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Abstract: The necrotrophic fungus Botrytis cinerea, is considered a major cause of postharvest losses
in a wide range of crops. The common fungal extracellular membrane protein (CFEM), containing a
conserved eight-cysteine pattern, was found exclusively in fungi. Previous studies in phytopathogenic
fungi have demonstrated the role of membrane-bound and secreted CFEM-containing proteins
in different aspects of fungal virulence. However, non-G protein-coupled receptor (non-GPCR)
membrane CFEM proteins have not been studied yet in phytopathogenic fungi. In the present study,
we have identified a non-GPCR membrane-bound CFEM-containing protein, Bcin07g03260, in the
B. cinerea genome, and generated deletion mutants, ∆CFEM-Bcin07g03260, to study its potential role
in physiology and virulence. Three independent ∆CFEM-Bcin07g03260 mutants showed significantly
reduced progression of a necrotic lesion on tomato (Solanum lycopersicum) leaves. Further analysis
of the mutants revealed significant reduction (approximately 20–30%) in conidial germination and
consequent germ tube elongation compared with the WT. Our data complements a previous study of
secreted ∆CFEM1 mutants of B. cinerea that showed reduced progression of necrotic lesions on leaves,
without effect on germination. Considering various functions identified for CFEM proteins in fungal
virulence, our work illustrates a potential new role for a non-GPCR membrane CFEM in pathogenic
fungi to control virulence in the fungus B. cinerea.
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1. Introduction

Botrytis cinerea (teleomorph: Botryotinia fuckeliana), the causal agent of gray mold, is a necrotrophic
fungal pathogen that is considered a major cause of postharvest losses in a wide range of crops including
fruits, vegetables, and flowers [1]. Important factors contributing to its success as a postharvest pathogen
are conducive conditions prevailing throughout the handling pipeline, including humidity, injuries,
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senescing plant tissue and high sugar content. Considerable postharvest losses, due to B. cinerea have
been found in: blackberry, blueberry, currant, grape, kiwi, pomegranate, quince, raspberries, strawberry,
grapes and many other crops [2,3]. Capable of infecting over 580 genera of plants (including agriculturally
important crops) [2,4,5], B. cinerea causes necrotic lesions in foliage and other plant parts, ultimately
leading to plant death [6,7]. Taken together with the importance of this pathogen, and availability of
molecular tools [8] and the genome [9], supporting functional analysis, it has become an important model
for molecular studies of necrotrophic fungi.

The common fungal extracellular membrane proteins (CFEM), containing a conserved eight-cysteine
pattern [10], have been found exclusively in fungi (mainly Ascomycota, and also Basidiomycota) [10–13],
and they were found to be enriched in pathogenic fungi [14]. However, this domain was found to
participate in various functions mediating different physiological (e.g., cell wall stability [15,16]) and
infection processes [10,17–19]. Studies in the mammal pathogens Candida albicans and C. parapsilosis
illustrated that a subclass of the CFEM family of proteins are involved in utilization of heme and
hemoglobin as iron sources [11,20,21]. Additional studies suggested that Candida CFEM proteins form a
relay network of heme-binding proteins for the shuttling of heme across the fungal cell wall for its cellular
assimilation [17,22,23]. These CFEM proteins contain a secreted Csa2, glycosylphosphatidylinositol (GPI)
cell wall-bound Rbt5, and the more internal cell wall and plasma membrane anchored Pga7.

Studies of phytopathogenic fungi demonstrated the role of membrane-bound and secreted
CFEM-containing proteins involved in different aspects of virulence. The membrane-bound proteins studied
were the G-protein coupled receptor (GPCR, containing 7 transmembrane domains [24]) CFEM-containing
proteins (Pth11 and Pth11-like) in Magnaporthe oryzae and Fusarium graminearum [18,25,26]. These studies
illustrated that GPCR CFEM Pth11 and Pth11-like proteins are required for proper development of the
appressoria, and pathogenicity in M. oryzae [18,26]. A mutant of the CFEM-containing Pth11-like receptor
in F. graminearum also showed reduced virulence. In contrast to GPCR CFEM mutants in M. oryzae,
the mutant of the F. graminearum homolog did not show impaired penetration [25]. This difference
demonstrates the variability of homologs of CFEM GPCR Pth11, which are able to regulate virulence via
different physiological/molecular pathways in different fungi. Other studies of secreted CFEM-containing
proteins illustrated their role in Magnaporthe grisea and B. cinerea [19,27]. The adenylate cyclase (MAC1)
CFEM-containing secreted protein was shown to regulate appressorium formation in M. grisea [27].
Finally, in B. cinerea, the transient expression of a gene encoding for the extracellular CFEM protein CFEM1
induces chlorosis in Nicotiana benthamiana leaves (using the Agrobacterium infiltration method), and deletion
of CFEM1 reduced the necrotic progression rate in French bean (Phaseolus vulgaris) [19].

Studies so far have not included analysis of a non-GPCR membrane CFEM protein (or a CFEM
protein with only one transmembrane domain) in phytopathogenic fungi. Considering the various
functions of CFEM proteins in fungal virulence, a non-GPCR membrane subclass may have an
important role in pathogenicity via an unknown pathway. Thus, the objectives of the current study
were to identify a non-GPCR membrane CFEM protein in B. cinerea, and to characterize its role in
physiology and pathogenicity.

2. Material and Methods

2.1. Fungal and Plant Material

Botrytis cinerea strain B05.10 [28], used throughout this study (from here on referred to as WT),
was routinely cultured on Potato dextrose agar (PDA, Difco, BD, Sparks, MD, USA; adjusted to
2% agar; with 0.25 w/v chloramphenicol, Sigma-Aldrich, St. Louis, MO, USA) at 18 ◦C in the dark,
unless otherwise specified. Tomato (Solanum lycopersicum, cv. Money Maker) seedlings were routinely
grown in growth chambers at 25 ◦C for 4–5 weeks (under 16/8 h fluorescent-based light/dark regimes
in Green quality soil mix, Tuff soil, Merom Golan, Israel) and supplied once a week with 3 mL/L
fertilizer containing 4% nitrogen, 2% phosphorus, 5% potassium, 6% trace elements, magnesium
0.9% and calcium 1.5%. Plants were transplanted to 2-L plastic pots in the walk-in growth chamber
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controlled at 22 ± 1 ◦C with 16/8 h of fluorescent-based light/dark regimes, acclimatized for one week
before inoculation.

2.2. Identification of a Non-GPCR Membrane-Bound CFEM-Containing Protein

We utilized the standalone InterProScan [29] to identify three protein-coding genes containing a
membrane-bound CFEM domain (Table 1) in the B. cinerea genome [9]. To further validate prediction
of membrane association we utilized a WoLF PSORT subcellular localization predictor (using default
parameters) [30], and predictions for transmembrane (TM) regions based on TMHMM [31]. Predictions of
the association with the cell wall-related glycosylphosphatidylinositol moiety anchored to the encoded
protein was generated using PredGPI server [32] using default parameters. Proteins containing a
transmembrane domain, which were also predicted to reside in the plasma membrane by WoLF PSORT,
and were not predicted to contain a (cell wall-associated) GPI anchor site, were considered as membrane
bound proteins (from here on referred to as membrane protein(s); see, final location prediction in
Table 1) [33]. The presence of the CFEM conserved pattern of eight cysteines [10] was further validated by
multiple sequence alignment (using MAFFT with default parameters, [34]) for the 3 B. cinerea membrane
proteins containing InterPro CFEM domains (Table 1) [35], compared with the previously annotated
C. albicans CSA2 gene [23,36]. All three proteins contain the conserved aspartic residue essential for
ligation activity (see, [17,23]). Since GPCR proteins contain 7 transmembrane domains [24], we decided to
exclude Bcin05g02420 and Bcin15g02580 proteins, which are predicted to contain 6 or 8 transmembrane
domains, respectively (Table 1). Although they were not predicted as GPCRs, they have higher likelihood
of containing 7 transmembrane domains in case of an error in the prediction. Bcin15g02580 for example is
predicted to contain only 7 transmembrane domains according to InterPro (but 8 according to TMHMM).
Finally, we selected CFEM-Bcin07g03260, comprising a single transmembrane domain for all downstream
analysis of this study.

Table 1. Computational identification and characterization of CFEM-containing protein coding genes,
which are associated with the membrane (Materials and Methods).

Gene ID
(Ensembl) TM 1 Sub-Cellularlocations 2

GPI Anchor
Site Prediction
[32]

Presence of
Eight Cys
Consensus Pattern

Contains Asp
Aligned with
Csa2′s Axial Asp

Final
Location
Prediction 3

Potential
Non-GPCR

Bcin05g02420 6 TM domains PM No Yes Yes MP Medium
Bcin07g03260 s 1 TM domain PM No Yes Yes MP Best
Bcin15g02580 7–8 TM domain 4 PM No Yes Yes MP Worst

1 TM—transmembrane domain prediction [TMHMM, [31]. 2 Subcellular localization prediction using WoLF PSORT:
PM—plasma membrane. 3 Final prediction abbreviations indicate: MP—membrane protein. 4 Containing only
7 transmembrane domains according to InterPro. s Selected for further research.

2.3. Infection Assay

The adaxial side of tomato plant leaves were inoculated with 1000 conidia of B. cinerea (six inoculation
sites per leaf, four leaves per plant), suspended in 10 µL of 1/4 PDB (Potato dextrose broth, Difco, BD,
Sparks, MD, USA, pH 6.4) [37]. Disease progression was monitored at 0, 16, and 48 h post infection
(hpi). Pathogenicity assays of B. cinerea on tomato leaves were performed with the conidia harvested
from 10 day-old agar plates (PDA). For detached leaf infection assays used to test mutant levels of
pathogenicity, we used leaves from 4 week-old tomato plants that were placed in petri dishes containing
moist blotting paper and inoculated them with 10 µL conidial suspensions (described above). The lesion
area was calculated at different time points using Image J software (NIH).

2.4. DNA and RNA Isolation

Fungal mycelium was grown on PDA plates with cellophane paper. Mycelium were scratched
from the plates, grounded in liquid N2 and used for DNA or RNA isolation. DNA was isolated
using DNA lysis buffer at pH 8.0 containing Tris-HCl (200 mM), NaCl (250 mM), EDTA (25 mM),
and SDS (0.001% v/v). DNA was digested with RNAse and used for PCR. RNA was extracted using the
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Plant/Fungal RNA isolation Kit (cat–25800, Norgen, Canada), following the manufacturer’s instructions,
followed by DNase treatment (Qiagen kit, cat–79254, Hilden, Germany).

2.5. Quantitative RT-PCR

cDNAs were made using Thermo Scientific Maxima First strand kit (cat–K1671, Baltics, UAB,
Lithuania) from 1000 ng total RNA following the manufacturer’s instructions. The qPCR (qRT-PCR)
reactions were carried out as follows: 10 min at 94 ◦C, and 40 cycles of 94 ◦C for 10 s, 59 ◦C for 15 s,
and 72 ◦C for 20 s (Rotor-Gene 6000 Corbett Research, Australia) using gene specific primers (Table 2,
see more details about each experiment in figure legends). ABsolute Blue qPCR Mix, SYBR Green (Thermo,
cat–AB4322B, Baltics, UAB, Lithuania) was used in the qPCR reactions. The ubiquitin-conjugating
enzyme gene (UCE) [38] that was used as a reference gene is illustrated in all relevant figures. The UCE
gene was selected because it was shown (together with the ubiquitin gene UBQ) to have the best
stability of gene expression across various conditions that are relevant to the B. cinerea infection process,
when compared to other commonly used control genes (i.e., glyceraldehyde-3-phosphate dehydrogenase;
β-tubulin; actin, and α-tubulin genes) [38]. The samples were subjected to melting-curve analysis:
efficiencies were close to 100% for all selected primer pairs (Table 2). Relative expression was calculated
using the −∆∆CT method.

Table 2. Primers used in the study.

Name of Primer (FP, Forward
Primer; RP, Reverse Primer) Purpose Sequence (5′→3′)

P131FP 5′ flank Integration TACTGTGCAGTAGGTCGAGC
P126 RP 5′ flank Integration CTTGCTTGACAAACGCACCA
P124FP 3′ flank Integration CTCGGAGGGCGAAGAATCTC
P138RP 3′ flank Integration GGGGAAGGTTTGGAAGGTGG
BcActin FP Positive control for PCR TGCTCCAGAAGCTTTGTTCCAA
BcActin RP Positive control for PCR TCGGAGATACCTGGGTACATAG
CFEM RT FP CFEM qRT-PCR AAGAGGAGGATGTGGGGTCA
CFEM RT RP CFEM qRT-PCR CTAGCACATCGACGTCCTCC
BcUBQ RT FP Control for qRT-PCR CAAGGTTACCGACAACAATA
BcUBQ RT RP Control for qRT-PCR GCATCCATCAACTTCTTCAA
BcUCE RT FP Control for qRT-PCR ATCACCCAAACATCAACT
BcUCE RT RP Control for qRT-PCR CATAGAGCAGATGGACAA
CFEM 5′Flank (BamHI) FP To amplify 5′ Flank CGCGGATCCCCGTGCTGGAGCATGTTGGCAC
CFEM 5′Flank (KpnI) RP To amplify 5′ Flank CGGGGTACCCCCCGGTCAGAATATGACATGG
CFEM 3′Flank (MscI) FP To amplify 3′ Flank TCGCGATGGCCAACACCTCGAACTCCAACCAC
CFEM 3′Flank (PstI) RP To amplify 3′ Flank AAAACTGCAGCAAACGCCACCATGATACAC

2.6. Construction of CFEM-Bcin07g03260 Mutants

For deletion of the CFEM-Bcin07g03260 gene, we employed a replacement that is based on
homologous recombination. Two flanking regions were cloned in either side of the hygromycin
resistance cassette (HygR, containing hygromycin phosphotransferase gene, hph, under PtrpC promoter)
that was obtained from the pNDH-AGT vector [8]: 1043 bp 5′ flank region upstream to −115 bp from
start codon (from promoter region to ensure no expression has been driven), and 1000 bp 3′ flank
region including the untranslated region (3′ UTR) (see results Figure 1a). The flanking regions were
extracted by PCR on B. cinerea genomic DNA using primers that contain restriction sites (Table 2) that
facilitated ligation into both sides of HygR present inside multiple cloning site (MCS) of the pMA-RQ
vector (Invitrogen, USA). The construct was designed to replace the first 431 amino acids (out of 675)
of the coding region, which includes the entire CFEM domain, all of exon 1 and 60% of exon 2 of the
CFEM-Bcin07g03260 gene, including its transmembrane domain (Figure 1a). The replacement vector
(Figure 1a,b) was transformed into WT B. cinerea protoplasts using previously described protocols for
protoplast generation and transformation [8]. Single conidium isolates were screened for identification
of homokaryon transformants (see [8]). Homologous integration events in hygromycin-resistant
transformants were detected by diagnostic PCR using the following primer pairs: P131FP–P126RP
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to detect 5′ flank integration; and P124FP–P138RP to detect 3′ flank integration (Table 2, Figure 1c).
Replacement of the first 115 nucleotides upstream of the coding region (together with the consequent
coding region) was likely to impair the transcription initiation process. Ensembl genome browser
(https://fungi.ensembl.org/) was used to validate that the 115 nucleotides upstream fragment is not in
another gene. The translation process in the deletion mutant would also have been stopped by the Hyg
stop codon, which is present in the hygromycin resistance cassette used in this study (as depicted in the
revised Figure 1b). The consequent replacement of all of exon 1 and 60% of exon 2 (together encoding
for 431 amino acids) of the CFEM-Bcin07g03260 also ensured the removal of all of the CFEM domain
(spanning exons 1 and 2). Therefore, even if the remaining part of the gene that was not deleted
(encoding for 244 amino acids in exon 2) would have been expressed, it would not have caused
translation of the CFEM domain, which is the main focus of this study. Finally, qPCR analysis for the
deleted gene showed that the selected strategy resulted in significant reduction of its expression by
more than 90% in three independent deletion mutants (Figure 1d). Taken together, three independent
∆CFEM-Bcin07g03260 mutants (from here on ∆CFEM-T4, ∆CFEM-T7 and ∆CFEM-T8) were used in
downstream analyses.

2.7. Saprophytic Growth and Conidiation Assay

Saprophytic growth rates were measured on PDA Petri dishes (9 cm diameter) by inoculating
them in the center with agar plugs of the tested B. cinerea isolates. Growth was marked twice a day
between 3 to 5 days, before the culture reached the margins of the Petri dish. The average of two radius
measurements per plate for each time point was used to calculate the growth area. Each isolate was
tested in five replicates, and each experiment was conducted on three different dates (unless otherwise
specified). To test conidiation, we inoculated (5 cm diameter) PDA plates with agar plugs containing
different B. cinerea isolates, and incubated them for 10 days. Conidia were harvested by washing the
cultured plates with sterile dH2O, filtering them through sterile cheesecloth, followed by precipitation
(13,000 rpm, 1min), and resuspension in an equal volume (1 mL) of dH2O for all isolates. Each isolate
(∆CFEM deletion mutants, and WT) was tested in five replicates, and each experiment was conducted on
three different dates. The average number of conidia of all dates was used to compare between isolates.

2.8. Conidial Germination Assay

For conidial germination, cultures (of ∆CFEM deletion mutants—T4 and T8, and WT isolates) were
grown and conidia were later harvested as described above for the conidiation assay (Section 2.7). For the
germination assay, conidia were adjusted to 1 × 105 conidia/mL in 1

4 PDB and incubated at 20 ◦C in
the dark at 120 rpm in the presence or absence of 2.0 mg/L of the germination inhibitor pyrimethanil
(causing EC30) (Mythos SC300, Bayer’s Crop Sciences, Germany). The rationale behind the low dosage of
fungicide application was to implement a moderate stress on the conidial germination, which should
enable the identification of a partial effect on germination in the mutant lines. Conidia’s germination
was monitored at 3 and 6 hpi under a light microscope (Leica DMLB connected to Nikon DS fii camera).
The experiment was repeated on three different dates, and each isolate was sampled five times. The length
of the germ tube was calculated with ImageJ software (NIH).

2.9. Statistical Analysis

All experiments (unless otherwise specified) were carried out in triplicate and repeated three times.
Average values and standard errors were calculated using Excel 2010 (Microsoft Inc., Seattle, WA, USA).
When the question was whether each separate mutant was different from the WT strain (i.e., in results
illustrated in Figure 1d, Figure 2, and Figure 3), the statistical analysis that was performed was
the Student’s T-test. However, when the question of interest was whether more than two different
treatments were significantly different from each other (i.e., in results illustrated in Figure 4 comparing
expression in three infection times), we used the analysis of variance (one way ANOVA) followed

https://fungi.ensembl.org/
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by Tukey HSD. For all statistical tests, differences with p values < 0.05 were considered statistically
significant (under the assumption of normality).
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Figure 1. Identification and deletion of the CFEM-Bcin07g03260 gene in WT B. cinerea. (a) Genomic
arrangement of the CFEM-Bcin07g03260 gene in the B. cinerea genome showing the CFEM domain
(yellow), transmembrane domain (red), cytoplasmic domain (green) and the region that was replaced
by homologous recombination (1456 bp). (b) Homologous recombination-based construct used for
deletion of the Bcin07g03260 gene. The 5′ and 3′ flanks were amplified (with restriction sites) from
genomic DNA and cloned in either side of the Hyg cassette, which was used to transform WT
B. cinerea protoplasts. Red, and blue arrows indicate primers used for 5′ and 3′ integration, respectively.
(c) Diagnostic PCR showing the successful integration of the Hyg cassette (PtrpC:hph) in the B. cinerea
genome. The primers used to confirm the integration (Table 2) are indicated in panel B (5′ integration—red
arrow, and 3′ integration—blue arrow; PC-Plasmid control for PCR). (d) Real-time qPCR showing
negligible expression of the CFEM-Bcin07g03260 gene transcript in the deletion mutants. The transcript
level was determined using gene specific primers (Table 2). The expression was normalized using
expression of B. cinerea UCE. The expression analysis was performed on three biological replicates,
each containing three technical repeats. Bars indicate standard error (SE) (*** indicate p < 0.001,
obtained by Student’s T-test).
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3. Results

3.1. Identification of Bcin07g03260, a Non-GPCR Membrane-Bound CFEM-Containing Protein

Our computational analysis identified three potential non-GPCR membrane bound CFEM-containing
protein coding genes that contain the CFEM domain, including the conserved pattern of eight cysteines [10],
the transmembrane domain(s), and a conserved aspartic residue [17,23] (Table 1, Materials and
Methods). Among these three, Bcin07g03260 was predicted to contain only one transmembrane domain,
while Bcin05g02420, and Bcin15g02580 proteins were predicted to contain 6 or 8 transmembrane domains,
respectively (Table 1). Therefore, we selected the Bcin07g03260 homolog for further analyses, which has
the highest dissimilarity to GPCR proteins that typically contain 7 transmembrane domains [24].

3.2. Study of ∆CFEM-Bcin07g03260 Mutants

To study the role of Bcin07g03260 in B. cinerea (strain BO5.10) physiology and pathogenicity,
we generated three independent deletion mutants of CFEM-Bcin07g03260 via a homologous recombination
based approach (∆CFEM-T4, ∆CFEM-T7 and ∆CFEM-T8; see Materials and Methods, and Figure 1a–c).
Results of real-time quantitative PCR confirmed that the expression of CFEM-Bcin07g03260 in these
mutants (∆CFEM-T4, ∆CFEM-T7 and ∆CFEM-T8) is negligible (Figure 1d).

3.3. CFEM-Bcin07g03260 is not Required for Growth, and Conidiation of B. cinerea

To test the role of CFEM-Bcin07g03260 in hyphal growth of B. cinerea, we compared the growth area
of WT and CFEM mutants on PDA plates (Table 3). No significant reduction was observed in growth of
the two CFEM deletion mutants (∆CFEM-T4, and ∆CFEM-T8) compared with the WT (tested at 24, 48,
and 72 hpi). For example the average areas at 48 hpi were 15.71± 0.29, 15.55 ± 3.02, and 14.28 ± 3.14 cm2

for the WT, ∆CFEM-T4, and ∆CFEM-T8 strains respectively. Similarly, we did not identify significant
differences in conidiation between the WT (42.8 × 106

± 5.18 conidia per plate), and the two CFEM
deletion mutants (∆CFEM-T4, 36.33 × 106

± 5.96; and ∆CFEM-T8, 39.38 × 106
± 7.74 conidia per plate)

(Table 3).

Table 3. Growth and sporulation in the BO5 WT and CFEM deletion mutants.

Isolate
Average Colony Area cm2

± SE (p Value, Student’s T-test Against W)
Conidiation per Plate

(i.e., per 19.6 cm2)

24 hpi 48 hpi 72 hpi 14 dpi

BO5 WT 4.49 ± 1.54 15.72 ± 0.28 36.07 ± 0.29 42.8 ± 5.17
∆CFEM-T4 3.52 ± 1.58 (p ≤ 0.58) 15.54 ± 3.02 (p ≤ 0.94) 3 ± 0.25 (p ≤ 0.54) 36.39 ± 3.34 (p ≤ 0.45)
∆CFEM-T8 3.36 ± 1.90 (p ≤ 0.57) 14.28 ± 3.14 (p ≤ 0.57) 34.12 ± 3.82 (p ≤ 0.53) 39.37 ± 7.73 (p ≤ 0.73)

3.4. CFEM-Bcin07g03260 is Required for Pathogenicity of B. cinerea

To study the effect of CFEM deletion on B. cinerea virulence, we compared the infection process of the
different isolates on detached tomato leaves inoculated with conidia (Materials and Methods). During the
first 24 hpi, we did not observe any visible symptoms in CFEM deletion mutants. However, clear visible
infection regions were observed in the WT strain (Figure 2a). A significant reduction in the lesion size was
observed in all three CFEM deletion mutants at 48 hpi (reduction in lesion area of 35% for ∆CFEM-T4,
25% for ∆CFEM-T7, and 18% in ∆CFEM-T8 compared with the WT BO5 isolate (Figure 2b).
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Figure 2. CFEM-Bcin07g03260 is required for pathogenicity in B. cinerea. (a) Deletion of the
CFEM-Bcin07g03260 gene caused reduced virulence on tomato leaves. Detached tomato leaves were
inoculated with 10 µL drops of 105 conidia/mL in 1

4 PDB, and photographs were taken at 36, 48,
and 60 hpi. (b) Average lesion area of the infected leaves with WT or ∆CFEM mutants at different time
points. The experiment was repeated on three separate dates and the data was averaged. Each experiment
was performed with n > 20. Error bars represent the ±SE of the mean. Asterisks indicate significant
results between averages (p < 0.05, obtained by Student’s T-test).

3.5. CFEM-Bcin07g03260 is Required for Conidial Germination and Germ Tube Elongation

Since CFEM mutants exhibited reduced pathogenicity on tomato leaves, we were interested in
studying the potential physiological mechanism involved in this phenotype. Therefore, we compared
conidial germination of the WT with that of two deletion mutants. The CFEM mutants exhibited a
significant reduction in conidia germination (23 and 19% reduction in ∆CFEM-T4 and ∆CFEM-T8,
respectively) compared with the WT isolate (Figure 3a). In addition to the binary phenotype of
germinating/non-germinating, we were also interested in studying potential difference in the germ
tube elongation that proceeds the germination. The CFEM mutants exhibited a significant reduction
in germ tube length (30 and 19% reduction in ∆CFEM-T4 and ∆CFEM-T8, respectively) compared
with the WT (Figure 3b). To further study the role of germination in CFEM mutants, we monitored
germination in the presence of the germination inhibitor pyrimethanil (2.0 mg/L). The CFEM mutants
showed 70% more inhibition in germination than the WT (42 and 45% inhibition in ∆CFEM-T4 and
∆CFEM-T8, respectively, compared with 25% inhibition in the WT in the presence of the germination
inhibitor pyrimethanil (Figure 3c)).
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Figure 3. CFEM-Bcin07g03260 is required for conidial germination and germ tube elongation. (a) Average
conidial germination (%) in the WT, ∆CFEM-T4 and ∆CFEM-T8. Germination was monitored in 1

4 PDB
at 20 ◦C, 120 rpm in the dark. Germination (%) (Panel a) was calculated as (number of germinating
conidia)/(total number of conidia). (b) Average germ tube length in the WT, ∆CFEM-T4, and ∆CFEM-T8
was calculated 6 h post inoculation in a similar condition to that described above. Photographs were
taken at given time points, and germ tube length was measured using ImageJ software. (c) Conidial
germination (%) in the presence of the fungicide pyrimethanil (2 mg/L). Conidial germination (panels a,
and c) was monitored in the presence or absence of the fungicide. The experiment was repeated three times
(n = 5 samples in each for conidial germination, and n = 50 for germ tube elongation). Error bars represent
±SE. Asterisks indicate significant difference between averages of the three different experiments (p < 0.05,
obtained by Student’s T-test). To calculate the effect of fungicide on conidial germination, the ratio was
calculated as (germination in the presence of fungicide)/(germination in the absence of fungicide).
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3.6. CFEM-Bcin07g03260 is Upregulated in the Course of Germination

To further study the involvement of the membrane CFEM encoding gene in germination,
we monitored the expression of CFEM-Bcin07g03260 in WT in early (16 hpi) and late stages (48 hpi)
of the infection of tomato leaves, using qPCR with the gene specific primers. In line with the results
showing the involvement of CFEM-Bcin07g03260 in the conidial germination process, Bcin07g03260
exhibited a three-fold increase in expression levels at the germination stage (16 hpi) compared with
0 hpi (Figure 4). This increase was followed by a decrease in expression level at the necrotic growth
stage (48 hpi) (significant upregulation over 0 hpi was detected only by T-test but not by Tukey HSD
test) (Figure 4).
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Figure 4. Expression levels of CFEM-Bcin07g03260 encoding for the predicted membrane protein in WT.
Gene expression levels were monitored by real-time qPCR from infected tomato leaf tissue of whole
plants (at 0, 16, and 48 h post infection; two independent biological replicates per treatment). The y axis
represents fold change compared with the housekeeping gene encoding for ubiquitin-conjugating
enzyme (UCE), based on ∆Ct values. ANOVA showed a significant difference between time points
(p value < 0.05). Different letters indicate a significant difference between pairs (e.g., 0 hpi vs. 16 hpi)
based on Tukey HSD (p value < 0.05). Error bars represent ±SE.

4. Discussion

In the present study, we report the identification and functional characterization of a non-GPCR
membrane bound CFEM-containing protein in B. cinerea. The gene coding for this protein is likely to
be involved in plant pathogenicity, conidial germination, and consequent germ tube elongation.

Our computational analysis identified three potential non-GPCR membrane bound CFEM-containing
protein coding genes, one of them contains a single transmembrane domain. To the best of our knowledge,
this is the only single transmembrane CFEM-containing protein, and the only non-GPCR membrane
CFEM-containing protein that has been analyzed in phytopathogenic fungi.

We bring several lines of evidence that illustrate that the non-GPCR membrane CFEM-containing
protein, CFEM-Bcin07g03260, is likely to be involved in the virulence of B. cinerea. Three independent
deletion mutants of CFEM-Bcin07g03260 showed significantly reduced progression (above 20%
reduction compared with WT) of the necrotic lesion during infection on tomato leaves. The CFEM
deletion mutants exhibited a significant reduction (over 20%) in conidial germination (%) and in the
following process of germ tube elongation compared with the WT isolate. Finally, we demonstrated
that CFEM-Bcin07g03260 gene expression is (up)regulated during the germination stage. The higher
sensitivity of CFEM deletion mutants to the germination inhibitor further supports the role of the
CFEM-Bcin07g03260 gene in the germination stage. Together, these results demonstrate that an
important part of the inhibition in virulence can be attributed to inhibition in germination and germ
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tube elongation. The authors acknowledge that future complementation of the Bcin07g03260 gene
that will show recovery of the phenotypes, could supply better proof that the phenotype in the KO
(knock-out) mutant is not a result of a stochastic event such as integration of the KO construct into
a non-targeted gene. However, in B. cinerea, random ectopic integration is considered a rare event
that is technically challenging to achieve, while homologous recombination has a high frequency
(see discussion in [8]). Thus, the homologous recombination construct used in this study to generate KO
has a small chance for random ectopic integration, this probability is even lower in three independent
mutants presented in this work.

Studies in phytopathogenic fungi have demonstrated the role of other membrane CFEM-containing
proteins (CFEM GPCRs) in pathogenicity and physiology [18,25,26]. Deletion mutants of a GPCR
CFEM-containing membrane protein (Pth11-like WISH protein) in M. oryzae were nonpathogenic due
to a defect in sensing hydrophobic surface and appressorium differentiation [18]. The ∆FGRRES_16221
mutant of the CFEM-containing PTH11-like receptor in F. graminearum also showed reduced virulence,
together with enhanced expression of the wheat host defensive response mechanism (e.g., chitinase) in the
course of infection. Our current work in B. cinerea, complements previous study [19], which illustrated the
requirement of secreted CFEM protein (named CFEM1) for pathogenicity of this pathogen. The ∆CFEM1
mutant showed approximately 30% reduction in progression of necrotic lesions on bean leaves, and in
production of conidia on PDA medium; however, germination was not affected [19]. These mutants showed
increased sensitivity to salt (NaCl), osmotic (sorbitol) oxidative, and cell wall (SDS) stresses (H2O2) [19].
We tested conidia production, and sensitivity to these stresses in the membrane CFEM-Bcin07g03260
deletion mutants used in our study under the same conditions [19]. In contrast with the secreted CFEM
mutants (∆CFEM1 [19]), the membrane CFEM mutants tested in our work did not show sensitivity to
these stresses nor reduced conidia production; however, it showed reduced germination and germ tube
elongation. Thus, the two CFEM proteins are involved in different physiological pathways that are likely
to complement each other to control the fungal virulence.

Germination of dormant conidia into hyphae is a crucial stage for successful completion of the
disease cycle in air born fungal phytopathogens like B. cinerea [39]. Studies in B. cinerea, have demonstrated
that this process can be induced by different combinations of nutrients and hydrophobic surfaces,
and is regulated by components of the phosphorylative regulation mechanism [40–43]. In this study,
both membrane CFEM mutants showed markedly reduced germination (compared with WT) at 3 hpi,
and germ tube elongation at 6 hpi. Study of the kinetics of B. cinerea conidia germination has shown
similar results, since the majority of conidia germinated at 2.5 h, and a majority of germ tube elongation
was stopped after 4 h [44]. Differences between the timings of the stages may be a result of different
conditions, i.e., rich liquid media used in this study compared with solid wax minimal fructose medium
used in their study [44]. Interestingly, a CFEM-containing protein coding gene was shown to be
upregulated in the course of germination (after 1 h) (see supplemental materials in [44]). This result was
demonstrated in different conditions, i.e., germination on solid surface compared with liquid media
in the current work, suggesting a central role of CFEM proteins functioning in both “pathways” of
conidium germination.

Finally, recent network-based comparative genomics analysis of phytopathogenic fungi (and oomycetes)
performed by our group has highlighted multiple functions involved in the pathogenicity of various
pathogenic strategies [45]. If filtering for functions that were not present in the network is removed
(third filter in Materials and Methods section, [45]), CFEM is significantly enriched in the core of the
necrotrophic lifestyle (core comprises at least 70% of the necrotrophs). Together with our study, and previous
works in necrotrophs, this result highlights the importance of CFEM proteins in the necrotrophic lifestyle.

5. Conclusions

CFEM proteins were shown to have various roles in (phyto)pathogenic fungi. In this study,
we demonstrate the role of non-GPCR membrane bound CFEM-containing protein in necrotic growth,
and germination of B. cinerea. One interesting future direction would be to explore the potential
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connection between known regulatory pathways of germination and the CFEM protein analyzed in
this work. Other interesting direction would be to decipher the role of unstudied CFEM containing
proteins in the virulence process of B. cinerea [45], and other phytopathogenic fungi.
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