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Abstract: The techniques and the most important results on the use of electroencephalography 

(EEG) to extract different measures are reviewed in this work, which can be clinically useful to 

study subjects with attention-deficit/hyperactivity disorder (ADHD). First, we discuss briefly and 

in simple terms the EEG analysis and processing techniques most used in the context of ADHD. 

We review techniques that both analyze individual EEG channels (univariate measures) and 

study the statistical interdependence between different EEG channels (multivariate measures), 

the so-called functional brain connectivity. Among the former ones, we review the classical 

indices of absolute and relative spectral power and estimations of the complexity of the channels, 

such as the approximate entropy and the Lempel-Ziv complexity. Among the latter ones, we 

focus on the magnitude square coherence and on different measures based on the concept of 

generalized synchronization and its estimation in the state space. Second, from a historical 

point of view, we present the most important results achieved with these techniques and their 

clinical utility (sensitivity, specificity, and accuracy) to diagnose ADHD. Finally, we propose 

future research lines based on these results.
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Introduction
Attention-deficit/hyperactivity disorder (ADHD) is recognized as a dysfunction char-

acterized by symptoms of hyperactivity, impulsivity, and inattention. In 1992, the 

World Health Organization recognized the ADHD as a clinical entity in the Interna-

tional Classification of Diseases, tenth edition (ICD-10). This pathology is defined as 

ADHD in the Diagnostic and Statistical Manual of Mental Disorders IV Text Revision 

(DSM IV-TR) along with its three subtypes (inattentive, hyperactive, and combined). 

Currently, ADHD is characterized by the criteria outlined in the DSM-IV-TR and 

DSM-V.1,2 These criteria are used for the diagnosis through functional cognitive tests 

and observations of the behavior.

Longstanding issues affecting the current diagnostic process include the subjec-

tivity of ADHD symptoms, the irregular correlation between parents and teachers 

diagnostic classification scales, and the overlap of attention and behavioral symp-

toms with other disorders.3 In fact, Snyder et al reported, based on the results of their 

own work and on a review made by them during 10 years, that the accuracy of the 

behavioral classification scales range between 47% and 79%, which clearly affects 

their clinical validity.4

Neurophysiological measures could help solving this problem because ADHD 

is largely related to neurophysiological impairments. Electroencephalogram (EEG) 

measurements have been widely used in neurophysiology due to their easy implementa-

tion in low cost recording machines. These facts make these techniques attractive for 
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the current diagnostic protocol. In addition, there are many 

relevant results based on EEG studies that explain and clarify 

different aspects about ADHD.

Neuroanatomical5–7 and functional connectivity (FC) 

alterations8–11 have been reported in ADHD using image 

analysis (positron emission tomography, fMRI, etc). Execu-

tive attention and/or reward-motivational network altera-

tions have been reported in some fMRI ADHD studies.11,12 

It seems reasonable that such changes are also apparent in 

the electrical activity of the cerebral cortex (EEG) and in 

EEG FC between cortical areas. The univariate and mul-

tivariate EEG measurements described later may be thus 

modified in patients with ADHD, as happens with the fMRI 

measurements, and may also be related to the symptoms of 

ADHD.

In this review, we aim at explaining, in a way accessible 

to readers who are not familiar with the field (but hopefully 

also in a way useful to experts), the EEG measures most 

commonly used in the context of ADHD. These measures 

have been divided into two types: those stemming from the 

individual analysis of the EEG channels (univariate mea-

sures) and those analyzing the interdependence or statistical 

correlation between different EEG channels (multivariate 

measures), used to estimate the FC between different corti-

cal areas. In turn, within these two groups of EEG measures, 

we will review both, those that assume the linear nature of 

the system that generates the EEG signals, as well as those 

assuming its nonlinear nature. Then, we will review the 

results obtained with these techniques and the most relevant 

findings in relation to their clinical utility for the diagnosis 

of ADHD.

EEG techniques for ADHD 
assessment
Univariate measures
Linear approach
The first quantitative EEG studies on ADHD were published 

in the last years of the 70s of the past century, when the 

computational algorithm of fast Fourier transform (FFT) was 

introduced. The FFT very efficiently estimates the spectral 

content of a signal as a sum of orthogonal sine and cosine 

waves (harmonics) of different frequencies up to half the 

sampling frequency of the data. Thus, it allows computing 

the power spectral density (PSD) of an EEG, a measure that 

estimates in which frequency bands the power or energy of 

the signal is concentrated (Figure 1A and B). The PSD is 

considered a reflection of the local synchronized synaptic 

activity of the cortical and subcortical neuronal areas next 

to a channel/electrode.

In the EEG, the classical frequency bands most com-

monly studied are, from lowest to highest frequencies, delta 

(0.1–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (14–30 Hz), 

τ

τ
τ

τ

Figure 1 Linear and nonlinear eeG measurements.
Notes: (A) Left: A view of two central eeG channels. Right: two eeG signals x(t) and y(t) recorded from them; (B) The power density spectra (Px, Py) of the signals x(t) 
and y(t) versus frequency (Hz), note the peak within the alpha band (10 Hz); (C) the cross-power spectrum Pxy (at left) and the spectrum of the modulus of coherence 
function (at right), note the peak at the alpha frequency (10 Hz); (D) the reconstructed state space (attractors) of the systems generating the signals x(t) (at left) and y(t)  
(at right).
Abbreviation: eeG, electroencephalography.
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and gamma (.30 Hz), although the ranges may vary depend-

ing on the authors. The absolute power of one EEG, recorded 

from one electrode attached to the scalp, is calculated at a 

certain frequency band as the sum of the square of the ampli-

tude of the harmonics in this band. It is also customary to 

estimate the ratio between the power in each band and the 

total power of the signals, which is termed as the relative 

power in the corresponding band. Another common spectral 

measures used in EEG analysis are the ratio between the 

power in different bands. In the context of ADHD, the most 

commonly used one is the ratio of the power in the theta and 

beta bands (theta/beta ratio, TBR).

In this study, as we will use terms and concepts concern-

ing linear and nonlinear systems/signals, we have considered 

appropriate to make a brief introduction to allow the reader 

a better understanding of them.

A short outline of linear and nonlinear dynamical 
systems
A dynamical system is a system, whether physical, bio-

logical, or otherwise (eg, an air mass or a neural network), 

whose state evolves with time over a state space according 

to a certain rule (its evolution equations). It can be studied 

from the analysis of the temporal evolution (signals) of the 

state variables that characterize its states. If the number of 

state variables is 2, 3, … m, their time evolution or dynam-

ics will take place in a 2D, 3D, … mD space, respectively; 

the resulting picture is what we call the state space of the 

system representing the system trajectory. The latter is a 

geometric portrait that is, in the case of a low-dimensional 

linear system, usually very simple (eg, a 2D ellipse trajectory 

in the case of a frictionless pendulum or a harmonic oscilla-

tor, with variables x [displacement] and y [velocity] versus 

time [Figure 2]); for more complex and/or nonlinear systems 

such as the Lorenz model of the convective movement of 

masses of atmospheric air, the 3D trajectories produced by 

the state variables (x, y, z) are indicative that the dynamics of 

the system is more complex (the famous Lorenz butterfly).13 

Despite its complexity, the trajectories are limited to a certain 

region of the 3D space, termed “the attractor”, which in this 

case is defined as “strange” (Figure 3).

In the simple frictionless pendulum, the state variables 

(x, y) are sinusoidal signals of fixed frequency. In general, in 

the absence of measurement noise, the signals generated by 

simple linear systems have power density spectra with clear 

spectral peaks in well-defined frequency bands. This partly 

reflects the fact that, in linear systems, the responses to each 

of the inputs are independent of the existence of the other 

ones, and they present proportionality between stimulus 

and response. Both features derive from the superposition 

principle of linear systems. Besides, in deterministic linear 

systems, once the initial conditions are set, the values of 

the variables can be predicted at any time thereafter. For 

nonlinear systems such as the Lorenz model,13 the time 

Figure 2 Linear dynamical systems.
Notes: Top: two linear systems, the frictionless pendulum and the harmonic oscillator. Note the sinusoidal curve traced out by the movement of the oscillator versus 
time (t). Bottom left: the sinusoidal curves of the displacement and velocity variables; right: the trajectory (ellipse) in the state space of the system plotted by x(t) versus y(t): 
every cycle of x(t) and y(t) the system (pendulum or oscillator) runs the ellipse.
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evolution of state variables (x, y, z) are often nonsinusoidal 

irregular oscillations, with a power spectrum covering a 

wide frequency band without noticeable peaks. Furthermore, 

nonlinear systems do not verify the superposition principle: 

the response to one of the inputs is affected by the existence 

of the others, which means that small stimuli may produce 

large responses. Two important features characterize non-

linear systems: one is that the dimension of their attractos, 

often termed as strange, is fractal (noninteger) unlike what 

happens with the figures in Euclidean geometry. The second 

property concerns the so-called sensitivity to initial condi-

tions, namely that a slight change in the initial conditions, 

with respect to the previous starting point, could produce, 

after a certain time, a significant departure of the new trajec-

tory of the system with respect to the previous one (Figure 4). 

This has been often termed as the butterfly effect, due to the 

shape of Lorenz’s attractor. This behavior means that in 

nonlinear systems, it is only possible to predict the evolution 

of the system for short periods of time; this effect constitutes 

the outstanding property of deterministic chaos.

Therefore, despite chaotic, nonlinear systems present 

complex behavior, this complexity can be evaluated from 

the geometrical dimension of the set of trajectories in the 

state space (strange attractor), which is also indicative of 

the number of variables that characterize the system; their 

sensitivity to initial conditions can also be evaluated from 

the divergence of their trajectories in the state space.

The behavior of many physiological systems is closer 

to the nonlinear model than to the linear ones. Consider the 

cardiovascular system as an example, where variables such as 

blood pressure, heart rate, oxygen consumption, blood flow, 

etc, do not act independently in response to a given stimulus 

such as physical effort. The functioning of our brain, where 

the activation of different neural networks after a given 

stimulus are not independent (because the brain integrates 

information from multiple brain locations), is even closer to 

the nonlinear paradigm.

In the context of neurophysiology, we usually record 

output signals or responses from a physiological system in 

a given experimental condition or after a given stimulus. 

We may know the anatomical structure of the system that 

produces them, but little about the number of variables 

that characterize the system and even less (or nothing at 

all) about its dynamics. But since we do record the output 

signals of the system, we might wonder whether it is pos-

sible to extract from them quantitative information about the 

system that generates them. The answer to this question was 

provided by Takens’ time-delay embedding theorem, which 

mathematically proved that – under certain assumptions 

about the system – it is possible to reconstruct the original 

state space of the system from one single output signal.14 

The method used (called “delay embedding technique”) is 

explained in the section “Nonlinear approach”. Once the 

state space of the system is reconstructed in the appropriate 
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Figure 3 Nonlinear dynamical systems.
Notes: The Lorenz model for the convective movement of a mass of atmospheric air (at left). At bottom left are the curves drawn by the variables x(t), y(t), and z(t) of the 
model. At right is the trajectory (attractor) drawn by the system model from the variables. This is representative of the system dynamics.
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Figure 4 The butterfly effect: sensitive dependence on initial conditions.
Notes: Left: in solid lines the variables x(t) and z(t) of the Lorenz model in dotted lines, the same two variables but after the “initial conditions” of both signals were slightly 
changed. Note that after a certain time (20 sec), the solid and dotted lines significantly diverge. Right: a 2D portrait from x(t) and z(t), where it can be also seen the divergence 
of the trajectories (solid line versus dotted lines) due to the different initial conditions of the system.

embedding dimension, we can make measurements of its 

entropy and complexity and also about its synchronization 

or interdependence with other systems, similar in nature, for 

assessing its FC with them.

Nonlinear approach
The linear methods reviewed hitherto allow character-

izing properties of EEG in the frequency domain. Yet, as 

commented before, at the beginning of the 80s of the 20th 

century, the Dutch mathematician Takens14 nicely proved 

a theorem whereby, under general conditions, it is possible 

to reconstruct the state space of a complex dynamical sys-

tem (even nonlinear systems in chaotic regime) using the 

consecutive values of one of its time series.14–16 Indeed, he 

demonstrated that, given the time series x(k), the delayed 

vectors defined as:

 X x i x i x i m
i

= + + −( ( ), ( ),..., ( ( ) )τ τ1  (1)

are equivalent to the original state vectors of the system that 

generates this time series. In Equation 1, m is the so-called 

embedding dimension, which has to be at least equal to the 

dimension of the original system, and τ is the delay time, 

which has to ensure that two consecutive components of 

the vector are (almost) independent. Usually, m is estimated 

using the heuristic approach termed false nearest neighbors, 

whereas τ can be estimated using the autocorrelation or the 

auto mutual information function of the data (Figure 5 shows 

an example of state space reconstruction).17

This celebrated result paved the way to characterize the 

topological features of a dynamical systems whose state 

equations are unknown (as it is the case for most natural 

systems) from one single signal. Since then, many studies 

have analyzed the nonlinear properties of a single EEG 

channel, such as its correlation dimension, largest Lyapunov 

exponent, entropy, and so on, and how they change in dif-

ferent stages (such as sleep versus awake) or as a result of 

different pathologies (we refer to Stam18 for an extensive 

review).

Among these measures, those estimating the complex-

ity of the data19 (such as the approximate entropy20 or the 

Lempel-Ziv complexity [LZC]21) have been used in the study 

of ADHD from neurophysiological data.22,23

Approximate entropy
A useful measure to characterize the dynamic of a (pos-

sibly nonlinear) system from the signals it generates is the 

rate at which this system creates information (or the degree 

of uncertainty on the next measure given the previous 

history). Grassberger and Procaccia developed an efficient 
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algorithm to estimate such a rate (termed the entropy of the 

time series).24 Later on, Pincus proposed a modification of 

this definition to deal with short time series from (possibly 

nonchaotic) dynamical systems.25 Namely, the approximate 

entropy (ApEn) is defined as:

 ApEn m m m( , , N) ( ) ( )ε ε ε= − +Φ Φ 1  (2)

where m is the embedding dimension as in Equation 1, N is 

the number of data points, ε is a distance, and

 Φm
i
m

i

N m

C( )
(N )

log ( )ε ε=
− + =

− +

∑1

1 1

1

m
 (3)

where C
i
m (ε) is the probability of finding a reconstructed 

vector closer to X
i
 than the prefixed distance ε. By taking 

ε ≈0.2 SD (standard deviation of the time series), ApEn 

provides a reliable estimation of the complexity of a system 

even for short time series (N=1,000 data points), which has 

proven useful to analyze EEG data.26 The ApEn has been 

proposed as a measure of the level of EEG desynchronization 

or the interactive dependencies among multiple frequency 

components during cognitive processing.

Lempel-Ziv complexity
The other complexity measure applied to extracranially 

recorded neurophysiological data to study ADHD23 (albeit 

magnetoencephalography [MEG] instead of EEG) is 

the LZC.21 The LZC is a measure of the complexity of the 

local synchronized activity as reflected by the profile of the 

frequency spectrum. It simply counts the number of distinct 

substrings and their rate of recurrence along the time series. 

Figure 5 Different steps for the reconstruction of the state space of a system from one sampled signal output according to Takens’ method (data is of the authors invention).
Notes: The state space points or vector (at bottom right) are obtained from the samples of the signal (at top) according to the embedding dimension m and the delay τ time 
as is shown in the text.
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More complex data has a lower rate of recurrence and a 

higher value of LZC.

Multivariate measures
The measures presented hitherto are very useful in charac-

terizing the features of individual EEG channels. However, 

they do not provide any information on the degree of statisti-

cal dependence (FC)27 between two EEG channels. Yet the 

study of FC has become a necessary step to extract informa-

tion about EEG activity, which cannot be inferred from the 

pattern of activation/complexity of each individual channel. 

Its assessment, however, requires a different set of (bi- or 

multivariate) techniques, which allow the analysis of rela-

tionship between (or among) more than one simultaneously 

recorded EEG channels. We briefly describe henceforth the 

FC indices most commonly used for the study of ADHD 

from EEG data.

The term FC is used to refer to the statistical interde-

pendence between two EEG channels or cortical areas or 

from the average or global interdependence of a channel 

or area of the cortex evaluated from a set of pairs of EEG 

channels associated with that area. The FC assessed by 

means of the interdependence between two EEG channels 

is in agreement with the concept of FC given by Lang et al28 

who defined FC as the temporal statistical correlation or 

dependence between spatially remote neurophysiological 

events in distributed neuronal groups and areas. FC was 

initially used by Friston et al29 in the analysis of positron 

emission tomography images for assessing the existence 

of statistical dependence between voxel time series. Pres-

ently, the term FC is used also to refer to any measure of 

interdependence between cortical EEG channels. Indeed, 

although EEG activity may be contaminated by multiple 

sources and by the volume-conduction effects, the use of 

tailored EEG preprocessing methods and FC assessment 

techniques are useful tools to estimate the degree of statisti-

cal dependence between EEG data. Such methods, which 

will be detailed later, include (but are not restricted to): 

1) the calculation of coherence and/or phase synchroniza-

tion in specific frequency bands, 2) the computation of 

the generalized nonlinear indices of synchronization by 

using efficient and sophisticated algorithms, and finally 

3), the use of procedures such as the surrogate data test, to 

rule out that the results of the FC indices are not different 

to what would be expected by chance. Furthermore, in a 

recent paper by Nunez et al30 where they had discussed FC 

in the human brain, they stated: “Cross-scale interactions 

of local, regional, and global networks are apparently 

responsible for much of EEG’s oscillatory behavior”. They 

also concluded that “Combined EEG and high resolution 

EEG can provide distinct multi-scale estimates of func-

tional connectivity in both healthy and diseased brains with 

measures like frequency and phase spectra, covariance, 

and coherence”.

Linear approach
The coherence spectral function is a measure of the linear 

correlation, both in amplitude and phase, between two signals 

at a given frequency. In other words, the coherence is a mea-

sure of linear FC or temporal correlation between different 

brain regions as a function of the frequency.

It is obtained from the (complex) coherency function 

between two signals x and y, which is defined as follows:

 C f
S f

S f S fxy

xy

xx yy

( )
( )

( ) ( )
=  (4)

where S
xy

( f ) is the PSD cross-spectrum between these sig-

nals, S
xx

( f ) and S
yy

( f ) are the respective PSD auto-spectra, 

and f is the discrete frequency.

The coherence is simply the squared modulus of 

Equation 4. For each f, coherence values range between 0 

(no correlation) and 1 (full linear correlation). The mean 

value of the coherence for all the frequencies included in that 

band is taken as the coherence in a certain frequency band. 

As an example, in Figure 1A–C, the auto PSD of two EEG 

signals from two central channels are shown; the cross-PSD 

and coherence of both signals are also shown.

The argument of the coherency provides an estimate of 

the phase delay between the signals:

 φ
xy

xy

xy

f
f

f
( ) arctag

Im ( )

Re ( )
=

{ }
{ }
C

C
 (5)

where Im() and Re() are the imaginary and the real part of 

C
xy

( f ), respectively. The imaginary part of the coherency has 

been proposed as a robust index of interdependence between 

EEG data, robust to volume conduction,31 although to the 

best of our knowledge, this index has not yet been applied 

to ADHD research.

The nonlinear approach
As happens with the univariate techniques, in the case of the 

multivariate ones, the linear approach only cover a part of the 

information that can be extracted from the EEG. In the case 
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of FC studies, the nonlinear approach reviewed earlier also 

allows for a sophisticated assessment (ie, beyond the “tradi-

tional” one of the coherence or the cross correlation function) 

of the degree of statistical dependence between two EEG 

channels, x and y. For this purpose, delayed state vectors X
i
 and 

Y
i
 are first reconstructed from x and y, as in Equation 1. Then, 

let a
i,j
 and b

i,j
 be the time indices of the k nearest neighbors 

of X
i
 and Y

i
, respectively. The existence of FC between both 

EEGs entails that vectors close in the state space of X are also 

close in Y, which can be measured using different bivariate 

indices.32,33 Figure 1D shows an example of the state space 

reconstructed of two EEG signals from which the nonlinear 

interdependence measures are derived (Figure 5).

For the study of ADHD from EEG data, one such index, 

termed fuzzy synchronization likelihood (FSL), has been 

recently used.34–36 This index, similar to its non-fuzzy version, 

the well-known synchronization likelihood (SL),37 sacri-

fices the ability to provide information on the directionality 

of the connectivity in return for greater robustness against 

the individual features of the data in the assessment of FC. 

According to Ahmadlou et al,35 FSL is more reliable than SL 

for discriminating patients with ADHD from healthy indi-

viduals. More recently, SL have been also applied to study 

ADHD in a frequency-specific way36 and in the framework of 

complex network theory as applied to EEG38,39 (refer section 

“From FC indices to complex networks”). A different, yet 

closely related index, this one based in rank statistics40 has also 

proven successful to estimate EEG FC in ADHD subjects and 

the difference with age-matched control subjects.41 All these 

indices of generalized synchronization measure the degree 

of (possibly nonlinear) temporal interdependence between 

different brain regions in the reconstructed state spaces.

From FC indices to complex networks
A natural step forward to extract information from the set of 

bivariate FC indices between all possible pairs of EEG chan-

nels consists in analyzing the whole interdependence matrix 

as if it were the adjacency matrix of a complex network. 

Indeed, the set of EEG electrodes/sources and the bivariate 

FC indices between them closely resembles a graph, where 

the EEG electrodes/sources are the nodes and the FC indices 

are the links between them (refer to Stam,42 Papo et al,43 

Fornito et al,44 De Vico Fallani et al45 for recent reviews 

on the application of this idea on clinical neurology). Such 

an approach has become very popular in the past decade, 

so much so that nowadays, almost every study using high 

density (.32) EEG setups includes, one way or another, 

some type of complex network analysis. Recent ADHD 

studies of multivariate EEG channels participate of this trend, 

which is also evident in MEG and fMRI studies.35,40

There is a plethora of graph theoretic measures that can 

be used to characterize different aspects of the complex 

brain network.46,47 However, the most popular ones can be 

roughly divided into three categories: first, those assessing 

the centrality of a node, that is, its importance in the network, 

such as the degree (number of nodes it is connected to) or its 

weighted equivalent, the strength; second, those assessing the 

segregation of a node, with the clustering coefficient being the 

more popular by far in this group; and finally, those ones mea-

suring the way in which a node (or the whole network) inte-

grates information, such as the average shortest path length. 

All these indices can be defined in different ways, depending, 

for example, on whether the links of the reconstructed network 

are weighted or unweighted. We refer the interested reader 

to the appropriate literature for details.43,45–47

Classification methods for clinical 
evaluation of EEG indices
Once the relevant features have been extracted from the EEG 

using any of the techniques described earlier (or combination 

thereof), it only remains to use them to better understand the 

signatures of ADHD. For this purpose, there are basically two 

options. One is the traditional approach of applying a suitable 

statistical test to compare two groups of subjects (ADHD 

and healthy controls) and check what are the most impor-

tant differences between them. A second, closely related 

yet not quite the same one, consists in training a classifier 

(ie, a mathematical function), which first detects the most 

salient features of each group and then use them to classify 

the subjects as either control or ADHD. This approach falls 

in the research field usually termed as “machine learning”. 

It is beyond the scope of the present review to give a detailed 

account of such a vast and rapidly expanding field. Instead 

we refer the interested reader to the specialized literature.48,49 

We will only briefly review here the basic ideas underlying 

this approach, with emphasis on those techniques most often 

used in ADHD studies from EEG data.

Training of the classifier
Regardless of the classification algorithm used, the process 

of defining the optimal classification function (classifier) 

always involves two steps. The first one is the training of 

the classifier, whereby the appropriate measures (eg, the 

complexity estimations of a set of electrodes or the power in 

a given frequency band) is fed to the classifier, which uses 

them to tune its internal parameters according to a given cost 
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function. The second one is the validation of the classifier, 

which consists in determining how well it does its work 

of classifying the data. Training and validation are com-

monly used on different sets of data, to prevent overfitting, 

and the training process often includes the reduction in the 

dimensionality of the data, to minimize the set of features 

that are taken into account in the classification (implicitly 

following the well-known Occam’s razor principle). Among 

the most used methods in ADHD, we can name the logistic 

regression26,41 and the linear discriminant analysis.36 Again, 

we refer to the relevant literature for details.48,49

Receiving operator curves
Among the many validation methods for the classifier, the 

receiving operator curve (ROC) is the most widely used in 

the current framework, very likely because its visual character 

facilitates its interpretation. A ROC is a graphical representa-

tion of the true positive rate of the classifier (also known as its 

sensitivity, or the ratio of correctly classified subjects) against 

the false positive rate (or 1-specificity, ie, the number of incor-

rectly classified subjects) as a function of the discrimination 

threshold. The ideal classifier would have a sensitivity and a 

specificity of 1 (all the subjects will be perfectly classified). 

Real classifiers, however, present a trade-off between both 

desirable features: the more its sensitivity, the lower its speci-

ficity. Although there are many ways of quantifying the quality 

of a classifier using a ROC,50 the usual one consists in estima-

tion of the normalized area under the curve. Thus, the closer 

the area under the curve is to 1, the better the classifier.

Main results obtained from 
univariate measurements
Once we have briefly introduced the mathematical techniques 

most commonly used to analyze the ADHD signatures of 

EEG data, we will review in this section, the main results 

obtained hitherto with each of these techniques, with special 

emphasis in their possible clinical utility, which, for lack of 

a more specific definition, we will understand henceforth 

as the ability of the corresponding technique to distinguish 

ADHD subjects from control ones using some classification 

technique. In Table 1, the main works and results using 

univariate measurements for clinical ADHD diagnosis are 

summarized, which will be discussed below in the Linear 

and Nonlinear approach sections.

Linear approach
EEG spectral power variations are typically dominated 

by distinct changes in power in a few frequency bands. 

In ADHD, the main frequency bands that have been stud-

ied are delta (,4 Hz), theta (4–7 Hz), alpha (8–12 Hz), 

beta (13–25 Hz), and TBR. Since Satterfield et al,51 one 

of the most consistent results in the field is that ADHD 

subjects show an increment of the power in the theta band 

as compared to age-matched controls. This increase occurs 

both in absolute power and in the relative power and is 

usually located in the frontocentral region of the cortex.52–58 

Elevated theta power, however, may be a nonspecific marker 

of cortical dysfunction common to other disorders, such 

as sleep behavior disorders, schizophrenia and so on.59,60 

Ogrim et al58 have analyzed the clinical utility of this EEG 

signature and found that the theta power had an accuracy 

of 62% to differentiate between ADHD and controls sub-

jects.57 Less frequently, experts have also found differences 

between ADHD and controls subjects in the frequency bands 

delta, alpha, and beta. Power in the delta band is usually 

increased in ADHD.40,54,58 In contrast, power in the alpha 

and beta bands are usually decreased in ADHD, although 

literature on the effect of ADHD in these bands are somehow 

inconsistent.52–56,58

The TBR is the most widely used (both power-related and 

overall) EEG index in neurophysiological studies of ADHD and 

its clinical utility has been thoroughly assessed. Most studies 

find that ADHD subjects present a higher TBR than control 

subjects.4,48,53,56 However, there are several studies in the litera-

ture where the TBR did not discriminate between the control 

and ADHD groups.55,57,58 Moreover Lansberguen et al57 found 

that the increase in TBR can be considered as a nonspecific 

measure. They observed that this increase does not occur when 

using the individualized frequency bands based on individual 

alpha peak frequency; therefore, it is possible that the combina-

tion of several distinct neurophysiological subgroups is related 

to this EEG index.56 Very recently, a clinical cohort study3 

evaluated the utility of TBR in a large group (275 children 

and adolescents) when it is integrated into the usual protocol 

for ADHD diagnosis. These authors found that the diagnostic 

accuracy increased an outstanding 27% (from 61% to 88%) 

when the usual protocol for ADHD diagnosis was administered 

along with the TBR. This result seems to reinforce the role of 

TBR as a useful EEG-based biomarker of ADHD.

Some of these studies have associated the following 

functional significance to spectral power: arousal disorders, 

ADHD maturational lag, and different symptoms of the 

disorder.52,53,55,56,61 Each study has associated these functional 

significances with different frequency bands, but all these 

interpretations have been indistinctly associated with all 

frequency bands.
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Based on the previous results, we can conclude that the 

univariate linear measures generally discriminate between 

ADHD subjects and controls,3,4,54,55,61,62 but a clear relationship 

between EEG power spectrum measurements and ADHD 

symptoms has not been found.52,53,55,56,61

Nonlinear approach
As indicated in the section “A short outline of linear and 

nonlinear dynamical systems”, univariate nonlinear EEG 

measures have been comparatively less studied in the case 

of ADHD. These studies analyze the differences between 

ADHD and controls on EEG complexity. Fernández et al23 

calculated the LZC from MEG records in ADHD and controls 

for each individual sensor at rest with eyes open (EO). They 

also estimated the average LZC for five groups of sensors 

(anterior, central, left lateral, right lateral, and posterior); they 

found that LZC decreased in ADHD subjects. Furthermore, 

Sohn et al22 recorded EEG in eleven ADHD and 12 age-

matched healthy boys both at rest with EO and during a 

 continuous  performance test (CPT). They calculated ApEn as 

in Equation 2 and found that EEG complexity was reduced 

in ADHD during the CPT, mainly in the frontal electrodes. 

In turn, Gonzalez et al41 also estimated the ApEn from EEG 

activity of 22 ADHD and 21 healthy controls at rest during 

eyes open and eyes closed. They found a reduction in ApEn 

in ADHD during the resting condition of open eyes but only 

for one single channel (O2).

In summary, the complexity of the EEG decreased in 

ADHD subjects as compared to controls; this phenomenon 

is mainly observed when subjects are in a condition of higher 

arousal state (EO or making a task).22,23,41 To the best of our 

knowledge, the clinical utility of complexity estimators 

has been studied only by Fernández et al23 who found that 

age-corrected LZC values of the anterior sensors presented 

a sensitivity of 93% and a specificity of 79% to distinguish 

ADHD from controls.

Altogether, these results suggest that the EEG of ADHD 

subjects present reduced complexity as compared to age-

matched healthy subjects, which can be useful to classify 

them from neurophysiological data, although more EEG 

Table 1 Main works in the literature using univariate linear and nonlinear techniques for ADHD clinical diagnosis

Authors Sample Methods Conditions Results

Bresnahan52 (2002) 50 ADHD, 50 controls PSD (abs and relat),
TBR

Resting eO ↑ θ relat and abs PSD ↑ TBR

Chabot53 (1996) 407 ADHD, 310 
controls

PSD (abs and relat),
split-half replication

Resting eC ↑ θ relat and abs PSD; ↑ α relat PSD;
93.7% sensitivity; 88% specificity

Clarke54 (2001) 80 ADHD-C, 
80 ADHD-I, 
80 controls

PSD (abs and relat),
TBR

Resting eC ↑ θ relat and abs PSD; ↑ TBR; ↓ α 
and β relat and abs PSD

Clarke55 (2011) 155 ADHD, 
109 controls

Relative PSD Resting eC ↓ and ↑ α, β, δ, and θ relative power

Fernández23 (2009) 14 ADHD, 14 controls LZC, logistic 
regression

Resting eO ↓ LZC; 93% sensitivity; 79% 
specificity

González41 (2013) 22 ADHD, 21 controls Relative PSD, ApEn Resting eC and eO ↑ δ relative power; ↓ ApEn
Khoeler57 (2009) 34 ADHD, 31 controls Absolute PSD, TBR Resting eC ↑ α absolute power and ↑ θ absolute 

power
Magee62 (2005) 253 ADHD-C, 67 

controls
PSD (abs and relat),
logistic regression

Resting eC 89% sensitivity; 79.6% specificity

Nazari61 (2011) 16 ADHD, 16 controls Relative PSD, TBR Resting eC eO and 
CPT

↑ α and δ relat PSD

Lansbergen56 (2010) 49 ADHD, 49 controls Absolute PSD,
TBR, and iCA

Resting eC and eO ↑ TBR,
↑ θ and β power

Ogrim58 (2012) 62 ADHD, 39 controls Absolute PSD and 
TBR, ROC

Resting eC and 
EO; G/NG task

↑ θ abs PSD; 62% θ accuracy; 
58% TBR accuracy

Snyder4 (2008) 97 ADHD, 62 controls TBR
CC

Resting eC and eO ↑ TBR; 87% sensitivity; 
94% specificity

Snyder3 (2015) 275 ADHD TBR and χ2  
and iCC

Resting eO TBR good marker; 88% accuracy

Sohn22 (2010) 11 ADHD, 12 controls ApEn Resting eO; CPT ↓ ApEn

Abbreviations: ADHD, attention-deficit and hyperactivity disorder; PSD, power spectral density; abs, absolute; relat, relative; TBR, theta/beta ratio; EO/EC, eyes 
opened/closed; ↑/↓, statistically significant increase/decrease; LZC, Lempel-Ziv complexity; ApEn, approximate entropy; ADHD-C, attention deficit and hiperctivity 
disorder combined type; ADHD-I, attention-deficit and hyperactivity disorder predominantly inattentive type; CPT, continuous performance test; ROC, receiver operating 
characteristic; ICA, independent component analysis; G/NG task, go-no go task; CC, correlation coefficient; ICC, intraclass correlation coefficient; χ2, chi-squared 
statistic.
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studies are necessary to confirm the validity of this approach 

in clinical applications.

Main results obtained from 
multivariate measurements
In Table 2, the main works and results using multivariate 

measurements for clinical ADHD diagnosis are summarized, 

which will be discussed below.

Linear approach
In recent years, coherence (Equation 4) has been much studied 

in the field of ADHD. There is a referent group from Brain & 

Behaviour Research Institute and Department of Psychology 

of the University of Wollongong, Australia, studying the EEG 

coherence in ADHD.63,64 They have analyzed EEG coher-

ence in different interelectrodes distances (short, medium, 

and larger), intrahemispheric and interhemipheric electrodes 

pairs, cerebral regions (frontal, temporal, and central/pari-

etal/occipital), and frequency bands (delta, theta, alpha and 

beta). The different electrode pairs allow finding changes in 

coherence that would not be observed with global averages.  

The intra and interhemispheric pairs provide information 

about hemispheric lateralization and specialization. The 

pairings for cerebral regions give an idea about the cognitive 

functions that may be compromised. In general, the EEG 

coherence in ADHD can either increase or decrease depend-

ing on the paired brain regions. Notably, one of the most 

replicated findings is that theta coherence increases in ADHD 

as compared to healthy controls, especially in the frontal and 

central/parietal/occipital interhemispheric connections.63,64 

Despite the growing interest in the study of EEG coherence 

in ADHD, there are few results on its clinical utility. One 

of the first studies to verify it was carried out by Chabot 

and Serfontein.53 From 407 ADHD and 310 controls, these 

authors calculated intra and interhemispheric EEG coherence 

in the frequency bands delta, theta, alpha, and beta. Again, 

they found that, depending on the paired brain regions, EEG 

coherence in ADHD may increase or decrease, and this fea-

ture presented a sensitivity and specificity of 93.7% and 88%, 

respectively. Dupuy et al65 following the methodology of the 

University of Wollongong, observed that ADHD, with good 

response to methylphenidate (MPH), experienced an increase 

in EEG beta coherence. In addition, they observed differences 

between ADHD and controls in the intrahemispheric EEG 

coherences using short–medium distances between electrode 

pairs, with a sensitivity and a specificity of 72% and 89%, 

respectively. Gonzalez et al41 following the methodology of 

Chabot and Serfontein,53 found that EEG coherence in ADHD 

increased in certain brain regions with an accuracy of 74.4%. 

As with the ApEn index, the results of the clinical utility of 

the EEG coherence for diagnosing ADHD are promising, but 

more studies to replicate the results, a greater consensus in 

the matches between channels and classification techniques 

used, are necessary.

Nonlinear approach
The studies about the differences between ADHD and con-

trols using nonlinear EEG multivariate measures are scarce. 

In general, they often use measures of EEG synchronization, 

but the measures used are heterogeneous. Nevertheless the 

Table 2 Main works in the literature using multivariate linear and nonlinear techniques for attention-deficit/hyperactivity disorder 
(ADHD) clinical diagnosis

Authors Sample Methods Conditions Results

Ahmadlou66 (2010) 47 ADHD, 7 controls SL RBF Resting eC ↓ SL;
95.6% accuracy

Ahmadlou34 (2011) 12 ADHD, 12 controls FSL. Graph Theory LOO Resting eC ↓ FSL;
87.5% accuracy

Barry63 (2002) 40 ADHD-C, 40 ADHD-i, 
40 controls

Coherence Resting eC ↑ or ↓ coherences

Barry64 (2011) 40 ADHD, 40 controls Coherence Resting eC ↑ or ↓ coherences
Chabot53 (1996) 407 ADHD, 310 controls Coherence Resting eC ↑ or ↓ coherences;

93.7% sensitivity;
88% specificity

Dupuy65 (2010) 18 ADHDg, 17 ADHDp, 
18 controls

Coherence LRA Resting eC ↑ β coherence;
72% sensitivity;
89% specificity

González41 (2013) 22 ADHD, 21 controls Coherence and L index,
ROC and LRA

Resting eC and eO ↑ Coherence with accuracy: 74.4%;
↑ L index with accuracy: 86.7%

Abbreviations: ADHD-C, attention-deficit and hyperactivity disorder combined type; ADHD-I, attention-deficit and hyperactivity disorder predominantly inattentive type; 
SL, synchronization likelihood; RBF, radial basis function; ↑/↓, statistically significant increase/decrease; FSL, fuzzy synchronization likelihood; LOO, leave one out cross-
validation; LRA, logistic regression analysis; ROC, receiver operating characteristic; eO, eyes opened; eC, eyes closed.
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results of different studies are similar: the EEG synchroniza-

tion is usually decreased in ADHD.34,41,66

The clinical utility of EEG synchronization indices in 

the diagnosis of ADHD has been even less tested. Ahmadlou 

and Adeli66 studied differences in EEG synchronization 

between ADHD and control subjects using SL; this index 

decreased in ADHD, especially in posterior cortical areas 

at certain EEG bands, with an accuracy of 95.6%. The 

following year, the same authors34 measured EEG syn-

chronization using the FSL in a group of 12 ADHD and 

other group of 12 controls; the FSL, which is decreased 

in ADHD in posterior and anterior brain areas, had a 

diagnostic accuracy of 87.50%. Later on, Gonzalez et al41 

used the index of generalized synchronization (index L) to 

measure EEG synchronization; they observed that ADHDs 

presented higher values of L as compared to controls in 

certain cerebral regions (mainly in O1–C4 and C3–T4) with 

an accuracy of 86.7%.

Differential diagnosis and clinical 
monitoring of the ADHD by EEG 
measures
The sections “Main results obtained from univariate 

measurements” and “Main results obtained from multivariate 

measurements” provided information about the EEG 

measures capacity to discriminate between ADHD and 

healthy subjects. There are few studies that investigate the 

ability of EEG measures to discriminate between ADHD 

and other mental disorders. Bresnahan and Barry52 analyzed 

the absolute and relative power in an ADHD group, a non-

ADHD group (patients with some symptoms of ADHD), and 

a healthy control group. When they compared the ADHD 

with the non-ADHD group, they found that both had different 

profiles of EEG power in different frequency bands. On the 

other hand, increase in theta power is not a specific marker 

of ADHD, but it is also associated with other disorders.59,60 

We have not found in the literature EEG FC studies about 

this issue.

Other studies have assessed the differences in EEG profile 

in ADHD subtypes and comorbid disorders. Two studies 

have shown differences between ADHD subjects with and 

without comorbid disorder; specifically, the group without 

comorbid disorder had a lower intrahemispheric coherence 

for shorter distances in the delta band.67,68 In the literature, 

it has been found that ADHD and Atention Deficit Disorder 

(ADD) had similar EEG profiles, but the ADHD subjects 

presented greater differences versus controls than the ADD 

group.63,69,70 The effect of MPH in univariate and multivariate 

EEG measures in ADHD has been studied. MPH effect in 

ADHD EEG measures is not clear and neither is it clear in 

the relationship between cognitive/behavioral changes that 

can be observed after treatment.71–76 Furthermore, it has been 

found that ADHD subjects with good response to MPH treat-

ment differ from those with a poor response in EEG activity 

and connectivity.65,77,78 Although the effect of MPH on the 

ADHD EEG profile is unclear, these studies suggest that EEG 

measures could be useful to assess which cases of ADHD are 

worth treating with MPH and to follow up patient’s progress 

during the therapy.

Prospects for future times
The results reviewed in this work demonstrate that quanti-

tative EEG measures have clinical utility in the diagnosis of 

ADHD because they can improve the accuracy and validity 

of the traditional cognitive tests used for this purpose. Thus, 

within the revised measures, the TBR is the most studied 

and considered to be the most useful in ADHD clinical. 

The other EEG measures revised here show that they have 

at present a good potential to be considered in the assess-

ment of ADHD according to the results already obtained. 

However, we think they need to be further validated in 

the clinical context for knowing their real accuracy and 

extent. The use of more sophisticated machine learning 

classification methods such as Support Vector Machines or 

Bayesian Networks, which can handle highly dimensional 

multimodal features, would also represent an important 

step in this direction, as they will allow to combine, for 

example, power spectral measures with FC indices to 

improve classification accuracy.

Apart from the indices reviewed hitherto, the temporal 

variability of the FC is a new EEG measure that has been 

recently introduced for the assessment of ADHD.79,80 The 

method involves defining an index of variability of the 

ensemble of FC indices along several EEG segments in 

the same  experimental condition, to assess the dynamics of 

the FC. The study of Barttfeld et al79 was the first to study 

the EEG profile in ADHD using this method. They found 

that ADHD had a higher level of inherent variability of 

EEG FC than controls. In the latest work by our group,80 we 

compared this method with the traditional EEG analysis and 

found that the temporal variability appears to discriminate 

better between ADHD and controls subjects. We also noted 

that the variability of EEG FC was higher in ADHD subjects 

than in controls. The results with this method are promising, 

but again additional work is necessary to confirm its possible 

clinical utility.
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