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Abstract: Monoclonal antibodies (mAbs) are the fastest-growing biological therapeutics with
important applications ranging from cancers, autoimmunity diseases and metabolic disorders
to emerging infectious diseases. Aggregation of mAbs continues to be a major problem in their
developability. Antibody aggregation could be triggered by partial unfolding of its domains, leading
to monomer-monomer association followed by nucleation and growth. Although the aggregation
propensities of antibodies and antibody-based proteins can be affected by the external experimental
conditions, they are strongly dependent on the intrinsic antibody properties as determined by
their sequences and structures. In this review, we describe how the unfolding and aggregation
susceptibilities of IgG could be related to their cognate sequences and structures. The impact of
antibody domain structures on thermostability and aggregation propensities, and effective strategies
to reduce aggregation are discussed. Finally, the aggregation of antibody-drug conjugates (ADCs) as
related to their sequence/structure, linker payload, conjugation chemistry and drug-antibody ratio
(DAR) is reviewed.

Keywords: monoclonal antibodies; antibody aggregation; protein unfolding; antibody domains;
antibody drug conjugates

1. Introduction

The tertiary structure of a protein with a given amino acid sequence is defined by competing
molecular-scale interactions, which balance the contributions of fold-favoring interactions, such as
electrostatic attraction, hydrophobic interaction and hydrogen bonding, to those of unfolding-favoring
interactions, like the geometric constraints of chemical bonds, the avoidance of steric clash and
electrostatic repulsion [1]. Under native conditions, proteins fold quickly (in a time frame of µs
to ms [2]) from the unfolded state (U) to the folded structure (F) in a cooperative manner with
several short-lived, meta-stable intermediates (molten globule states) in the down-hill free energy
landscape [3]. Proteins experience constant sampling between the folded and partially-folded
structures [4]. Under stress wherein either the folded state (F) destabilizes (GF increasing and ∆GU-F

decreasing) or the (partially) unfolded structure becomes stabilized (GU decreasing) [5], proteins could
populate partially unfolded conformations and result in aggregation. Protein aggregation is a process
in which protein molecules self-associate with each other. Non-native aggregation forms via the strong
non-covalent contacting of protein molecules and is thermodynamically stable and irreversible [6].
Aggregation requires proteins to experience unfolding or partial unfolding to present key stretches
of residues (so-called “hot spots”) to achieve strong interactions between monomers, which often
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constitutes a rate limiting step before nucleation growth for aggregation [7]. In many cases, protein
aggregates use the energetically-favorable β sheets as the building modules [8]. A common example for
this kind of aggregation is amyloidosis, in which the polypeptides build fibril aggregates by stacking
against β sheets along the fibril axis [9].

mAbs-based pharmaceuticals have enjoyed increasing success in therapeutic markets [10] and
typically target high impact areas, such as cancers, infectious diseases, auto-immune diseases and
metabolic disorders [11]. mAbs bear many therapeutic metrics, such as high binding affinity and
specificity, long circulation half-life in blood stream, non-toxic nature and easy manufacturing.
Although highly desired, one bottleneck limiting mAbs therapeutics’ development is aggregation [12,13].
mAbs with 12 sub-domains, large hydrodynamic radii and surface areas, non-symmetrical
hydrophobicity and charge distributions are prone to aggregation [14,15]. The immunoglobulin
Greek-key β sandwich folding of mAbs is susceptible to edge-edge association [16]. Besides,
complementarity determining regions (CDRs) of mAb responsible for antigen binding can also contribute
to aggregation due to the frequent occurrences of hydrophobic and electrostatic residues [17,18].
Furthermore, the extensive hydrophobic patches on the surfaces of mAbs, especially on Fc could
mediate aggregation [19,20]. These aggregation propensities are amplified by the natural bivalency of
mAb. Importantly, the aggregation of mAb could be increased when administered by subcutaneous
(SC) delivery in a high mAb concentration of >100 mg/mL [21]. At such high concentrations, mAbs
are more susceptible to aggregation [22]. Furthermore, antibody aggregation is highly undesirable,
because it could compromise biological functions [12], induce immune responses by breaking B-cell
tolerance [23,24] and evoke antibody clearance machinery in vivo [25]. These disadvantages make the
control of antibody aggregation imperative in the route to developing successful therapeutics.

Although the mechanism underlying antibody aggregation is generally not fully understood,
the aggregation propensity for a given mAb is a function of solution conditions, such as temperature,
pressure, pH, ionic strength and excipients (osmolytes, surfactants). Formulation optimization is
commonly used to reduce aggregation [26,27]. On the other hand, the susceptibility to aggregation
is pre-defined by the intrinsic properties of the antibody, including primary sequence and tertiary
structure. Protein aggregation needs some degree of conformational distortion or partial unfolding
of the native monomer to expose the aggregation-prone residues to form strong inter-molecular
interactions [28]. Antibodies usually contain more than one aggregation-prone region (APR) [29].
Therefore, by contrast to some simple proteins, in which aggregation occurs in a high cooperativity
manner [30], antibody aggregation usually occurs through several intermediate states [31], indicating
that multi-domain antibody unfolding and aggregation could be understood by analyzing the
aggregation of individual domains. The studies of aggregation mechanisms and resistant strategies for
antibody domains have inspired the related research of full-length antibodies, although the results
obtained from the antibody domains could not always be transferred to the full-sized antibodies.
In this paper, we review the impact of sequences and structures on the aggregation of both full
length antibodies and antibody domains while discussing aggregation resistance strategies through
rational designs.

Antibody-drug conjugates (ADCs) are an important class of therapeutics in oncology. Two ADCs
have been recently approved by the U.S. Food and Drug Administration (FDA), including Kadcyla
(ado-trastuzumab emtansine) for the treatment of breast cancer and ADCETRIS (brentuximab vedotin)
for combating relapsed Hodgkin’s lymphoma. ADC is produced by conjugating a toxic reagent to
mAb by chemical reactions, which often destabilizes the conformations of mAbs due to the decreased
interchain disulfide bonds and the exposed hydrophobic patches. In addition, the hydrophobicity of the
linker payloads could expand the APRs, facilitating the aggregation of ADCs. Thus, ADCs are believed
to be more prone to aggregation than the parent mAbs. The elucidation of the aggregation behaviors
and mechanisms of ADC could help to conquer the aggregation hurdles in ADC development. In this
review, we also discuss the aggregation of ADC by focusing on the impact of the drug-to-antibody
ratio (DAR) on aggregation.
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2. Protein Aggregation

2.1. Why Does a Protein Aggregate?

The native protein has the lowest free energy and the most stable conformation [3] (Figure 1).
This is maintained by a spectrum of fine interactions: hydrogen bonds of the main chains and side
chains; van der Waals and hydrophobic interactions; the constraints of energetically-unfavorable
bond torsions and steric clashes; maximizing chain entropy; electrostatic repulsion and attraction;
and interactions between amino acids and the solvent [32]. These interactions collectively balance the
protein conformations [33]. Under conditions in which the folded states overwhelm the unfolded states,
protein monomers populate the native conformations. In such a case, the nature of the energy barriers
for the transient state (TS) prevents protein ensembles from populating aggregation-prone states,
and thus, the protein remains soluble without a risk of misfolding and aggregation [34]. However,
these energy barriers are compromised under stressing conditions, wherein the decreased GTS combines
with the increased GF kinetically and thermodynamically shifts the “on-way folding” pathway to the
“off-way aggregation” pathway, allowing proteins to experience an irreversible aggregation route [5].
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Figure 1. The process of protein folding and aggregation. (A) Folding is presented based on the classical
thermodynamic and kinetic principles. U, I, N*, N, TS refer to the unfolded state, partially-folded state,
locally unfolded state, folded state and transient state, respectively. The conformational ensembles of U,
I, N* are prone to aggregation; (B) Schematic representation of the protein aggregation process and the
possible involved intermediates. This figure uses a monoclonal antibody as an example, but the general
behaviors and principles are also applied to other proteins. The red arrows represent the non-native
aggregation, while the dark blue arrows denote the native aggregation. The bidirectional arrows show
the reversible steps, and the mono-directional arrows account for the irreversible process.

2.2. How Does a Protein Aggregate?

In general, the aggregation process mediated by folding intermediates could be divided into
the following five stages (Figure 1B): (I) partial unfolding of the native monomer; (II) reversible
self-association of the partially-unfolded or folded protein; (III) net irreversible aggregation nuclei
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formation; (IV) further aggregation growth by monomer chain addition; (V) aggregation association to
form the high molecular weight soluble aggregates or insoluble precipitation [35].

Protein aggregation mediated by folding intermediates is triggered by the unfolding of native
monomer. The unfolding energy barrier (∆GU-F) that allows the samplings of partially-disordered
conformations needs to be overcome in Stage I of aggregation [28]. ∆GU-F not only intrinsically
correlates the protein associated GU and GF, but also depends on temperature (T), pressure (p)
and the conditions of the solution [36]. Stage II involves the association of unfolded monomers,
which is governed by the protein colloidal interactions implicated by the hydrophobicity and charge
distributions of proteins [37,38]. The key stage for protein aggregation lies in Stage III, the nucleation
step, in which the unfolded protein experiences the structural re-arrangement, such as the alteration
of surface charge distributions, the exposure of the aggregation-prone regions (mainly referring to
the hydrophobic patches to the solvent) and changes of the topologies for the β sheet regions or even
re-orientation of the α-helix into the β-strand [5]. This step usually constitutes the rate-limiting step in
the protein aggregation, after which the subsequent growth stages are much faster [7]. The existence
of this nucleation stage is rationalized by the experimentally-observed “lag time” during protein
aggregation, which could be shortened by “seeding” the preexisting aggregates [39]. The overall
protein aggregation occurs kinetically rather than dynamically and, therefore, is pathway dependent [7].
Thus, it is often experimentally observed that proteins bear good thermostability (low GF), but indeed
aggregates readily due to kinetically-favorable conditions [40].

2.3. How to Mitigate Protein Aggregation?

Although protein aggregation is a priori unpredictable kinetically, the thermodynamic aggregation
potentials could be inferred from the intrinsic characteristics of protein sequences and structural
features [7,18]. Therefore, aggregation could be well controlled by the rational design of protein
sequences and structures. Protein unfolding and the nucleation are usually the key steps for protein
aggregation, and the subsequent monomer addition and aggregate association occur much faster.
Thus, strategies ameliorating protein aggregation often target the aggregation Stages I, II and III.
The corresponding methods for mitigating aggregation thus are: (1) stabilizing the native monomer
(decreasing GF) or destabilizing the partially-unfolded monomer (increasing GU) to reduce the potential
of protein unfolding at Stage I; (2) altering the protein surface charge distributions to increase the
electronic repulsion between the unfolded monomers at Stage II; and (3) disturbing the structural
re-arrangements of unfolded monomers in Stage III to disfavor hydrophobic contacts and the packing
of β strands. These strategies could be learned from the nature of protein structures and mechanisms.
For example, many proteins involved in hereditary forms of protein deposition diseases bear
mutations decreasing the conformational stability of the folded monomer and promote aggregation
in vitro [38,41,42]. In addition, the native proteins disfavor the sequences of alternating polar and
non-polar residue for β strand assembly [43], as well as clusters of many consecutive hydrophobic
residues to decease the tendency of aggregation before folding [44]. Antibodies either inwardly point
a charged residue in the middle of the β strand to disfavor the hydrophobic associations or they locate
a proline to introduce a bulge dissecting the strand to avoid edge-edge association [16].

2.4. Computational Methods for Studying or Predicting Protein Aggregation

Protein aggregation involves various aggregate intermediates and pathways. Many computational
models have emerged to dissect the aggregation mechanism and to evaluate how the external factors,
pH, ionic strength, etc., influence the aggregate intermediates. In this regard, many groups exploited
the coarse-grained (CG) lattice models to study the aggregation mechanism, in which protein molecules
are treated as on-lattice single chains, and residues represented are as beads [45,46]. Their interactions
are calculated in specifically pre-defined force fields, and the molecular association equilibrium is
simulated using conformation searching algorithms, such as Monte Carlo (MC). To obtain more
kinetical details, many groups have performed the more accurate atomistic simulations by simplifying
proteins into the peptides bearing high aggregation propensities. These molecular simulations provide
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insights into exploring the oligomeric conformations that can seed the aggregation [47] and figuring
out how peptide side chains kinetically and dynamically affect the amyloid aggregation [48].

On the other hand, many computational algorithms have been developed to predict APRs, which
usually have unique sequences regarding charge, aromaticity, hydrophobicity and secondary structural
propensity [49,50]. These calculation tools could be classified into two types. One is the statistical
algorithms to rank the propensity of aggregation for stretches of amino acids by comparing them to
the existing polypeptide databases composed of amyloidogenic peptides, which includes Aggrescan
(Aggregation Scan), PAGE (Prediction of Aggregation), TANGO (a statistical mechanics algorithm),
Zyggregator, Amylpred (Amyloid Prediction), etc. [18,51,52]. Most of these tools only use the protein
sequence as input to find out the short APRs with 5–9 residues prone to forming amyloid-like fibrils.
Although these methods have achieved some success, one should be cautious about the APRs identified
by these methods, since these APRs are just necessary, but not sufficient for forming aggregates.
To facilitate aggregation, APRs need to be exposed to contacting the neighboring molecules. Therefore,
APRs prediction should be verified by the experimental results when the APRs do not exist in the
solvent exposed loops or on the surface of folded proteins. The other method for identifying APRs is
the molecular simulation (MD), which ranks protein conformations according to their aggregation
propensity. Cecchini et al. have used MD to predict APRs in human amyloid β-peptide, amylin and
the prion protein PrP Ure2p1-94 [52]. Recently, Chennamsetty et al. have developed a full atomistic MD
simulation method (spatial aggregation propensity (SAP)) to identify aggregation-prone motifs with
surface exposed hydrophobic residues on full IgG1 [53]. By using SAP, they have successfully achieved
mitigating the aggregation of IgG1 by mutating those APRs [54]. Collectively, these calculation
methods could provide convenient methods for ranking protein candidates in the early development
process, which could guide the design of aggregation-resistant proteins.

3. Antibody Aggregation

3.1. Sequences and Structures of mAbs

The overall architecture of a typical IgG consists of two identical light chains and heavy chains.
Each light chain folds into two domains, VL (variable light) and CL (constant light), while each heavy
chain contains four domains of VH (variable heavy), CH1, CH2 and CH3 (Figure 2) [55]. The whole
IgG forms three structural units of equivalent size, two Fabs and a Fc dimer. Each Fab is composed
of VL, CL, VH and CH1, and Fc is a homodimer of CH2 and CH3. Fab and Fc are loosely connected
by the hinge region and are not considered to interact with each other. These multi-domains enable
the IgG to allocate its functions into different domains. Both VH and VL in Fab collectively mediate
the antigen binding via CDR loops. Fc is involved in effector functions and pharmacokinetics by
interacting with receptors.

The V domains of IgG are the smallest entities for antigen binding. The V domain consists
of two layers of β sheets connected by a disulfide bond and by a cross-over connection through
the CDR1 loops (Figure 3) [56]. The C domain lacks C’ and C” strands, which would otherwise
correspond to CDR2 in the V domain. The CDR3 loops in VH and VL are established by the V-D-J and
V-J rearrangement of the antibody gene respectively and somatic mutations that contribute to high
diversities for targeting various antigens. CDRs are the core part for antigen binding, which contain
high frequencies of aromatic and hydrophobic residues, such Tyr, Phe, Leu and Ile, as well as residues
functioning as hydrogen bonding donors, such as Ser, Thr, Asn and Gln [18]. VH and VL associate
with each other via hydrophobic interactions involving residues Val37, Leu45 and Trp47 (according to
Kabat numbering). CH1 and CL hold together by strong hydrophobic packing between residues Val190,
Phe174 and Leu143 in CH1 and Leu135, Phe116, Phe118 and Val133 in CL, which combined the VH/VL

association to constitute the stable Fab [31]. Fab connects to Fc via the flexible hinge region, where the
upper region contains several disulfide bonds for establishing inter-chain ligation, and the lower region
is usually hydrophobic and participates in the Fc receptor binding. The flexibility of the hinge ensures
the domain movement and the orientation of Fab and Fc, which could modulate the antigen binding
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and effector function. CH2 is believed to be the least stable domain in IgG due to the lack of direct
interactions between the CH2 dimer, except the weak side chain interactions of glycans [57]. In contrast,
the CH3CH3 dimer comes into tight contact with each other by the hydrophobic interactions involving
residues Tyr438, Phe436, Leu391 and Leu372 and electrostatic interactions, such as salt bridge of
Glu357-Lys370 and Asp399-Lys409 [58]. CH2 associates with CH3 via the salt bridges of Lys248-Glu380
and Lys338-Glu430. Collectively, IgG forms a well-folded globular structure via extensive intra-domain
and inter-domain interactions.
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Figure 2. Molecular architecture of an immunoglobulin G1 (IgG1) antibody and its fragments. An IgG
consists of two heavy chains (blue) and two light chains (red). The glycan is presented by the green
color. Fc (the crystallizable fragment) is a dimer of CH2, CH3 and glycans. Fab (antigen-binding
fragment) is composed of variable heavy (VH) and light (VL) domains, as well as two constant domains
(CH1 and CL). ScFv is the artificial format containing VH and VL connected by a flexible linker (yellow).
VH (or VL) is the minimal unit for antigen binding mediated by complementarity determining regions
(CDRs). The CDR loops in the VH domain are denoted as H1, H2 and H3 (blue); the CDRs in the VL

domain are named as L1, L2 and L3 (red). Below are the 3D structures of an HIV neutralizing antibody
b12 with intact IgG1, Fc, Fab, scFv and VH formats.
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Figure 3. The structural comparisons of the V domain and the C domain. (A) and the C domain (B).
The β sheets are presented by the green cartoon models with the CDRs denoted in red and the disulfide
bond in yellow. The anti-parallel β sheets are numbered as A, B, C, C’, C”, D, E, F. The C domain does
not contain the C’ and C” strands.
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3.2. Aggregation of Full-Length IgG

IgG contains extensive intra-domain and inter-domain hydrophobic interactions. When subjected
to structural fluctuations, those hydrophobic interactions are readily exposed to constitute aggregation
nuclei [59]. The subdomains of IgG belong to the immunoglobulin superfamily (IgSF) with β-strand
sandwich folding, which is intrinsically prone to amyloid aggregation by edge-edge association [18].
For example, trastuzumab (Herceptin) contains two closing β-strands in the Fab, wherein one strand
(SVFIFP) at the edge of the four-stranded β-sheet of CL is packed against the four-stranded β-sheet of
the CH1 domain, thus mediating aggregation [18]. The intermolecular beta sheet associations were
frequently found in the IgG1 aggregate induced by various stress conditions, such as heating and
stirring [60]. Besides those non-covalent associations, the free sulfhydryl group derived from the
impaired disulfide bonds of IgG promotes aggregation through intramolecular scrambling and/or
intermolecular crosslinking [61]. In this regard, particular attention needs to be paid to the unpaired
non-canonical Cys for antagonizing aggregation. Buchanan et al. have achieved decreasing the
aggregation propensity of Ang2 mAb by mutating a free Cys residue in the proximity of light chain
CDR2 (LCDR2) (Cys49) into Thr or Asn [62]. On the other hand, the aggregation susceptibility of
IgG is deeply modulated by the features of CDRs. Given that CDRs are also responsible for antigen
binding, it is challenging to engineer the CDRs to resist aggregation without compromising antigen
binding. To reconcile the antigen binding, aggregation-resistant engineering usually does not directly
target CDR bearing the APRs, but rather the edge residues flanking CDRs or the surrounding regions.
Wu et al. have improved the solubility of an anti-IL-13 monoclonal antibody CNTO607 by mutating
a set of hydrophobic residues (Phe-His-Trp) in heavy chain CDR3 (HCDR3) to Ala. However, the
binding affinity of the mutated mAb was decreased significantly (>1000-fold) [17]. Alternatively,
instead of engineering HCDR3, the authors have resorted to introducing a hydrophilic glycan into
the neighboring HCDR2, which could shield the hydrophobic triad in HCDR3, but meanwhile did
not intervene in the antigen binding [17]. Another elegant study came from Dudgeon et al. showing
that the incorporation of negatively-charged residues, such as Asp and Glu, into the HCDR1 and
LCDR2 did not impact the antigen binding and function of full-length trastuzumab against HER2,
probably because it is HCDR3 and LCDR3, rather than HCDR1 and LCDR2, that contribute to HER2
binding [63].

Another factor complicating IgG aggregation is the glycosylation. Usually, the glycans attached
at N297 are believed to benefit the aggregation resistance for IgG by shielding hydrophobic residues
from being exposing to the solvent. Trout et al. have used SAP calculations to demonstrate that
glycan attached at IgG1 Asn297 shields the couples of hydrophobic residues, such as F241 and F243,
from exposure to the solvent. Consequently, the aglycosylated mAbs are less stable and therefore
aggregate more easily than the glycosylated mAbs [64]. In addition, it is believed that glycoforms could
adjust the conformation of Fc in either “open” or “closed” states and, thus, modulate the colloidal
interactions between IgG [65]. Schaefer et al. have reported that IgG bearing high mannose derived
from yeast is more resistant to aggregation than the counterpart expressed by mammalian cells with
complex type glycans [66]. Hence, one can change aggregation liability by altering the glycoform
of IgG or introducing additional glycans on IgG [67]. By contrast, the hydrophobic patches in Fc,
which constitute the docking sites for other molecules to implement important biological functions, are
“hot spots” for aggregation [68]. Trout et al. have exploited SAP to identify the exposed hydrophobic
residues spreading across the whole sequences of Fc, such as Leu309 in CH2 and Ile253 in the CH2–CH3
junction [53]. Those hydrophobic patches have been reversed by introducing the mutations of L234K,
L235K, I253K and L309K to decrease IgG–IgG self-association and aggregation [54]. Although the
different IgG isotypes bear relatively conserved constant fragment and relatively invariant hydrophobic
patches, they have intrinsically distinct thermostabilities and colloidal stabilities due to the minor
differences of the Fc sequences, the length of the hinge linker, the number of disulfide bonds in hinge
regions and the pattern of glycosylation [69,70]. In many cases, it is believed that IgG1 has the highest
stability compared to IgG2, IgG3 and IgG4. IgG2 has two more cysteines in the hinge compared to
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IgG1 and is prone to the presentation of free sulfhydryl radicals for exacerbating aggregation. IgG3
has a relatively long hinge region, which is susceptible to protease cleavage and renders IgG3 prone to
chemical degradations. IgG4 is prone to forming into the bi-specific dimer by domain swapping [71].
Thus, most therapeutic mAbs have adopted the IgG1 forms. However, in special cases, the aggregation
propensity of IgG1 could be improved by the isotype switching [67,72].

On the other hand, the domain-domain associations need to be taken into account when studying
the aggregation of IgG, which contains substantial molecular-scale interactions in the VH/VL, CH1/CL,
CH2/CH3 and CH3/CH3 interfaces. The domain-domain interactions confer IgG interface free energy
for native folding, which would disappear when one of the interacting domain unfolds [57]. Thus, the
unfolding and aggregation of full length IgG is often triggered by the least stable domain. It is
believed that CH2 unfolds first and triggers the aggregation process, while CH3 is the most stable
domain [73]. Fab usually bears the middle thermostability, but is significantly modulated by the
CDR sequences [74]. IgG aggregation is most frequently studied at an acidic pH since IgG needs
to be exposed to acid for resin purification or virus clearance [35]. The low pH renders the charged
residues in the domain interfaces experiencing protonation, which could disturb the hydrogen
bonds and salt bridges [59]. Consequently, the polar residues would carry excess charges and
destabilize IgG by intramolecular charge–charge repulsions [7]. The low pH was often combined with
temperature ramping for evaluating enthalpy changes and the unfolding intermediates during IgG
unfolding determined by DSC measurement [57]. The DSC thermograms of IgG usually contain more
than one endotherm peak corresponding to the unfolding of its separated domains [73,75], which
indicates that the thermostability of the individual domain collectively contributes to the overall
aggregation propensity of full-length IgG. Therefore, to explore the strategies for mitigating IgG
aggregation, one could scrutinize the factors influencing aggregation on the basis of its separated
domains. Studying the aggregation of antibody domains is more straightforward and informative.
The aggregation-resistant lessons learned from single or multi-antibody domains could guide the
aggregation-resistant engineering of full-length IgG. Therefore, studying the aggregation of antibody
domains or fragments has significant relevance for combating the aggregation of full-length IgG. In the
next section, we will discuss the relationships between aggregation propensity and the structures of
antibody domains, as well as their aggregation-resistant strategies.

3.3. VH and VL

VH and VL as single domains are the smallest units for antigen binding. These single domains
have attractive advantages as diagnostic and therapeutic reagents due to their small size, which confer
them capacity to access cryptic epitopes and enhance penetration into solid tissues [76]. VH and VL are
intrinsically prone to aggregation due to the exposure of the hydrophobic VH–VL interface. VH has
been shown to be more prone to aggregation than VL, and its aggregation is more dependent on its
CDRs than VL [77]. The stabilizing free energy for VH and VL results from the hydrophobic core inside
the immunoglobulin β barrel and the disulfide bond connecting the two β sheets layers. While an
intra-domain disulfide in the antibody domain contributes a range of 4–6 kcal/mol of free energy to
the folding [78], 1 Å2 of the hydrophobic contact corresponds to 25 cal/mol [79]. The CDRs responsible
for antigen binding also impact the colloidal stability and aggregation of VH and VL. Generally,
the aggregation resistance strategies could be divided into rational and evolutionary approaches.
While rational approaches exploit structure-based knowledge or sequence information to guide the
aggregation-resistant mutations, the evolutionary methods involve the selection of a single domain
antibody library by stability-improving pressures, such as temperature and pH. These two approaches
could be combined to design aggregation-resistant single domain antibodies (sdAb) (Figure 4).

The elucidation of structural and sequence determinants underlying aggregation propensity
diversifies the rational approaches of combatting the aggregation of sdAb, which include the
engineering of the overall charge, CDRs, disulfide bonds, VH–VL interface and the residues in
framework (FR) regions influencing aggregation. Antibodies with net charges are less prone
to aggregation due to the intermolecular repulsions. Tanha et al. have reported that the
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aggregation-resistant human VHs obtained by panning against target enzymes using a transient
heat denaturation approach bear acidic pIs, similar to the naturally-occurring camelid VHH and
shark VNAR, which is reminiscent of protein acidification constituting a universal mechanism to
confer functional sdAbs [80]. The same principle may be also applied to the full-length IgG. Schaefer
et al. have shown that IgG expressed in yeast bearing the “EAEA” sequence at the N termini of
the light chain and heavy chain are more aggregation resistant than the counterpart expressed in
mammalian cells [66]. Consistent with this, introducing the negatively-charged residues into CDRs
is a feasible route for mitigating the aggregation of VH and VL. Perchiacca et al. have improved the
solubility of VH containing aggregation-prone Aβ peptides by inserting the “DED” triad into the
edge of CDR3 [81]. Dudgeon et al. have found that incorporations of negatively-charged residues,
especially Asp, into the CDR1 of VH (Positions 28, 30–33, 35) and CDR2 of VL (49, 50–53, 56), are
universal strategies for conferring aggregation resistance to sdAbs [63]. In addition to the introduction
of negatively-charged residues, CDRs are subjected to extensive aggregation-resistant engineering
since CDRs are hydrophobic “hot spots” mediating the aggregation of sdAbs. Rational designs usually
include the mutagenesis of hydrophobic residues into hydrophilic ones [17,82] and the introduction
of cysteines into CDR3 to constrain the conformation of the long protruding CDR3 or to mediate
cross-linking with CDR1 to stabilize sdAbs [80,83,84]. On the other hand, the exogenous disulfide
bond could be introduced into the FR regions to strengthen the thermostability of VH and VL. Kim et al.
have reported that the introduction of the non-canonical disulfide bond between Cys54 and Cys78
residues increased the thermostability of VH by 14–18 ◦C [85]. In addition, the same authors have also
achieved improving the thermostability of VL by 5.5–17.5 ◦C through the creation of disulfide bonds
linking residues 48 and 64 [86]. Another aggregation-resistant method involves the engineering of the
exposed VH–VL interface that would otherwise be buried in intact antibodies or other bigger fragments.
Indeed, hydrophilic mutations near the former VH/VL interface have been demonstrated to improve
the solubility of dAbs [87]. The naturally-occurring VHH from camels has inspired the screening
of aggregation-resistant mutants of VH, although the camelized mutations are often not applied to
therapeutic mAbs considering the potential immunogenicity [88]. Furthermore, accumulating research
has established the impact of the residues in FR regions on the aggregation of sdAbs. For example, the
residues of Glu or Gln6 [89], Arg66 and Gln105 [90] in VH and residues of R24, Y49 [63] and Pro8 [91]
in VL are the key players in mediating the aggregation of sdAbs.
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Alternatively, the library-based evolutionary approaches could be used for alleviating the
aggregation of sdAbs. Antibody domains of different sub-families bear distinct thermostability
and aggregation propensity. The VH1, 3 and 5 gene families generally displayed better physical
characteristics than the 2, 4 and 6 gene families [92]. For VL, Vκ is more desirable than the Vλ chain,
with Vκ3 being the most thermodynamically-stable followed by the Vκ1 and Vκ4 [93]. Besides,
based on the sequence and structural comparisons, some groups have found the so-called “consensus
sequences” benefiting the folding of VH, which usually bear high frequencies in the repertoire [94].
By combing the favorable germline domains and those consensus sequences, one could establish stable
scaffolds to construct libraries with randomized CDRs, which could be further subjected to some
pressures to select the biophysically-desired binders [95]. Our group succeeded in isolating a stable
VH antibody, m36, for targeting HIV-1 CoRbs by panning a VH phage library, which is composed of
a stable scaffold based on the VH3 with the incorporation of partially-randomized CDR1 (Positions
30 and 31) and naturally-occurring CDR2 and CDR3 [96]. On the other hand, one could perform
random mutations for the selection of stability-improved sdAbs, in the case where the parent sdAb for
a given antigen has already been developed [97].

3.4. scFv

scFv consists of the variable domains of VH and VL connected by a flexible linker, which combines
with the strong inter-domain associations to ensure that scFv retains the antigen binding of the
full-length IgG if no reorientation of the VH and VL occurs. Due to its small size (~30 kD), scFv bears
many therapeutic merits as a diagnostic and therapeutic agent, such as easy expression, relative stability
compared to VH and deceased toxicity when used in radioisotopes and bio-imaging [98]. Like the
separated VH and VL, the thermostability and aggregation liability of scFv relates tightly to the CDRs’
sequences and the intrinsic stabilities of the sub-domains [99]. Thus, the general aggregation-resistant
strategies for VH and VL are also applied to the scFv. General strategies include introducing the
stabilization mutations, such as residues 6 and 66 in VH, Pro8 in Vκ [89,91], choosing stable frameworks
of VH and VL, such as the combinations of H3κ3, H1bκ3, H5κ3 and H3κ1 for constructing scFv [92]
and introducing CDR mutations (see the above VH and VL Section). However, as a fragment with
strong VH/VL associations, scFv has its unique features. The VH/VL interface of scFv is usually
conformationally dynamic and experiences “transient opening”, which could expose the hydrophobic
patches to promote aggregation [100]. Therefore, stabilizing the VH–VL interface has enjoyed many
successes for improving the solubility of scFv. Corresponding strategies include introducing a
disulfide bond into the contact interface [101], forming new salt bridges and hydrogen bonds between
VH–VL [102] and adding “knob-into-hole” mutations [103]. Another influential factor impacting scFv
aggregation is the monomer-dimer-multimer equilibrium occurring via the domain-swapping manner,
where the VH domain of one scFv pairs with the VL domain of another scFv and vice versa [104].
This domain swapping highly depends on the linker length in which the short linker of 5–10 residues
forms a stable dimer (diabody), and the long linker of 15–20 amino acids favors a monomer [99].
Thus, optimizing the linkers between VH and VL by changing both the linker sequences and length
could alleviate the aggregation of scFv [105]. Including linkers of 25 amino acids is reported to be
a common way of increasing the stability of scFv by populating monomer species [99]. Besides, the
domain swapping is also impacted by the expression condition, solution ionic strength and pH [106].

3.5. Fab

Fab contains four domains, namely, VH, CH1, VL and CL, in which VH/VL and CH1/CL strongly
associate via hydrophobic contact and hydrogen bonding, while few interactions exist at the VH/CH1
and VL/CL interface. Fab has unique advantages as the diagnostic tool and pharmaceutic reagent
due to its small size, easy production and relatively longer in vivo half-life than the single domain
antibody [107]. Fab-based therapeutics is currently on the market, e.g., ReoPro (Centocor), Lucentis
(Genetech) and Cimzia (UCB) [108]. Generally, Fab is more stable than VH and scFv since the
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hydrophobic interfaces exposed in VH and scFv are buried by the constant domain in Fab. Like sdAbs
and scFv, the unfolding and aggregation propensity of Fab are also impacted by CDRs. It is reported
that IgG pools from human blood exist as dimers due to the association of the distal ends of their Fab
arms, similar to the idiotype-anti-idiotype complexes [109]. The properties of CDR residues could
modulate the colloidal stability, thus mediating the self-association of Fab in the native condition [110].
Besides CDRs, the sequences and structural features of FR regions also impact colloidal interactions by
altering the charge distributions across the Fab [20]. Meanwhile, colloidal interaction could be deeply
modulated by the solution pH and ionic strength [108]. Another factor complicating Fab aggregation
is the inter-domain disulfide bond. The disulfide bond at the C terminus of CH1 and CL of IgG1 can
lock domain conformations and strengthen the inter-domain interactions. By mimicking this disulfide
bond, Peters et al. have improved the thermostability of Fab and the disulfide bond heterogeneity of
full-length IgG4. This disulfide bond was formed through mutating C127 in the N terminus of CH1
to a serine and simultaneously introducing a cysteine at the C terminus of CH1 (Positions 227–230),
which facilitates disulfide bonding to the CL [111].

On the other hand, unlike sdAbs, Fab structurally features two inter-domain interactions, which
are targets for aggregation-resistant strategies. The domain-domain cooperativity of VH/VL and
CH1/CL in Fab is highly predisposed in the unfolding process, as shown by the single and sharp
endotherm peaks in the DSC thermograms [57]. The CH1/CL interface is believed to be more stable
than the VH/VL interface, but also depends on the characteristics of CDRs. While the VH/VL interface
is pre-defined for a given Fab, which has limited spaces for engineering considering the requirement of
attaining the antigen binding, the CH1/CL interface constitutes a convenient platform for improving
inter-domain interactions. Teerinen et al. have reported that the solvated hydrophobicity of CH1/CL

could be increased by mutating Thr178 to Val or Leu, which leads to increased unfolding free energy
of Fab [112]. Recently, our group has successfully used an evolutionary method to introduce a set of
mutations in the CH1/CL interface including S64E, S66V in CH1 and S69L, T71S in Cκ. These mutations
conferred CH1/CL with improved inter-domain associations due to enhanced hydrophobic contact and
hydrogen bonds [113]. The improved variant could retain its homogenous monomeric state even in the
presence of 1 mM TCEP, indicating that the lack of disulfide bond has no impact on the non-covalent
inter-domain interactions (Figure 5).
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Figure 5. Rational design and identification of stabilized CH1–Cκ. (A) Structural analysis of the CH1–Cκ

interface. The side chains of hydrophobic residues at the interface are shown in slim stick representation.
The four amino acid residues lining a void structure are indicated with their side chains shown in
a bold ball-and-stick representation; (B) Size-exclusion chromatography of mD1.22-CH1/m36.4-CL

variants. Proteins were treated with and without 1 mM TCEP (tris(2-carboxyethyl)phosphine) before
analysis. The arrows at the top indicate the elution volumes of the molecular mass standards in PBS
(pH 7.4): carbonic anhydrase (29 kDa), ovalbumin (44 kDa) and conalbumin (75 kDa).
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3.6. Fc

The hydrophobic regions contain APRs promoting antibody aggregation. For IgG, more APRs are
found in Fc than in Fab, as evidenced by the molecular simulations performed by Bernhardt et al. [53].
By using the so-called SAP method, they have found as many as 14 aggregation-prone motifs in
the IgG1 constant domains. These motifs contain one to seven residues and are largely conserved
among all IgG subclasses (IgG2, IgG3 and IgG4). According to their research, most of those motifs
are located at the lower hinge region and CH2–CH3 interface of Fc. Indeed, the hydrophobic lower
hinge (sequence: 231-APELLGGPSVFLFPP-245) is not only the “hot” site for engineering IgG effector
function, such as antibody dependent cell mediated cytotoxicity (ADCC) and complement dependent
cytotoxicity (CDC) [68], but also a focus for improving antibody solubility and thermostability.
In Bernhardt et al.’s later study, the authors have improved the solubility of full-length IgG by
mutating the hydrophobic residues of L234 and L235 into lysine. This improvement probably
results from the enhanced thermostability of CH2 domain as revealed by the DSC analysis [54].
Gong et al. have achieved improving the thermostability of the CH2 domain and decrease aggregation
propensity by removing the unstructured loop composed of sequence of N-APELLGG-C [114].
Furthermore, the same authors have found that the aggregation of CH2 could be significantly
decreased by mutating APRs residues, such as F241, F243 identified by the TANGO program into
hydrophilic residues (personal communications). Another hot spot for combating aggregation lies at
the CH2–CH3 interface, which bears high adaptability to binding different ligands, such as protein
A/G, FcRn and rheumatoid factor [115]. DeLano et al. have shown that the CH2–CH3 junction
contained a hydrophobic consensus motif composed of Asn434, Ile253, Met423, Tyr436, Met252
and Ser254 for accommodating different natural scaffolds, such as two α-helices of the B-domain
of protein A and two β-strands (engineered peptide with sequence of DCAWHLGELVWCT) [115].
By mutating I253 to lysine, the solubility and stability of full-length IgG1 could be improved according
to Bernhardt et al.’s study [54]. Another elegant piece of evidence clarifying the implications of this
hydrophobic patch in IgG aggregation came from Kolenko et al.’s research, showing that, in the
crystal structure of mouse IgG2b-Fc, the CH2–CH3 interface interact with the C’E loop (the residues
Arg293–Thr299) containing glycosylated Asn297 and another nearby loop of the same neighboring
molecule [116]. This complex of two antiparallel-oriented dimers of the Fc provided a structural model
of Fc:Fc-mediated immunocomplex (IC) formation and increased aggregation. The involvement of the
C’E loop in Fc–Fc association may also have relevant for the roles of glycans in the stabilization and
aggregation of IgG. Chen et al. have observed enhanced thermostability and decreased aggregation
of full-length IgG1 after introducing an engineered aromatic sequon (EAS) (Q295F/Y296A) into the
glycosylated C’E loop [117]. Although the aggregation resistance was ascribed to the improved stability
of CH2 due to the interactions between F295 and GlcNAc1 and core fucose, it may be interesting to
explore how the altered C’E loop impacts the Fc–Fc interactions and subsequent colloidal aggregation
of IgG1.

Fc aggregation depends on the thermostability of CH2 and CH3. Actually, CH2 is considered
to be the least stable domain and usually triggers the unfolding of full-length IgG [118]. Therefore,
improving the thermostability of CH2 and CH3 could benefit the stability and solubility of the full-sized
IgG. One effective strategy for improving the stability of CH2 and CH3 is modulating intra-domain
disulfide bonds. Gong et al. have increased the transition melting temperature (Tm) of CH2 from
54.1 ◦C to 73.8 ◦C by introducing a disulfide bond in Positions 242 and 334 (m01) [119]. Ying et al. have
achieved improving the Tm of a monomeric CH3 from 41 ◦C to 76 ◦C by introducing a disulfide bond
connecting Positions 343 and 431 [120]. Wozniak-Knopp et al. have reported that the human IgG1 Fc
could be stabilized by introducing intra-domain disulfide bonds in the CH3 domain. In their research,
two engineered disulfides with one linking the N-terminus of the CH3 domain with the F-strand and
the other connecting the BC loop and the D-strand collectively led to an increase of the Tm of ~15 ◦C for
IgG Fc [121]. Collectively, Fc with widely-distributed APRs has gained much attention for aggregation
resistance, which benefits the design of full-length IgG with improved biophysical properties.
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4. Aggregation of Antibody Drug Conjugates

Antibody drug conjugates (ADCs) combine the specificity of monoclonal antibodies (mAbs) with
the potent cytotoxic activity of small molecule drugs for the treatment of cancer and other diseases [122].
The development of ADCs has been significantly hampered due to the strong tendency of ADCs to
aggregate or “clump up” [123].

ADCs have three major components, antibody, linker and the cytotoxic drug as the payload.
Clearly, the aggregation propensity of ADC is directly related to the parent mAbs, as exemplified
by Beckley et al. showing that eight kinds of ADCs with the same linker-payloads of vc-MMAE
(monomethyl auristatin E), but with distinct variable domains had different propensities of forming
high molecular weight species (HMWS) [124]. Meanwhile, the aggregation of ADC is complicated
by the conjugation chemistry and the nature of linker-payloads. The conjugation reaction usually
involves the activation of side chains of cysteine, lysine or the keto group of carbohydrate from
mAb and subsequent ligation with functionalities from the linkers. During the production process,
the activated intermediates containing free sulfhydryl group of Cys and the maleimido group from the
linker could mediate the inter-molecular crosslinking and lead to aggregation. Wakankar et al. have
demonstrated that a lysine-activated intermediate, Tmab T-MCC (Trastuzumab-maleimidylmethyl
cyclohexane-1-carboxylate), was more prone to aggregation than the fully-conjugated ADC T-DM1
(Trastuzumab emtansine) [125]. Additionally, the conjugation type could impact the conformation
of mAbs and alter aggregation potentials. It was reported that thiol ligation could induce more
aggregation than lysine coupling [126], probably due to the reduction of the inter-chain disulfide bonds
in thiol coupling.

For the impact of the linker-payload, their hydrophobically-aliphatic moieties expand the APRs
on ADC, facilitating the aggregation by forming hydrophobic patches. Guo et al. have pointed
out the contributions of linker payload to the overall hydrophobicity of the ADC by molecular
modeling [127]. The increased hydrophobicity of ADC mediated by the linker payload is also
supported by the hydrophobicity calculations and APR predictions of two ADCs developed in our
group, m860-monomethyl auristatin F (MMAF) and m900-MMAE. M860-MMAF is a sugar keto
conjugation ADC targeting the HER2 receptor [128], and m909-ADC is a thiol conjugation targeting the
folate receptor β [129] (Figure 6A). Their APRs were predicted by Aggrescan, TANGO, WALTZ and
Amylpred2, and the hydrophobicity was empirically calculated by measuring the non-polar surface
area of both antibodies and drug molecules [130]. Results showed that linker payload contributed to
APRs, as well as the overall hydrophobicity (Figure 6B). Due to the increased hydrophobicity, ADCs are
more prone to aggregation compared to the parent mAbs. Guo et al. have reported that an ADC with a
maleimidocaproyl linker and an auristatin payload are more prone to aggregate during thermal stress
than the parent mAb, although they have similar secondary and tertiary structures [131]. Similar results
were obtained by our group for m860-MMAF (Figure 6C). To reduce the hydrophobicity of ADC,
some groups have studied replacing the hydrophobic linkers with hydrophilic linkers or PEGylation
linkers. Zhao et al. have incorporated sulfonate- or PEG-containing hydrophilic linkers into antibody
maytansinoid conjugates to achieve high DAR without aggregation and low non-specificity [132].
Lyon et al. have exploited a hydrophilic glucuronide linker in PEGylated ADCs to decrease the
hydrophobicity of ADC and to extend its in vivo half-life [133].

The one-pot chemical conjugation of mAb and drug reactants usually produces heterogeneous
ADC products. In the case of thiol-maleimide chemistry, the extent to which the inter-chain disulfide
bonds were reduced determined the quantity of drugs attaching to mAb, which led to the ADC
species with different DARs ranging from 0 to 8. DAR constitutes a major concern for designing
ADC therapeutics, since DAR tightly impacts the aggregation propensity, in vivo potency and serum
stability of ADC. ADC with high DAR usually has higher aggregation propensity due to the increased
hydrophobicity conferred by the hydrophobic drug molecules. Guo et al. have found that their
ADC with DAR6 species may exist in a multimeric state, while DAR2 and DAR4 species likely exist
in monomeric forms under ambient conditions [127]. Beckley et al. have reported that their ADC
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aggregate mainly contained the high DAR species of 6–8 [124]. Meanwhile, ADC with high DAR
was reported to be subjected to more structural perturbations, causing the destabilization of mAb,
as exampled by Adem et al. showing that high DAR species readily experienced aggregation and
fragmentation under stress conditions, such as high ionic strength buffer, due to the fewer inter-chain
disulfide bonds [134]. The destabilized structure of high DAR species could probably reconcile its fast
plasma clearance [133] when encountered with protease degradation. Besides, Pan et al. have reported
that ADC bears distinct conformation at the CH2–CH3 interface compared to the parent antibody [135],
which may disturb its interaction with FcRn and impact the serum half-life of ADC. In addition, the
authors also found that the low hinge region of the CH2 domain became more solvent exposed in ADC
than in the naked mAb by using hydrogen/deuterium exchange mass spectrometry (HDX-MS). The
conformation alteration of CH2 domain was also confirmed by Beckley et al., showing that the CH2
domains in ADC with high DAR bear low stability and rapidly form aggregates at 40 ◦C [124]. The
fact that the higher DAR could pose more structural alterations is further supported by our molecular
docking (PatchDock simulations [136]) studies of m860-MMAF and m900-MMAE with different DARs.
Our results showed that the propensity of ADCs associating with each other (docking score) positively
correlated with the DAR (Figure 6D), indicating that the higher DAR species presents a conformation
that is more prone to associate with each other.Antibodies 2016, 5, 19  14 of 22 
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Collectively, the aggregation of ADC is a function of the naked antibody, linker payload,
conjugation chemistry and DAR, as well as the formulation solution, all of which need to be considered
when trying to increase the aggregation resistance of ADCs.

5. Conclusions and Outlooks

The aggregation of antibody domains has been extensively studied in order to expedite the
screening of aggregation-resistant IgG in the early development process. However, caution is needed
since aggregation resistance strategies for antibody domains are not always successfully transferred
onto full-sized IgG. Usually, the strategies for improving the stability of the constant domain could be
applied to full-length IgG. For example, our group has found that the stabilization mutations at the
CH1/Cκ heterodimer interface (S64E/S66V of CH1 and S69L/T71S of Cκ) identified from the Fab-like
format could be applied onto the full-length IgG-like format (4Dm2m) [113]. Kelly et al. have found
the mutations of Q295F/Y296A stabilizing the CH2 domain through interaction with glycan could
also confer full-sized IgG decreased low pH-induced aggregation [117]. By contrast, transferring of
aggregation properties from variable domains to full-sized IgGs is often complicated by the antigen
binding and domain-domain associations. Pepinsky et al. have reported that the anti-LINGO-1 Mab
Li33 selected from the Fab phage library had poor solubility when converted into IgG1 format [67].
Another example came from Daniel Christ’s group, showing that the aggregation resistance benefit
derived from mutating residues in CDR1 of VH and CDR2 of VL into negatively-charged residues,
such as Asp and Glu, could successfully be transferred into scFv format [63]. The scFv trastuzumab
with double mutations of 30D/52D not only resisted aggregation, but also retained high binding affinity
to HER2. Furthermore, these mutations have been incorporated into the full-length trastuzumab IgG1
without disturbing the antigen binding and the biological functions. However, it remains to be seen
whether these mutations alleviating aggregation of the single domain antibody could also improve the
solubility of the full-length IgG1.

One should also keep in mind that the same forces promoting protein aggregation also operate in
protein folding and interactions. As such, one needs to balance between decreasing aggregation and
maintaining the correct folding and specific binding when rationally-designing aggregation-resistant
antibodies. In our development of aggregation-resistant m36.4 variants, we have found that although
some mutants indeed gained decreased aggregation according to the dynamic light scattering
(DLS) profiles, their unfolding Tms was significantly compromised as measured by the temperature
ramping CD spectra. Meanwhile, mitigating aggregation through engineering the IgG sequence
and structure by mutagenesis bears risks to generate new B- and T-cell epitopes and to cause
immunogenicity. While the mutations occurring at CDRs could induce an anti-idiotype response
and lead to the neutralization of the therapeutics, mutations at the constant domain could evoke
the “binding antibodies” response in the host and compromise the efficacy of therapeutics due to
the changed pharmacokinetics [137]. Thus, the risks of eliciting immunogenicity should be carefully
considered when designing aggregation-resistant mutations, although many CDR mutations are
reported to cause little or no immunogenicity in clinical trials [138]. An effective approach to limit
immunogenicity is germlining to the human counterpart. Thus, the mutations of IgG sequences
should be as few as possible. Fortunately, the potential of introducing T-cell epitopes by mutations
could now be predicted in silico due to the mapping of their interactions with the human leukocyte
antigen (HLA) class II molecules [139]. Besides, one should pursue exploiting the benefit of the
hydrophilicity of the carbohydrate and PEG (polyethylene glycol) to combat the aggregation propensity
of IgG, since glycosylation and PEGylation of IgG have a much decreased possibility to induce
immunogenicity [140,141].

The antibody multi-domain nature defines its aggregation process as pathway dependent,
which is a function of a combination of IgG sequences and structures, as well as the solution
conditions. While most designs focus on improving thermostability and alleviating the aggregation
of antibody fragments in a lumped assay, such as turbidity and dye binding, few studies are
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dedicated to clarifying to what extent the engineering strategies impact the formation of the aggregate
intermediates or the soluble irreversible aggregate species. Similarly, few existing computational
programs account for the aggregation mechanism of the antibody although they could predict APRs in
antibody sequences. Furthermore, calculation tools have failed to incorporate the external solution
condition into the aggregation prediction. Although several programs have indeed considered the
physiological conditions in the prediction, therapeutic antibodies are not usually produced, stored
and administered under physiological conditions. Thus, these calculation methods poorly learn
the antibody aggregation-resistant engineering in some cases. The studies of soluble aggregate
intermediates, aggregation kinetics and mechanisms, as well as their dependence on the solution
conditions would guide the antibody formulation optimization, which should be extensively pursued
in future research work.

In summary, the aggregation propensities and aggregation-resistance strategies for antibody
domains have been extensively investigated. Future studies are worth understanding the aggregation
mechanisms for full-sized antibodies and their dependence on the environment, which could expedite
antibody therapeutics development.
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