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University, Toruń, Poland, 2 Department of General and Oncological Urology, Collegium Medicum in Bydgoszcz, Nicolaus
Copernicus University in Toruń, Toruń, Poland

Tumor cells have the ability to induce platelet activation and aggregation. This has been
documented to be involved in tumor progression in several types of cancers, such as lung,
colon, breast, pancreatic, ovarian, and brain. During the process, platelets protect
circulating tumor cells from the deleterious effects of shear forces, shield tumor cells
from the immune system, and provide growth factors, facilitating metastatic spread and
tumor growth at the original site as well as at the site of metastasis. Herein, we present a
wider view on the induction of platelet aggregation by specific factors primarily developed
by cancer, including coagulation factors, adhesion receptors, growth factors, cysteine
proteases, matrix metalloproteinases, glycoproteins, soluble mediators, and selectins.
These factors may be presented on the surface of tumor cells as well as in their
microenvironment, and some may trigger more than just one simple receptor–ligand
mechanism. For a better understanding, we briefly discuss the physiological role of the
factors in the platelet activation process, and subsequently, we provide scientific evidence
and discuss their potential role in the progression of specific cancers. Targeting tumor cell-
induced platelet aggregation (TCIPA) by antiplatelet drugs may open ways to develop new
treatment modalities. On the one hand, it may affect patients’ prognosis by enhancing
known therapies in advanced-stage tumors. On the other hand, the use of drugs that are
mostly easily accessible and widely used in general practice may be an opportunity to
propose an unparalleled antitumor prophylaxis. In this review, we present the recent
discoveries of mechanisms by which cancer cells activate platelets, and discuss new
platelet-targeted therapeutic strategies.
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INTRODUCTION

The primary hemostatic function of platelets is well known;
however, increasing evidence supports the crucial role of platelets
in cancer biology (1, 2). In 1865 Armand Trousseau first described
cases of thrombophlebitis in patients with cancer. He emphasized
the association of malignancies with the creation of venous and
arterial platelet–rich microthrombi in the vasculature (3). Further
studies demonstrated that tumor cells can induce platelet activation
and aggregation. This mechanism is now called tumor cell–induced
platelet aggregation (TCIPA) (4). TCIPA has been documented to
be involved in tumorigenesis in several types of cancers including
breast (5)lung (6)and pancreatic (7). During TCIPAplatelets protect
circulating tumor cells from the deleterious effects of shear forces
and also preserve the tumor cells from the immune system by
creating a physical barrier around cancer cells (8). These actions
may contribute to metastatic spread and tumor growth (2). One of
the reasons why TCIPA is in the spotlight of current research is the
explored possibility to involve antiplatelet drugs in cancer therapy.
Targeting TCIPA with antiplatelet drugs may open new ways to
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affect cancer environment and develop new treatment modalities. In
this reviewwe present the recent discoveries of mechanisms
explaining platelet activation by cancer cells. Moreoverwe discuss
new platelet–targeted therapeutic strategies as potential inhibitors of
TCIPA (Figure 1).
CLOTTING FACTORS

Thrombin
Thrombin is a serine proteaseplaying a pivotal role in blood
coagulation (9). It converts fibrinogen into fibrin and activates
various coagulation factorsincluding VVIIIXIand XIIIand the
protease–activated receptors (PAR) on plateletsendothelial
cellsmyocytesand neurons (2). In this processreceptorssuch as
PAR–1PAR–3and PAR–4are activated (1). PAR–1 is the most
effective receptor for thrombin (10). There is increasing evidence
suggesting a crucial role of thrombin in cancer biology (11).
Thrombin is proven to be generated by lung cancer cells (6).
Thrombin–activated platelets express factors that facilitate
FIGURE 1 | Schematic of the different mechanisms of TCIPA. Figure created using https://www.canva.com/.
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contact with tumor cells andin turnenhance TCIPA through full
activation of specific membrane receptors on platelets (12).
Similarlyoverexpression of the PAR–1 receptor was associated
with cancer progression and development. As demonstrated by
Cisowski et al.silencing or pharmacologic blocking of PAR–1
results in a significant decrease in motility of the lung cancer cell
lines A549 and HOP62 (13). PAR–4 is overexpressed in
colorectal and prostate cancer and PAR–3 in kidney and liver
cancer (14). Thrombin also increases the surface exposure of
GPIIb–IIIa on platelets and tumor cellsthereby enhancing the
interactions between tumor cells and platelets (15). Another
potential mechanism linking thrombin with tumorigenesis is
its major function during fibrinogen activation and conversion to
fibrin. Thrombin may promote abnormal and upregulated fibrin
deposition within the tumor matrix. Fibrin itself has also binding
motifs for numerous integrins like GPIIb–IIIa and aVb3making
it capable of influencing numerous cell types including platelets
and tumor cells (12). Interestinglythrombin may also contribute
to breast cancer metastasis via other factorsunrelated to the
TCIPA mechanism. I t c leaves osteopont in (OPN)
andthusincreases its biological activity. Schulze et al. reported
that inhibition of thrombin in breast cancer cells overexpressing
OPN leads to its more indolent behavior (16).
Tissue Factor
Tissue factor (TF) is a membrane glycoprotein that is crucial to
initiate the extrinsic coagulation cascade (17). Expression of TF
has been detected in several types of cancersincluding breast
cancer (18)prostate cancer (19)and lung cancer (20). TF is
expressed on the cell membrane to activate the plasmatic
coagulation cascade (21) that causes the generation of
thrombinwhich in turn induces platelet activation (2).
Furthermoreit has been discovered that TF plays an important
role in tumor angiogenesis and progression as well as in
metastasis (22). TF expression is under the control of E–
cadherinPTENK–rasand p53. The activation of E–cadherin and
K–ras or the loss–of–function of PTEN and p53 results in the
implication of the mitogen–activated protein kinase (MAPK)/
phosphoinositide–3 kinase (PI3K) signaling pathway and the
subsequent increase of TF expression (23–25). High TF
expression is correlated with the histological grade and poor
prognosis in some tumor typesincluding non–small–cell lung
carcinoma (26) and breast cancer (27). In bladder cancer
patientshigh TF serum levels were previously shown to be
associated with rapid disease progression (28). A study by John
et al. has shown that despite the high expression of TF in bladder
cancer cellsthe plasmatic coagulation was not induced. The
authors explained this phenomenon by the comparably high
levels of thrombomodulin that binds and inactivates thrombin
on the cell surface (29). The TF–bearing extracellular vesicles
(EVs) can be secreted by cancer cells andthusmay trigger TCIPA
(30). For instanceSasano et al. demonstrated that TF–expressing
EVs from ovarian cancer cells impact platelet aggregation and
thrombosis (31). TF+ EVs from two human pancreatic
adenocarcinoma cell lines affect resting platelets and activate
them via thrombin generation (30). Geddings and colleagues
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presented that patients with advanced breast cancer had elevated
levels of TF–bearing EVs compared with healthy controls (30).

von Willebrand Factor
von Willebrand factor (vWF) is an adhesive and multimeric
glycoprotein present in plasmasynthesized by endothelial cells and
megakaryocytes. vWF has a central role in primary hemostasis where
it mediates platelet adhesion to the exposed extracellular matrix at the
site of vascular damage (32, 33). vWF promotes platelet accumulation
in the classical first wave of hemostasis by binding the platelet
glycoprotein Ib–IX–V (GPIb–IX–V) complex (32). Monomers of
pro–vWF undergo dimerization in the endoplasmic reticulum
through C–terminal disulfide bonds and then undergo
multimerization in the Golgi apparatus through N–terminal
disulfide bonds (34). The newly synthesized vWF multimers are
stored in the Weibel–Palade bodies (WPB) of endothelial cells and in
the a–granules of megakaryocytes and platelets. vWF occurs in a
range of sizesreferred to as vWF multimersincluding ultra–
largehighintermediateand low molecular weight forms. In addition
to endothelial and platelet–derived vWFthere is also another pool of
circulating large heterogeneous multimers composed of repeating
monomeric unitsup to 40,000 kDa in lengththat are the most
biologically active form of vWF. This pool is reported to be
released upon endothelial cell activation in response to
inflammatory and ischemic injuries (35) and in response to a
variety of factors such as thrombinhistamineadenosine diphosphate
(ADP)collagenand other immune or tumor cell–secreted factors (32).
The circulating multimers act dynamicallydepending on shear
conditions or the presence of vessel wall damage. In low–shear
conditionsplatelet adhesion is not permissible (36). On the other
handplatelet–derived vWF exists as a hyposialylated
glycoformrendering it less susceptible to ADAMTS13–mediated
proteolysis (37). Intriguinglytumors may also sequester circulating
vWF from plasma into the tumor stroma. It is reported that the main
role in this process is played by the collagen–binding motif within the
A3 domain of vWF (38). Taking into consideration these
argumentsthe endothelial cell–derived pool of vWF seems to be
more relevant in investigating TCIPA. It is considered that vWF is
one of the major platelet adhesion ligands that may also mediate
cancer progression and metastasis (39). Upon tumor–induced
endothelial cell activationthe vWF within WPB is secreted into the
lumen of the blood vessel as well as basolaterally into the
subendothelium (40). In the tumor microenvironmentit can
contribute to increased angiogenesisblood vessel permeabilityand
epithelial–mesenchymal transitioningwhich was reported in
osteosarcoma cells (41). Intraluminal accumulation of the vWF can
result in the deposition of platelet–rich thrombin within the
vasculature and serve to increase the number of metastatic focias it
was found in the murine melanoma cell lines Ret and B16F10 (42).
Yang et al. reported that patients with late–stage gastric cancer had
higher serum levels of vWFand suggested that the expression of vWF
in gastric cancer cells may contribute to its progression in vivo. The
authors also found that this may be regulated by the vascular
endothelial growth factor (VEGF)–VEGFR2 signaling pathway
(43). Endothelial cell activation followed by vWF fiber formation
was found to be the main culprit of platelet aggregation in malignant
melanoma vasculature (44). On the other handTerraube et al. found
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that the presence of vWF plays a protective role against murine
melanoma and lung cancer metastasis in vivo (45). Studies reported
that gastric cancer cells express vWFsecrete it into the circulationand
thus mediate TCIPA. vWF potentiates TCIPAwhile inhibition of this
factor reduces platelet–cancer cell interactions (46). vWF–cleaving
protease (ADAMTS13) serum levels are associated with poor
prognosis and metastasis (47, 48). Jurasz et al. have shown that
vWF potentiates the platelet–aggregatory activity of human
fibrosarcoma HT1080 cells. This effect appears to be mediated via
upregulation of platelet GPIIb/IIIa (49). vWFin addition to
promoting pro‐inflammatory signalingcan also regulate
angiogenesis and vascular permeability andthereforecan facilitate
tumor cell growth and extravasation (50).
ADHESION RECEPTORS

Glycoprotein Ib–IX–V
GPIb–IX–V is a membrane receptor complex originating in
megakaryocytes and belonging to the leucine–rich repeat family
of proteins. The complex consists of four distinct transmembrane
proteinsnamelyGPIbaGPIbbGPIXand GPVand is expressed on
platelets. The most important component of the complex is the
glycoprotein component GPIba which contains the binding sites
for vWFP–selectinthrombinthrombospondinfactor XIIfactor
Xkininogenand integrin aMb2 (Mac–1). GPIb–IX–V plays a
critical role in thrombosisinflammationmetastasisand the life cycle
of platelets (51–55). One of its functions is the interaction with vWF
on sites of vascular injury. The GPIb–IX–V complex binds to vWF
and initiates signaling that results in GPIIb–IIIa activation and
platelet aggregation (56, 57). Several lines of evidence implicated the
role of GPIb–IX–V in TCIPA. GPIb was recently discovered to be
expressed in breast cancer cells (22, 58). It plays an important role in
tumor cell–host cell interactions. Deregulated expression of GPIba
is associated with cell transformation and global genomic
destabilization (59). Interestinglyinhibition of GPIb–IX–V or vWF
function reduced platelet–cancer cell interactions suggesting that
these receptors play a role in tumor–induced platelet aggregation
(58). GPIb–IX–V has also been shown to contribute to tumor
malignancy and metastasis in lung cancer (60).

Glycoprotein IIb‐IIIa
Glycoprotein IIb‐IIIa (GPIIb‐IIIa) is an important platelet
membrane receptor for fibrinogenfibronectinand vWF. It
provides adhesive properties andhenceis necessary for platelet
aggregation (58). The function of the GPIIb‐IIIa receptor in
TCIPA has been established for decades (61). Platelets recruited
in TCIPA can attach to the surface of tumor cells by a GPIIb–
IIIa–fibrinogen bridge to secure tumor cells from immune
surveillance (62). It also contributes to tumor progression and
metastasis (63). Studies on breast cancer cell lines show that
expression of the GPIIb–IIIa subunit occurs on the surface of
MCF–7 cells and plays an important role in tumor metastasis
(58). As demonstrated by Zhang et al.platelet GPIIb–IIIa is
involved in the formation of the human melanoma A375 cell
complex with platelets. Evidence showed that blocking the
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could prevent hematogenous cancer metastasis (64). This
mechanism was also observed in a study on lung and prostate
cancer cases (64, 65). These results suggest that GPIIa–IIIb plays
a key role in tumor progression and metastasismaking it an
interesting target for anticancer therapy (64–66). Apart from
therapyadvances in understanding the TCIPA mechanism may
result in developing new highly specific diagnostic methods
targeting cancer cells at the molecular level. Yap et al.
introduced a specifically designed antibody that binds an
activated form of the integrin receptor GPIIb–IIIa. The authors
claimed that this method could be a new approach for enhancing
ultrasound and PET imaging of tumors (67).

Integrin avb3
Integrin avb3 is a transmembrane heterodimer which belongs to
the family of cell adhesion receptors (68). Platelets express avb3
integrin at their surfacewhich binds several adhesive proteins
including fibrinogenfibronectinvWFand vitronectin. It is
possible that the role of avb3 is triggering platelet adhesion
and aggregation at sites of vascular injury (69). Moreoverthe
avb3 integrin is expressed in breast cancer cells and may
influence TCIPA by binding tumor cells to platelets using
plasma proteins such as fibrinogen (70). The platelet GPIIb–
IIIa can link fibrin with tumor avb3 and mediate tumor cell–
platelet aggregation (71). In malignant melanoma cellsavb3
mediates platelet aggregation cell arrest during flow (72). This
interaction creates a physical shield around cancer cells by
protecting them from the deleterious effects of shear forces and
immune cells (71, 72). Interestinglythe combined blockade of
platelet GPIIb–IIIa and tumor cell–expressed avb3 is more
effective at inhibiting tumor growth when compared with the
single blockade of integrin receptors (73). The role of avb3 in
tumor biology is even more complex since it plays an important
role in tumor angiogenesisprogressionand metastasis (73). In
recent yearsmany studies have demonstrated that the increased
expression of avb3 integrin is related to a metastatic phenotype
in many types of cancers such as ovarian (74) prostate (75)and
breast (76).
GROWTH FACTORS

Vascular Endothelial Growth Factor
VEGF is the basic regulator of vascular growth. The actions of
VEGF include the regulation of proliferationmigrationand
permeability of endothelial cells. VEGF increases the
expression of adhesion molecules and coagulation factors. It is
stored in high quantities in platelet alpha granules (77). Elevated
serum VEGF levels in cancer patients correlate with a poorer
prognosis (78, 78). The molecules accumulated in platelets
entrapped within the tumor matrix are gradually released
depending on the protease activity such as the matrix
metalloproteinase (MMP) family (79, 80). Extracellular
proteases act on VEGF in several ways: on the one handthey
can release matrix–bound VEGFon the other handthey can
June 2022 | Volume 12 | Article 909767
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suppress VEGF’s proangiogenic activity. As a result of platelet
interaction with cancer cellsVEGF is released into the tumor
microenvironment and stimulates neoangiogenesiswhich
ultimately enhances tumor growth (77). The overexpression of
VEGF is one of the main factors leading to the occurrence and
progression of cancerincluding renal cancerbreast cancernon–
small cell lung cancerand pancreatic cancer (81). Another source
is cellular hypoxiaoccurring in tumors rapidly overgrowing their
blood supply. It induces the production of VEGF through factor–
1a. The released VEGF binds to the VEGFR of endothelial
c e l l s f avor ing the fo rmat ion o f tumor–a s soc i a t ed
microvesselsand thusincreases tumor oxygen deliverydecreases
hypoxiaand contributes to its further growth through positive
feedback (82).

Transforming Growth Factor Beta
Platelets are a potent reservoir of transforming growth factor–beta
(TGF–b) carrying a higher proportion of this molecule in the blood
(up to 40%). Its release from TCIPA is widely described in the
literature (83, 84). Howeverthere is no available research on the
TGF–b mechanism primarily triggering TCIPAleaving a promising
field for further studies. TGF–b is one of the most pleiotropic
cytokines belonging to the transforming growth factor superfamily
that includes three different mammalian isoforms (1–3) and many
other signaling proteins. TGF–b proteins are produced by all white
blood cell lineages. They are secreted in a latent form in which they
bind with two other polypeptides: latent TGF–b–binding protein
(LTBP) and latency–associated peptide (LAP). Thereforethe
regulation of TGF–b levels is unique among other cytokines as
they are not dependent on transcription factors but rather on
proteases (such as plasmin)catalyzing the release of its active form
(85). In this situationTGF–b may be upregulatedbypassing the
transcription factors’ alterations. Activated TGF–b complexes form
a serine/threonine kinase complex that binds to TGF–b receptors.
These receptors are composed of both type 1 and type 2 receptor
subunits. After binding of TGF–bthe type 2 receptor kinase
phosphorylates and activates the type 1 receptor kinase that
activates different downstream substrates and regulatory
proteinsinducing the transcription of several target genes that
promote differentiationchemotaxisproliferationand activation of
immune cells (86). Recentlysome authors have focused on the role
of TGF–b in the downstream activation of VEGF in tumorsthus
leading to settling in an environment that is both nutritious through
angiogenesis (87) and immunotolerant (88). Howeverthe initial
clinical experience with drugs selectively targeting the tumor
neovasculaturesuch as bevacizumabsunitiniband sorafenibhas been
sobering: the major clinical responses to these drugs are rare and have
minimal effects on overall survival after long–term follow–up (89–91).
Some authors have explained that these effects were due to the
promotion of compensatory angiogenic pathways (92) as well as to
NK attenuation or activation of other intracellular pathways. Another
mechanism of TGF–b–related tumorigenesis is through the
promotion of epithelial–mesenchymal transition (EMT) (93).

Platelet–Derived Growth Factor
Platelet–derived growth factor (PDGF) is a two–chain
polypeptidewhich belongs to the family of growth factors (94)
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and is a potent cell–cycle regulator acting on multiple levels and
affecting numerous tissues and structures. Originallythe PDGF was
discovered in plateletshoweverPDGF and PDGF–like peptides have
been recognized in various normal and malignant
cellsencompassing the bone matrix and osteosarcoma cell (95,
96). The mechanism of action of PDGF is mediated by a specific
membranous receptor—the platelet–derived growth factor receptor
(PDGFR). The receptor belongs to a large family of tyrosine kinases
regulating cellular function and proliferation. PDGF is stored in the
a–granules of platelets (97). Platelet–tumor cell crosstalk in the
tumor microenvironment leads to platelet activation and secretion
of stored growth factors. Platelet aggregation induced through the
thrombin pathway leads to the release of the whole content from a–
granules of plateletsincluding PDGFTGF–band VEGF (94, 98–100).
In addition to its main role of inducing tumor growthit can also
promote angiogenesis and neovascularization (101). On the other
handPDGF stimulation triggers the repression of platelet
aggregation (102). Niitsu et al. demonstrated that the human cell
line of fibrosarcoma proliferated more rapidly in a medium
containing platelet lysatewith PDGF alone substantially promoting
growth activity (103). Tsuruo et al. proved that stimulation with
PDGF can affect the growth of metastatic clones of mouse colon
adenocarcinoma in a concentration–dependent way. They
hypothesized that the PDGF pathway might be engaged in the
promotion of metastasis. Accordinglymigrating tumor cells that get
“arrested” in microvessels may attract platelet adherence and
activationultimately leading to their aggregation and formation of
a “safe cuff” (104). It was proven that PDGF can play an important
role in the EMT of prostate cancer cells. Overexpression of PDGF–
D (a variant of PDGF) in prostate cancer cells was related to
enhanced adhesive and invasive behaviors and increased tumor
growth (105). An additional example of the impact of PDGF on
EMTwas demonstrated in hepatocellular carcinoma and was linked
with TGF–b–mediated progression (106). Activation of PDGFR
with PDGF was proven to stimulate cellular proliferation in
autocrine and paracrine ways (107). A couple of studies have
shown that intraplatelet PDGF concentrations were significantly
elevated in patients with colorectal cancer when compared to
healthy individualswhich may indicate an even more important
in–vivo interaction between platelet–produced PDGF and the
tumor microenvironment (108109). Interestinglyit was shown that
PDGF–producing platelets are expressing PDGFR on their own
surface allowing autocrine feedback regulation of PDGF release. A
study has shown the inhibitory influence of the activated PDGFR–
alpha variant on platelet activation (108). The findings presented
lead us to the hypothesis that PDGF plays a substantial role in
tumor progression and metastasis.
CYSTEINE PROTEASES

Cathepsins
Cathepsins are a family of globular proteases that primarily were
d i scovered as in trace l lu la r ly func t ioning pept ide
hydrolaseshowevermultiple cathepsins have extracellular activity
(109). The cathepsin family consists of a number of proteases
named from “A” to “X” (110). Cathepsins play different
June 2022 | Volume 12 | Article 909767
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physiological rolessuch as bone remodeling and activation of
granzymes and mast cell proteases triggered by cathepsin K and
Crespectively. In tumorscathepsins contribute to the maintenance
of inflammatory processes. Neverthelesstheir main function is
associated with tumor progression and metastasis. Cysteine
cathepsins function in concert with serine proteases and matrix
metalloproteinases (111). The expression of human cysteine
cathepsins is highly upregulated in numerous cancerssuch as
melanomacolorectal cancerglioblastomaprostate carcinomabreast
carcinomalung cancerbladder cancerand gastric cancer (111–113).
Cathepsin G seems to be involved in platelet activation in Trousseau
syndrome (114): circulating mucins trigger granulocyte
activationand in turngranulocytes release cathepsin Gwhich splits
the PAR–4 and stimulates G proteins (Gq and G12/13) to prompt
the shape change and activation of platelets (114, 115). Cathepsins K
and B are secreted to an extracellular matrix as soluble enzymes
where they remain in the active form (116–119). It has been
found that overactivity of cathepsin K stimulates the initiation of
the mTOR signal transduction pathway andthusthe
proliferationmigrationand invasion of NSCLC cells (120). Under
physiological conditionscathepsin B participates in the maintenance
of cellular metabolism (106). Cathepsin B acts as a cysteine
cathepsin often associated with tumor progression (121).
Overexpressed cathepsin B level was associated with the notably
shorter overall survival of colon cancer patients (122). A strong
correlation between cathepsin B expression and tumor
angiogenesisinvasionand metastasis has been widely described in
the literature (123). Cathepsin B and cancer procoagulant factor (9)
were widely described to participate in TCIPA (124–126).
MATRIX METALLOPROTEINASES

MMPs are structurally similarzinc–dependent endopeptidases.
The major function of the MMP family is controlled
degeneration of the extracellular matrix (127). Their influence
extends from embryonic developmentmorphogenesisand tissue
remodeling to the regulation of vascular reactions and leukocyte
and platelet activity (128).MMPs are involved in all steps of cancer
progression: from primary tumor development to distant
metastasis (129). The expression of MMP–2 on the surface of
cancer cells was described in studies conducted on fibrosarcoma
and colorectal and breast cancerwhere the authors have revealed
that platelet and MMP–2 manifested by cancer cells contribute to
TCIPA (130). Other MMPs of similar function include the
membrane type I–matrix metalloproteinase (MT1–MMP)MMP–
1and MMP–9also involved in platelet aggregation and TCIPA
(131–134). MMP–1 expressed on breast cancer cells interacts with
both GPIb–a and GPIIb–IIIaleading to their upregulation and
providing ADP release and thus promoting TCIPA (2). The role of
MMP–2 in the TCIPA pathway has been confirmed in HT1080
human fibrosarcoma cells and MCF–7 breast carcinoma cells (49,
134) as well as in human prostate cancer (130). The effect of
MMP–2–induced platelet aggregation depends on the activation
of proMMP–2 to MMP–2 through MMP–14 (126). It is
considered that the communication between MMPs and
Frontiers in Oncology | www.frontiersin.org 6
glycoprotein receptors such as GPIIb–IIIaGPIband integrin
avb3 is responsible for the MMP–mediated stimulation of
platelets and tumor cells (135–137)howeverthe mechanism of
action is still not completely understood (134). MMPs have
presented the ability to stimulate TCIPA in vitrowhich is similar
to cathepsin B (133). MMPs can be released from both platelets
and tumor cells in vivo (138).
SIALOMUCIN GLYCOPROTEINS

Podoplanin
Podoplanin (PDPN) is a mucin–type protein that mediates
effects on cell migration and adhesion through its multiple
partners. During embryonic developmentit plays a role in
blood and lymphatic vessel separation by binding platelet C–
type lectin–like receptor 1B (CLEC1B)triggering CLEC1B
activation in platelets and leading to platelet activation and/or
aggregation (139, 140). PDPN directly interacts with the
CLEC2which promotes platelet aggregation and activation.
Although elevated levels of PDPN have been correlated with
increased malignancy in different tumorsits relevance for tumor
progression is still unclear. Recentlya hypothesis of two different
mechanisms of PDPN–related TCIPA in brain tumor patients
has emerged:

1. PDPN may be released into the circulationeither in soluble
form or on the surface of tumor–derived microvesicles.

2. Circulating tumor cells may be a source of circulating PDPN.
Trapping of tumor cells in the venous system might lead to
further local platelet activation and aggregation (141).

PDPN is known to contribute to tumor progression by inducing
cancer cell migration and tumor invasion connected to the EMT
mechanism (145146) and in the absence of EMT markers (142).
High PDPN expression in primary brain tumors is associated with
an increased risk of venous thromboembolism (VTE) (141) cancer
progressionand overall poor prognosis (143, 144). Thereforethe
PDPN–CLEC2 axis is a potential drug target for both reducing
the risk of VTE and improving prognosis (141). Anti–PDPN
therapies are expected to be of robust potential for future
treatment strategies (145). In recent preclinical studiesa few anti–
PDPN factors were targetedincluding types of recombinant
immunotoxin NZ (146–148) and CD9an inhibitor of Aggrus/
PDPN–induced platelet aggregation recognized to reduce the
metastatic potential of HT1080 cells (149).
SOLUBLE MEDIATORS

Adenosine Diphosphate
ADP is a strong proaggregatory factoraccumulated in platelet–
dense granulesand constitutes a secondary mediator of platelet
aggregation (124). ADP has the capacity to communicate with
platelet receptors P2Y12 and P2Y1resulting in the activation of
platelet aggregation and changes of shape as well as the release of
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thromboxane A2 (TXA2) by platelets (150) and other multiple
growth factors (151–153). ADP has been found to be expressed
on cancer cells and involved in TCIPA. The P2Y12 receptor plays
the main role in the process (134, 154). ADP–induced platelet
activation is connected normally to VEGF release. Bambace et al.
proved this by the termination of platelet activation by selective
repression of the P2Y12 receptor (155). Interestinglyderegulation
of ADP molecules may influence the reduction of metastases.
Uluçkan et al. examined the mouse models of breast cancer and
melanoma metastases treating them with acetylsalicylic acid and
APT102 (a soluble apyrase/ADPase). Their results stand in favor
of anti–ADP therapy in cancer (156).

Thromboxane A2
TXA2 is considered a powerful modulator of platelet activation and
aggregation as well as a stimulator of vascular constrictionwhich
acts via binding to the thromboxane prostanoid receptor (TP)
(157). TXA2 is considered a crucial molecule associated with
tumor metastasis. Some evidence supported this hypothesis: 1)
TXA2 is a strong platelet–aggregatory eicosanoidfacilitating the
binding of tumor cell–platelet aggregates to the surface of
endothelial cells (158). 2) TXA2 enhanced the migration and
angiogenesis of endothelial cells in both in–vitro and in–vivo
models (164165). FurthermoreTXA2 and ADP are recognized as
“soluble stimulators” of platelet aggregation (159–161).
TXA2similar to ADPis secreted in an autocrine/paracrine
manner and triggers platelet activation through positive feedback
(162). The release of both TXA2 and ADP factors stimulates the
conversion of the GPIIb/IIIa receptor into an active form
mediating platelet aggregation. Lian et al. have noticed that both
TXA2 and ADP signaling pathways are prompted during the
MCF–7 cell–initiated TCIPA (162). TXA2 synthesis is catalyzed
by cyclooxygenase 1 (COX–1). COX–1 in platelets enzymatically
converts arachidonic acid into PGG2 and then into PGH2 and
generates prothrombotic TXA2. Lucotti and colleagues have
provided evidence that aspirin reduces the metastasis of different
murine tumors (melanomabreast cancercolorectal cancer) by
inhibition of platelet COX–1 and its product TXA2. High and
medium doses of aspirin reduced the number of metastatic lung
nodules by more than 50%. Howeverthe authors concluded that
the use of more specific TXA2 inhibitorssuch as picotamidecould
be more beneficial since they do not affect gastroprotective COX–1
products (163). Recent meta–analyses of 88 cohort trials have
revealed that routine aspirin administration correlates with
diminished risk of several types of cancersincluding
colorectalgastricbreastand prostate. Unexpectedlythere was no
correlation with the risk of lung cancer (164).
SELECTINS

P–selectin
P–selectin is a Ca2+–dependent receptor for myeloid cells that binds
to carbohydrates on neutrophils andmonocytes (165). It mediates the
interaction of activated endothelial cells or platelets with leukocytes.
The ligands recognized are sialyl–Lewis X (sLeX) and P–selectin
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glycoprotein ligand 1 (PSGL–1) (166). P–selectin functions as a cell
adhesion molecule (CAM) on the surfaces of activated endothelial
cells and activated platelets. In inactive endothelium and plateletsit is
stored within the Weibel–Palade bodies and a–granulesrespectively.
It is responsible for rapid leukocyte rolling over vascular surfaces
during the initial steps of inflammation. It is widely known that P–
selectin induces TCIPA andthuspromotes tumor growth (167). The
rapid mobilization of P–selectin primarily to TCIPA was observed in
tumor blood vessels in different speciessuch as oil miceC57BL6
miceand nude miceand in different tumor types like lung
carcinomacolon carcinomabreast carcinomaand gliomas in
response to radiotherapy. In contrastnormal tissue did not reveal
increased post–treatment expression (168). This may suggest that the
tumor and its environment can stimulate P–selectin to be in a closely
preactivated stateready to externalize when a non–specific trigger
occurs (such as radiation therapy). Other authors noticed P–selectin
upregulation to be triggered by contact with the tumor cell–surface
mucin (169) and non–mucin ligands (170). Mucins associated with
cancer progression are MUC1MUC2MUC4and MUC16. As
demonstrated by Kim et al.large mucin molecules on the surface of
tumor cells bearing multiple P–selectin–binding sites could bridge
tumor cells and P–selectin–expressing platelets (167). These
interactions protect tumor cells within the bloodstreamhiding them
from NK cells (1)which could influence metastatic spread and may
also contribute to tumor progression (171). Studies onmice show that
platelet–tumor cell interactions are significantly reduced in P–
selectin–deficient miceand consequentlyattenuation of metastasis is
observed. Furthermoreenzymatic removal of carcinoma mucins
results in attenuated metastasis comparable to the absence of P–
selectin (172).

An abbreviated description of all aforementioned factors is
gathered in Supplementary Table 1.
TCIPA TARGETING IN
CANCER MANAGEMENT

In recent yearsthe successful adoption and implementation of
selective cancer therapies in clinical practice has increased
research efforts aimed to identify and target various anticancer
mechanisms. TCIPA is one of the pathways explored in the
search for new options for cancer treatment. The crosstalk
between plateletstheir receptorsreleased moleculesand clotting
factors is subject to extensive and long–time research from
different medical fields. These extensive studies resulted in the
development of blockbuster therapies in cardiology and vascular
medicine. The major principle of those protocols is to affect
aggregation and clotting in a safe and controlled manner on
different regulatory levels. The rich experience gained in the
design of antiplatelet and antithrombotic treatment modalities
may be transferred to oncology. For instanceTCIPA is a
mechanism worthy of further studies as it demonstrates the
involvement of platelets in carcinogenesis. It is highly probable
that TCIPA inhibition would be beneficial for patients due to
reduced risk of cancer–related thrombosis and associated clinical
conditions such as strokepulmonary embolismand deep vein
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thrombosis. Howeverin this articlewe focused on exposing
antitumor effects mediated by influencing TCIPA. The proof of
concept is several studies reporting the potential benefit of
targeting TCIPA in various tumors.

Thrombin and Factor X
In pancreatic cancerthe expression of the PAR–1 receptor in the
tumor microenvironment was proven to drive progression and
induce chemoresistance (173). Thereforethe next step was to use
a thrombin inhibitor in cancer therapy. In a study on micea
direct thrombin inhibitor dabigatranwidely used as an
anticoagulant drug in numerous indicationswas employed. The
study showed that it significantly potentiated gemcitabine–
induced growth inhibition of pancreatic cancer (174).

Dabigatran and a direct factor Xa inhibitor rivaroxaban are
known as novel oral anticoagulants (NOACs) and have gained
widespread use in medicine. The latter was found to inhibit
cancer stem cell (CSC) activity in the in–vitro functional CSC
assay of mammosphere formation (175). Thenin 2020it was
included in a clinical trial to evaluate the impact of
rivaroxaban on tumor progression in ER–negative stage I–III
early breast cancer patients. Up to datethe results of the trial are
still concealed. Another indirect antitumor mechanism of
antithrombotic drugs is the reduction of angiogenic potential
by limiting the VEGF platelet release (176).

Adhesion Receptors
The inhibition of adhesion receptors using monoclonal
antibodies has been already the subject of several studies. Qi
et al. revealed that inhibition of GPIba leads to reduced
interaction between platelets and tumor cellswhich results in
the diminished metastatic potential of lung cancer cells. The
study was performed in vitro and in vivo on animal models
(177). Another study by Zhang et al. has demonstrated the
promising effect of the anti–GPIIIa antibody on lung
carcinoma cells in rat models. The mechanism of action was
based on the fragmentation of activated platelets (178). The
inhibition of GPIIb/IIIa in breast cancer cells was studied by
Kononczuk et al. They have used specific antagonists of GPIIb/
IIIa—abciximab and eptifibatide—to observe their proapoptotic
effect on human breast cancer cells (179). Their promising results
encouraged further trials. Another experimental anti–GPIIb/IIIa
antagonist is the newly synthesized XV454 tested for its
anticancer properties against lung cancer in rats. The results
indicated a significant influence of this drug on tumor cell–
platelet interaction and metastasis (65).

PDPN and CLEC2
The PDPN–CLEC2 axis might provide a potential drug target for
both reducing the risk of VTE and improving prognosis. Anti–
PDPN therapies are expected to be of robust potential for future
treatment strategies. In recent preclinical studiesseveral
molecules were evaluated to interfere with the PDPN–CLEC2
pathway. CD9an inhibitor of PDPN–induced platelet
aggregationwas recognized to reduce the metastatic potential of
human fibrosarcoma cells (149). The recombinant immunotoxin
NZ–1–(scdsFv)–PE38KDEL was recognized to delay the growth
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of glioblastoma and medulloblastoma tumor cells (144). The first
synthesized selective inhibitor of PDPN–CLEC2 interaction is
the 5–nitrobenzoate compound 2CP. Chang et al. proved its
selective TCIPA inhibition on osteosarcoma and glioma cells and
cisplatin therapy efficacy augmentation (180).

Soluble Mediators
Another potential target is the ADP receptor P2Y12. The study
of Cho et al. has shown that the growth of ovarian cancer in
murine models was reduced with the specific P2Y12 inhibitor
ticagrelor (181). Aspirin’s effect on platelet–mediated tumor
progression is another potential therapeutic target: the study of
Guillem–Llobat et al. has proven that COX–1 inhibition by
aspirin could lower the metastatic potential of human colon
adenocarcinoma cells (182). Ifetrobana potent selective TXA
receptor antagonistpresumed to be decreasing cancer
metastatic potentialhas been recently included in a second
phase clinical trial involving patients with malignant solid
tumors at high risk of metastatic recurrence. The results of
that trial are planned to be available after 2025 (183).

P–selectin
Studies reported that heparin is an outstanding inhibitor of P–
selectinwhich binds to its natural ligandsthus inhibiting the
initial platelet–tumor cell interactions. Even a single heparin
dose that transiently blocks this interaction is sufficient to
prevent long–term organ colonization. These discoveries
indicate that P–selectin and its ligands could be a potential
therapeutic target (169).

The therapeutic targets among the TCIPA mechanisms are
shown in Supplementary Table 2.
CONCLUSION AND FUTURE
PERSPECTIVES

Among the unorthodox mechanisms of tumor progressionTCIPA
has established by far a genuine target for potential therapies. The
discussed studies demonstrated the encouraging influence of newly
manufactured as well as widely used antiplatelet drugs on the
inhibition of tumorigenesisprogressionand metastasis. These
revelations should lay the groundwork for next–level clinical trials
to optimize and determine the oncological efficiency of antiplatelet
treatment. Howeverbecause of the simultaneous influence on blood
coagulation and the wide variety of individual sensitivity to
antiplatelet drugsit is still difficult to specify the optimal criteria
for such studies. Hopefullyfurther research in the field of TCIPA
will soon give us another instrument for aiding antitumor therapies.
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