 (0.0092) 0.3830 (0.0569) 0.3838 (0.0584)

CON 0.4102 (0.0138) 0.4133 (0.0097) 0.3420 (0.0568) 0.3437 (0.05863)

DAN 0.4226 (0.0116) 0.4248 (0.0092) 0.3059 (0.0495) 0.3031 (0.0497)

DMN 0.4146 (0.0089) 0.4155 (0.0086) 0.3611 (0.0467) 0.3620 (0.04872)

FPN 0.4149 (0.0143) 0.4174 (0.0118) 0.3608 (0.0543) 0.3633 (0.0558)

Motor 0.4206 (0.099) 0.4221 (0.0088) 0.3819 (0.0575) 0.3876 (0.0567)

SAN 0.4187 (0.0094) 0.4204 (0.0079) 0.3434 (0.0522) 0.3458 (0.0537)

Subc. 0.4151 (0.0117) 0.4172 (0.0096) 0.3481 (0.0571) 0.3525 (0.0754)

VAN 0.4217 (0.0205) 0.4267 (0.0124) 0.3214 (0.0668) 0.3212 (0.0689)

Vis. 0.4157 (0.0009) 0.4174 (0.0081) 0.3492 (0.0506) 0.3498 (0.0528)

Whole brain 0.4176 (0.0068) 0.4177 (0.0071) 0.3565 (0.0440) 0.3570 (0.0461)
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However, there are limitations in the present study. An important

difference is that participants were watching a movie that perhaps did

not engage the FPN. Perhaps the FPN is still a flexible hub, but only in

more intellectually challenging situations than when watching

Forrest Gump.

Another technical difference is that in Experiment 1 we used the

Shen 268-region atlas instead of Power 264-region atlas. As we are

summarizing flexibility at the level of whole networks, it is unlikely

that the small differences between ROIs led to the reversal of pat-

terns across networks. However, in the next experiment we deter-

mined to use the Power 264-region atlas, which was previously used

by Cole and colleagues.

Furthermore, Studyforrest dataset only includes 15 subjects, which is

considered to be at the lower end of power for group fMRI analyses

(Mumford & Nichols, 2008). For these reasons, we tested the hypothesis

on a larger dataset, which has previously been shown to engage the FPN.

F IGURE 1 (a,b) The average GVC and BVC across participants for each network are shown: frontal parietal network (FPN), cingulo opercular
network (CON), salience network (SAN), dorsal attention network (DAN), ventral attention network (VAN), default mode network (DMN), motor
network (Motor), auditory network (Aud.), visual network (Vis.), subcortical network (Subc.), whole brain. Figure 1a shows results from Experiment
1 (Studyforrest) and Figure 1b shows results from Experiment 2 (CamCAN)
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3 | EXPERIMENT 2: CAMBRIDGE CENTRE
FOR AGING AND NEUROSCIENCE (CAMCAN)

3.1 | Methods

3.1.1 | CamCAN data

To address the limitations of Experiment 1, in Experiment 2 we ana-

lyzed a publicly available fMRI acquisition of 644 pseudo-anonymous

participants (316 male, 328 females; average age 54.3 years) watching

an 8 min edited clip from the black and white TV episode, “Alfred
Hitchcock Presents—Bang! You're Dead.” Participants were asked to

simply watch and follow it as best they could. This movie has been

previously shown to robustly engage the FPN (Naci et al., 2014). This

dataset was collected and made freely available as a part of CamCAN

(https://www.cam-can.org/). A detailed description of the dataset is

described in Taylor et al. (2017). A proportionate ethical approval was

obtained from the ethics committee of the School of Psychology, Trin-

ity College Dublin.

3.1.2 | MRI acquisition

MRI images were acquired on a 3T Siemens TIM Trio System at the

MRC Cognition Brain and Sciences Unit, Cambridge, United Kingdom.

A three-dimensional (3D) structural MRI was acquired for each partici-

pant using T1-weighted sequence (GRAPPA; repetition time was

2,250 ms; echo time was 2.99 ms; inversion time was 900 ms; flip

angle was 9�; matrix size was 256 � 240 � 19 mm; field of view was

256 � 240 � 192 mm; voxel was 1 mm isotropic; a multiband accel-

erated factor of 2 was used). For the fMRI, T2*-weighted echo planar

images (EPIs) were acquired using a multi-echo sequence [repetition

time was 2.47 s; 5 echoes (echo times were 9.4, 21.2, 33, 45, and

57 ms); flip angle was 78�, 32 axial slices with a thickness of 3.7 mm

with an interslice gap of 20%; field of view was 192 � 192 mm;

voxel-size was 3 � 3 � 4.44 mm]; the total acquisition time was 8 min

and 13 s.

3.1.3 | Image processing

Preprocessing was run using SPM12 (http://www.fil.ion.ucl.ac.uk/

spm), as implemented in the automatic analysis (aa; Cusack

et al., 2015). The full image processing pipeline is also described in

Taylor et al., 2017. Using custom Matlab code, the multiple echoes

were combined using the T2* as estimated at each voxel, images were

unwarped using the fieldmaps to correct for field inhomogeneities,

corrected for subject motion, and slice-time corrected. Structural

images (T1 and T2) were coregistered to a Montreal Neurological

Institute (MNI) template image, bias-corrected, and combined to seg-

ment various tissue classes using unified segmentation (Ashburner &

Friston, 2005). The segmented gray matter images were then used to

create a study specific anatomical template using the DARTEL proce-

dure to optimize interparticipant alignment (Ashburner, 2007), which

was then transformed to MNI space. The EPI images were then cor-

egistered to the T1 image and normalized to MNI space using the

DARTEL flowfields. The framewise displacement was calculated for

each participant, and the average was 0.2409 (SD = 0.1909). Head

motion was corrected with a wavelet despiking method that removes

motion artifacts from the fMRI data without deleting frames from the

fMRI time series (Patel et al., 2014, for details see Taylor et al., 2017).

The images were finally smoothed with an 8-mm full width at half

maximum (FWHM) Gaussian kernel and the Brain Extraction Tool

(Smith, 2002) from the Oxford Centre for Functional Magnetic Reso-

nance Imaging of the Brain's Software Library (FSL version 4.1.8;

Smith et al., 2004) was used to remove non brain tissue. Time series

normalization was done with a mean-based intensity normalization

(using the 4D grand-mean) and images were also high-pass filtered

F IGURE 2 (A,B) All pairwise comparisons between networks are shown, for GVC and for BVC
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(Gaussian-weighted least-squares straight line fitting, equivalent to

100 s) to remove low frequency artifacts and resampled to a resolu-

tion of 4 mm. ROI time series extraction was performed using Afni

(v.20.2.16) and a 264 ROI parcellation from Power et al. (2011). As in

the previous experiment, in this analysis we used a chunk length of

15 volumes (37.05 s). However, in the Appendix S1 we also report

longer chunk lengths (74.1, 111.15, 148.2, and 222.3 s).

3.1.4 | Functional connectivity and statistical
analysis

Statistical analysis was conducted using Python 3.7.3 (Python Soft-

ware Foundation, http://www.python.org), and it was identical to the

one used in Experiment 1 and it is described in Section 2.1.5 except

for the use of the Power instead of Shen atlas. The full analysis is

openly available (https://github.com/chiaracc/FPNflexiblehubs).

3.2 | Results

3.2.1 | Global variable connectivity

The results are shown in Table 1 and Figure 1. An ANOVA revealed a

difference in the degree to which different networks were flexible

hubs (F[10,7,073] = 215.1633, p < .0001). Pairwise comparisons

between networks are shown in Figure 3a. The FPN had greater SD

of functional connectivity than the average across the brain

(T = 4.2826, p < 0.001 FDR corrected). But, three other networks also

showed greater than average: Aud. (T = 20.1247, p < .001), DMN

(T = 8.887, p < .001), Motor (T = 21.8263, p < .001). Six networks

showed less than average connectivity, CON (T = �11.188, p < .001),

DAN (T = �33.6962, p < .001), SAN (T = �12.2777, p < .001), Subc.

(T = �6.8405, p < .001), VAN (T = �14.8622, p < .001) and Vis.

(T = �8.8085, p < .001). The FPN showed significantly higher

flexibility than the CON (T = �12.2665, FDR corrected p < .001), the

DAN (T = �26.2231, FDR corrected p < .001), and the Motor

(T = �12.197, FDR corrected p < .001); while it showed less flexibility

than the Aud. (T = 12.1509, FDR corrected p < .001), the SAN

(T = 12.6358, FDR corrected p < .001), the Subc. (T = 7.3602, FDR

corrected p < .001), the VAN (T = 13.5198, FDR corrected p < .001),

and the Vis. (T = 9.4141, FDR corrected p < .001). The detailed statis-

tics of the pairwise comparisons are reported in the Appendix S1.

3.2.2 | Between-network variable connectivity

The results are shown in Table 1 and Figure 1. ANOVA revealed a dif-

ference between networks (F[10,7,073] = 232.6750, p < .0001).

Many pairwise comparisons were significant (Figure 3b). The FPN dif-

fered from the average SD of functional connectivity of the whole

brain (T = 6.0174, p = .0792) and from Aud. (T = 10.5152, p < .001

FDR corrected), CON (T = �11.9286, p < .001), DAN (T = �26.72,

p = .0486), Motor (T = �13.1279, p < .001), SAN (T = 11.9341,

p < .001), Subc. (T = 5.8948, p < .001), VAN (T = 13.5647, p < .001),

and Vis. (T = 10.264, p < .001). The FPN showed higher flexibility

than the Aud. (T = 10.5152, FDR corrected p < .001), SAN

(T = 11.9341, FDR corrected p < .001), Subc. (T = 5.8948, FDR

corrected p < .001), VAN (T = 13.5647, FDR corrected p < .001), Vis.

(T = 10.264, FDR corrected p < .001), while it showed less flexibility

than motor the CON (T = �11.9286, FDR corrected p < .001), the

DAN (T = �26.72, FDR corrected p < .001), and the Motor

(T = �13.1279, FDR corrected p < .001). All pairwise comparisons are

reported in detail in the Appendix S1.

3.3 | Discussion

Similarly to Experiment 1, and contrary to our hypothesis, with both

measures of network flexibility (including within-network connectivity

F IGURE 3 (a,b) All pairwise comparisons between networks are shown, for GVC and for BVC, for the CamCAN dataset
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(GVC) or not (BVC) we did not find the FPN was the network that

changed its connectivity the most, providing no evidence that it acted

as a flexible hub during naturalistic cognition. Importantly, our method

did detect differences in flexibility between networks, with many

pairwise comparisons significant. But, the FPN was not the most

strongly changing network, again suggesting that a flexible hub behav-

ior is not a trait of this network, but a behavior elicited by a particular

type of task, requiring quick rule shifts from one rule to another. The

short clip (�10 min) that participants viewed in Experiment 2 was

shown to activate the FPN in healthy adults and vegetative patients

(Naci et al., 2014), therefore, differently from Experiment 1, here the

FPN should be engaged enough. Again, the “flexible hub” behavior

seems not to be a trait that is universally shown by the FPN.

4 | GENERAL DISCUSSION

In previous work, when performing a set of demanding tasks, the FPN

was found to show greater dynamic variation in functional connectiv-

ity than other brain networks (Cocuzza et al., 2020; Cole et al., 2013).

The hypothesis tested here is that this will generalize, and the FPN

will also show greater dynamic variation in functional connectivity

during naturalistic cognition. The results do not support the hypothe-

sis. We calculated the functional connectivity of a set of brain net-

works using two freely available datasets of people watching a movie.

We used a similar pipeline to the one used in Cole et al. (2013), and in

Experiment 1 we used data from a freely available dataset of 15 peo-

ple watching an entire movie (“Forrest Gump”). In Experiment 1, the

DAN was the only network with significantly more flexible connectiv-

ity. In Experiment 2, we analyzed data from a bigger sample (N = 644)

watching a short and engaging clip by Alfred Hitchcock. Again, we

found that the FPN's connectivity pattern was not the most flexible.

In Cole's original study, participants performed a set of tasks, the

timing of which was determined by the experimenter. Functional con-

nectivity was then compared between tasks. A challenge with imaging

paradigms for which there is no experimenter-defined timing, such as

resting-state fMRI, or the naturalistic stimulation used in our two

experiments, is to know on what time scale to examine changes in

dynamic connectivity. In dynamic functional connectivity experiments,

window lengths of 30–240 are typically used (Hutchison et al., 2013).

A previous study using movies to study brain connectivity showed

how longer time courses preserved individual characteristics in con-

nectivity profiles (Finn et al., 2015). We had to choose a tradeoff

between a window that is too long and therefore not sensitive to flex-

ibility, and too short and thus insufficiently statistically powerful

enough to estimate functional connectivity. We, therefore, conducted

analyses that spanned a broad range, with windows from 30 to 240 s.

This method was successful, in that many pairwise differences were

found in the variability between different networks. However, across

the range of time windows, in neither experiment was the FPN ever

found to show the greatest variation in connectivity.

Two metrics have been used to assess the flexibility of the FPN

(Cocuzza et al., 2020; Cole et al., 2013). The GVC quantifies the

degree to which each region in each network changes its connectivity

with all of the other regions, irrespective of whether they are in the

same network or a different one. The BVC, in contrast, only examines

between-network connections. These two different measures have

been found previously to show quite different patterns (Cocuzza

et al., 2020; Cole et al., 2013). We, therefore, evaluated both metrics

at each window length, and again found that the FPN never had the

greatest variation in connectivity. It is worth noting that the absolute

values of GVC and BVC will be affected by many factors, including

the signal-to-noise, which will be affected by the MRI machine and

scanning protocol. Comparison of the absolute values of the current

study and previous studies is not therefore informative.

Why might the FPN not have been the most flexible network in

the context of the movies? It might be that these movies do not

engage the FPN enough, especially if compared with the highly

demanding frontal tasks used in Cole et al. (2013). However, previous

studies showed how movies engage a broad range of brain networks

(Spiers & Maguire, 2007; Vanderwal, Kelly, Eilbott, Mayes, &

Castellanos, 2015). Furthermore, the clip used in the second experi-

ment was found to elicit FPN activation in a previous study (Naci

et al., 2014). There is no reason to believe that the FPN activity

evoked by these movies is particularly lower than that evoked in

everyday life. In contrast, Cole's tasks were designed to be taxing and

evoke the strongest possible FPN activity. Therefore, the brain state

we are measuring is more representative of everyday cognition.

Our results do not imply that connectivity of the FPN, or changes

in its pattern of connectivity, are not important for cognition. The FPN

is consistently engaged by demanding cognition (Cole et al., 2013;

Duncan et al., 2000; Kievit et al., 2014). These areas are not domain

specific to a particular type of input or output, and they engage with

different brain networks across a variety of tasks. They are, therefore,

anatomically highly connected to the rest of the brain, and receive

input from or to control more specialized areas of the brain (Duncan

et al., 2000; Spreng et al., 2013). It is not clear what aspect of Cole's

tasks is critical. The FPN may be engaged and act as a flexible hub only

when tasks are sufficiently difficult. Alternatively, perhaps the variety

in Cole's tasks is important, with some tasks more cognitively and

some more motorically challenging. Or, it could be the relative abstract

nature of the tasks, with simple stimuli and precise well-defined

instructions, that leads to sharply differing connectivity requirements.

An alternative explanation is that it is not the level of engagement

of the FPN that differs between Cole's taxing tasks and naturalistic

movie viewing, but rather than engagement of other brain networks.

Our results show that broad connectivity is not unique to the FPN.

Even “unimodal” regions are connected to many other brain regions,

and in the context of complex naturalistic stimulation, may show flexi-

ble dynamic connectivity, such as in Experiment 2, where the auditory

and motor networks acted even more strongly as flexible hubs than

the DMN or FPN. Psychological tasks designed to probe “frontal func-
tion” such as those used by Cole attempt to maximize the engage-

ment of the frontal lobe through the imposition of sets of complex

abstract rules, while minimizing the demand on other brain systems.

They do not, for example, involve perceptually challenging
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discriminations, or movements that are in themselves challenging to

perform. In contrast, naturalistic situations are richer and typically

challenging in a broader range of ways, and watching a movie could

be considered a more “bottom-up” mode, in which no decisions or

motor outputs are required; movie-viewing also elicits a wider range

of emotions, and may require more frequent memory retrieval and

more frequent and greater surprises.

At a broader scale, our results present a further challenge for the

simple mapping between psychological processes and brain regions.

While it is conceptually more straightforward to imagine a separation

between “unimodal” regions and more flexible amodal regions, neuro-

science has shown that many brain connections are recurrent—with

even V1 receiving more descending than ascending connections. The

“global workspace” in which information from different modalities is

brought together (Dehaene et al., 1998) likely does not correspond to a

specific brain region like the FPN, but is rather a dynamically configured

network of regions, coordinated for example by the synchrony of oscil-

lations (Grossberg, 2013). The insight from the current study is that to

characterize this, it may be important to measure brain function in the

context of naturalistic stimulation, rather than with tasks that have been

carefully optimized to isolate one component of the system.
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