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Abstract

This paper introduces a new approach—the Principal Component Gradient Analysis
(PCGA)-to detect ecological gradients in time-series populations, i.e. several time-series
originating from different individuals of a population. Detection of ecological gradients is of
particular importance when dealing with time-series from heterogeneous populations which
express differing trends. PCGA makes use of polar coordinates of loadings from the first two
axes obtained by principal component analysis (PCA) to define groups of similar trends.
Based on the mean inter-series correlation (rbar) the gain of increasing a common underlying
signal by PCGA groups is quantified using Monte Carlo Simulations. In terms of validation
PCGA is compared to three other existing approaches. Focusing on dendrochronological
examples, PCGA is shown to correctly determine population gradients and in particular
cases to be advantageous over other considered methods. Furthermore, PCGA groups in
each example allowed for enhancing the strength of a common underlying signal and com-
parably well as hierarchical cluster analysis. Our results indicate that PCGA potentially
allows for a better understanding of mechanisms causing time-series population gradients
as well as objectively enhancing the performance of climate transfer functions in dendrocli-
matology. While our examples highlight the relevance of PCGA to the field of dendrochronol-
ogy, we believe that also other disciplines working with data of comparable structure may
benefit from PCGA.

Introduction

Various environmental disciplines deal with time-series populations derived from individuals.
Individuals in the presented context may be living organisms or-in a more abstract sense-
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Abbreviations: EPS, Expressed Population Signal;

GR, Growth Ratio approach; HCA, Hierarchical
Cluster Analysis; PCA, Principal Component
Analysis; PCGA, Principal Component Gradient

Analysis; PP, Pseudo-Populations; rbar, mean inter-

series correlation; RRCSS, Relative Responder
Chronology Signal Strength; RWS, Ring-Width
Series; TR, TRend approach.

devices measuring the same parameter but at different locations. For reasons of simplicity, we
here focus on the case of dendrochronological data. There, populations are forests (the ‘choir’)
consisting of individual trees (the ‘voices’) which tree-ring parameters are considered proxies
for tree performance and its driving mechanisms (the ‘song’).

Dendrochronological datasets typically consist of tree-ring parameter time series (e.g. ring-
widths) which originate from at least 10 individuals investigated at one site [1, 2]. Standard
data preparation comprises cross-dating of individuals [1] to assure common year to year
growth variability which can be expressed by high Gleichlaeufigkeit (glk) [2, 3]. Mean inter-
series correlation (rbar) is used to express shared long-term growth variance, which in the so-
called expressed population signal (EPS) takes into account the number of samples contribut-
ing to rbar [4]. If these statistics reach fairly high values it is assumed that trees react to a com-
mon driver and can be used as proxies for this common signal [1, 4]. In such case single tree-
ring parameter series are often averaged to a so-called master chronology as representation of
the whole stand [1]. The idea behind this treatment is to enhance the strength of an assumed
common signal as each single tree—due to its specific life history-has an individual noise dis-
torting a common signal [1]. It has been shown that building master chronologies evens out
individual noises which often is reflected by correlations between master chronologies and
their dominant growth driver being higher than the majority of individual tree correlations [5].

Although being very efficient, this standard treatment largely neglects individualistic growth
response of trees. Amongst others, [6] have shown that trees from one population may express
common year-to-year variability (high glk) but different long-term (decadal to centennial)
growth trends (low rbar). This behaviour has been reported from North America [7-10],
Europe [11, 12], Central Asia [13, 14], and several sites around the circumpolar North [15]. If
differing growth trends exist within one stand, master chronology building will rather decrease
than increase the strength of correlations with growth drivers. In this context individual growth
response has been discussed as possible cause of the so-called divergence effect [16] which is
the apparent inability of tree-ring based climate reconstructions to capture recent warming
trends [17, 18]. Although hypotheses exist (e.g. genetics, micro-topographical variations), the
causes of differing growth trends have not been identified wherefore it is necessary both in den-
droecological and dendroclimatological context to improve our understanding.

Many studies investigating growth divergence (as those mentioned above) defined so-called
responder chronologies. Such chronologies consist of groups of trees with shared short- and
long-term variance within each group but different long-term trends among groups. Thus, in
contrast to typical master chronologies, which represent the average growth over all trees
within one population, different responder chronologies represent groups of trees with differ-
ing long-term growth trends from the same population. To delimit groups of trees according to
their specific growth trends, some studies used correlations of individual trees with climate [7,
8,13, 14, 15, 19, 20], while others based their groups on average growth differences between
two periods [21, 22] or absolute growth trends [9-12].

Although these studies showed convincing evidence that divergent growth trends within
populations exist, the methods applied have their drawbacks. For instance, defining responder
groups based on their climate correlations and then using the corresponding responder chro-
nologies for climate reconstruction is considered ‘cherry picking’ [6]. A weakness specific to
approaches using absolute growth differences or linear growth trends is that they do not cover
specific scenarios. For instance, two tree-ring parameter series may express simoultaneously
contrasting positive and negative growth anomalies, which cannot be detected by the afore-
mentioned approaches. To overcome these problems, methods are needed which rank each
tree-ring series according to their position along an inter-series correlation gradient inherent
to the population and independent from the period selected. A respective tool theoretically
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should be capable of the following three applications, which will be referred to throughout the
manuscript:

1. The identification of ecological gradients within the population, which for instance may be
caused by population-internal (in case of tree-rings: age, competition, genotype, etc.) and/or
population-external (soil properties, micro-climate, phytobiome, etc.) variability.

2. Explaining population gradients by statistically relating them to the aforementioned inter-
nal and external variables, this giving further insight into the mechanisms behind diverging
growth trends. This application relies very much on the performance of I wherefore it will
hold if I is fulfilled.

3. Defining responder chronologies on the basis of population gradients in the context of cli-
mate transfer function, to enhance signal strengths for the respective responder chronolo-
gies in comparison to the overall population master chronology.

First approaches to tackle these problems have been undertaken using Principal Component
Analysis (PCA) [23] or Hierarchical Cluster Analysis (HCA) [20]. Although these approaches
were able to clearly separate among responder groups (application III), they still lack the ability
to express continuous population gradients as they result in categorical groups (Principal Com-
ponent groups in [23] and clusters in [20]), thus not being capable of I and II.

In this context, we here introduce the Principal Component Gradient Analysis (PCGA). As
in [23], PCGA is based on PCA but with the difference that it combines information from the
first two PCA axes. Using polar coordinates of axes loadings PCGA defines a continuous popu-
lation gradient. PCGA thus is a contribution to individualistic treatment of time-series within
populations. As we will show, the resulting population gradients can be used to detect and
explain the underlying mechanisms of ecological gradients, thereby meeting I and II. Further-
more, PCGA allows for defining responder groups to enhance the strength of common signals
in terms of dendro-climatological reconstructions (III).

Material and Methods
2.1. Data

2.1.1. Pseudo-populations. As the aim of this paper is not only to introduce but also vali-
date a new statistical approach we decided to generate artificial populations of ring-width series
(RWS). These artificial populations we call pseudo-populations (PP). The advantage of PP is
that they can be designed such that population gradients as well as dominant population sig-
nals of respective responder groups are known. A statistical method may be considered valid if
it is able to correctly determine gradients within various PP and by this is able to correctly
define responder groups which allow for an enhancement of signal correlations.

To explore a multitude of theoretically occurring scenarios, we altogether generated four
PP. The general idea of PP generation was to take a single (for PP1) or two (PP2-PP4) RWS as
underlying population signal(s) to generate 1000 RWS which all originate from these one or
two RWS. To have a more realistic representation of tree-ring data, signals were taken from
unpublished RWS-data of Scots Pine (Pinus sylvestris L.) growing on the Darf3 Peninsula, NE
Germany. To remove any inherent trends we detrended the RWS using a ‘smoothing spline’.

For PP1 —a homogeneous PP which contained no clear population gradient but only indi-
vidual-specific noises—we replicated one Scots Pine RWS 1000 times and added to each RWS
individual ‘white’ noise (i), i.e. normally distributed, randomized values with zero mean and
pre-defined variance. To assure, that these 1000 RWS on average represent the single signal
from which they were generated, the added noise was designed such, that for each ‘year’ (j)
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Fig 1. Generation of a homogeneous pseudo-population. From one Scots Pine ring-width series, 1000
pseudo-trees are generated by adding 1000 different white noises to this particular series.

doi:10.1371/journal.pone.0158346.g001

05 00 05 10 15 20 25 30

j=year

along the RWS the average of all noise-values in the year (j) was zero. Thereby, if averaging all
1000 RWS to one single master chronology the exact original detrended Scots Pine RWS is
obtained (see Fig 1). One would expect that any defined gradient for PP1 will originate from
the added noise and responder groups thus will not enhance the strength of a common signal.

For the heterogeneous PPs 2-4 we chose two different detrended Scots Pine RWS and
mixed those along a gradient consisting of 1000 RWS. That is, the first out of 1000 RWS mainly
consisted of one of the two signals (red in Fig 2), whereas the last consisted of the opposite sig-
nal (blue). Between these two extreme RWS a linear gradient was computed (rainbow coloured
arrows in Fig 2). Following this approach, we assume to represent an artificial ecological gradi-
ent between two growth drivers, along which the RWS express a transitional change of growth
signals. By this we are able to test whether the introduced approach meets applications I, II,
and IIT (see introduction). Subsequently we added individual white noise to each of the RWS as
for PP1. As PPs 2-4 consist of two different signals their population signal is exactly the aver-
age chronology of those two signals. The differences among PPs 2-4 were related to different
long-term trends by which the signals were overlain. In PP2 no differing long-term trends
occur (upper panel in Fig 3). For PP3 a positive (negative) slope was added to the red (blue) sig-
nal (mid panel, Fig 3), whereas we in PP4 added two subsequent sine (cosine) waves (Fig 3,
lower panel). The Pearson correlation coefficients between the respective signals range from
PP3:0.15 to PP2: 0.38, glk of the two Scots Pine RWS was 0.57.

To represent more realistic conditions (realistic in terms of typical tree-ring datasets) we
randomly subsampled each PP to obtain 200 RWS. For the representation of steep gradients
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Fig 2. Generation of a heterogeneous pseudo-population. Two different signals (red and blue) are mixed
along a linear gradient (rainbow coloured arrows) to obtain 1000 RWS with a gradual transition of underlying
signals. As for PP1 individual-specific white noises are added.

doi:10.1371/journal.pone.0158346.g002

with abrupt interruptions (i.e. representing a sample which did not fully resemble the existing
gradient) we additionally subsampled each 100 RWS at each of the margins and in the center
of PP4 resulting in PP4x. In terms of validation, a statistical approach should be able to sort
RWS according to known gradients. Spearman rank correlation between known and detected
gradient rankings should therefore be high (testing I and II, i.e. detection of and relation to eco-
logical gradients). Furthermore, resulting responder chronologies should express higher signal
correlations than the overall master chronology (testing III).

2.1.2. Real world populations. To show PCGA performance using real world populations
(see also section 2.5.), we re-sampled two classical tree-line sites in Alaska in 2012: Rock Creek
Watershed (63°44° N, 149°00’ W) in Denali National Park (DN), an elevational tree-line site,
and Nutirwik Creek (67°56” N, 149°45" W) in the Brooks Range (BR) at the northern tree-line.
Both stands were formed by mono-specific stands of White Spruce (Picea glauca M.), the main
tree-line species in Alaska and north-western Canada. Per site we sampled 1) the highest eleva-
tion trees (hereafter referred to as DN:TL and BR:TL for Denali or Brooks Range tree-line,
respectively) and 2) trees about 200 m (DN) and 50 m (BR) lower in elevation growing in more
closed stands (hereafter referred to as DN:FO and BR:FO for Denali or Brooks Range forest,
respectively). For all plots we sampled increment cores from all trees with DBH > 5 cm. All
plots show clearly differing long-term growth trends, making them an ideal case study to exem-
plify our new approach. Permission to sample tree-cores in DN was granted by the United States
National Park Service (Park-assigned Study or Activity #: DENA-00849, Park-assigned Permit #:
DENA-2012-SCI-0019). For BR a casual use determination was granted by the Bureau of Land
Management (Casual Use Determination #: 2920(AKFO3000)). Picea glauca is a frequently dis-
tributed tree species in North America and is therefore not considered a protected species.
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Fig 3. Long term signals of the pseudo-populations. The signals behind PPs 2—4 showing no (PP2) or
differing long-term trends (PP3-4). To better visualize the differing long-term trends these were multiplied by

factor 3.
doi:10.1371/journal.pone.0158346.g003
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We collected nearly exclusively penetrating cores, resulting in two RWS per tree which
were averaged before further processing. Cores were measured using standard dendro-analyti-
cal techniques (conventional sanding, measurements with LINTAB and TSAPWin profes-
sional, cross-dating with COFECHA). Prior to analyses we chose a subsample of trees
referring to a common age cohort at each site. For all sites but DN:TL, this age cohort was
chosen from age 90 to 150 years. As the corresponding age cohort was only weakly repre-
sented at DN:TL (n = 16) we defined the respective age class from an age of 60 through 120
years. The resulting age cohorts comprised 52, 122, 58, and 47 trees for BR:TL, BR:FO, DN:
TL, and DN:FO, respectively. Age cohorts were selected to minimize possible effects of long-
term trends that relate to differences in age and establishment periods. The complete data was
either 1) standardized using a horizontal mean or 2) detrended using the Modified Negative
Exponential detrending procedure. Independent of the selected detrending both datasets
showed comparable-though not identical-results. Here we focus on the horizontal mean stan-
dardization results to avoid possible differences in detrending treatments dependent upon the
length of individual RWS. The effect of possible age-related growth trends on PCGA perfor-
mance is estimated using squared Spearman correlation coefficients (r*) between detected
PCGA gradients and tree age.

2.2. Four different approaches

To situate the new approach in the scientific context of individualistic growth response we
compared two established methods (GR and TR) with PCGA focusing on their ability to detect
known gradients within pseudo-populations (applications I and II). To further compare the
ability of PCGA to define responder chronologies with more sophisticated methods than GR
and TR, we compared PCGA with HCA (application III).

2.2.1. The first approach: Growth ratio (GR). The first approach is based on the calcula-
tion of growth ratios (GR). For this, the analyzed period was split into two windows of equal
length and for each RWS the average value of the latter period was divided by the average of
the first period. Thus, GR values above 1 indicate increasing values after the reference year (i.e.
positive growth trend) whereas values below 1 indicate decreasing values (negative growth
trend). Based on Wilcoxon rank sum test between values of the two periods it is possible to
define significantly positive or negative RWS trends if p<0.05. Referring to established jargon
we call these groups positive and negative responders, respectively. RWS with no significant
change between the periods were called non-responders. Although this particular method has
not been applied in the literature, it refines a method described by [21] with the additional
determination of responder groups based on p-values. By this it becomes possible not only to
separate positive from negative responders but also both from non-responders.

2.2.2. The second approach: Growth trend (TR). In the second approach, we calculated
linear regressions on RWS over the whole period. The slopes of these regressions can be seen as
individual growth trends (TR). Here, positive (negative) responders were defined as RWS
which slope was significantly higher (lower) than zero, whereas non-responders had non-sig-
nificant slopes. This approach largely reflects the methods used in [9, 12, 14].

2.2.3. The third approach: Hierarchical Cluster Analysis (HCA). As the approaches GR
and TR have certain drawbacks (see sections 1 and 4) we also considered to compare PCGA
with Hierarchical Cluster Analysis (HCA). HCA has for instance been used by [20] to define
responder chronologies. While [20] used Euclidean distances among 17 climate correlations of
each tree as dissimilarity measure, we here use Euclidean distances among RWS. This was nec-
essary to make HCA applicable to the PPs, for which we only were able to generate a maximum
meaningful number of two climate signals as being artificial data. As in [20], HCA was
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performed on the dissimilarity matrix using Ward’s minimum variance method. The number
of selected clusters was based on a careful visual interpretation of the branch lengths.

2.2.4. The new approach: Principal Component Gradient Analysis (PCGA). The pro-
posed new approach was based on Principal Component Analysis (PCA). For the PCA we
used scaled RWS as variables, i.e. each RWS was divided by its standard deviation which is a
common procedure prior to PCA to achieve equal variance of all variables [24]. As PCA needs
finite values in each of the observations (here: years) but RWS data due to the differing ages of
trees will show an increasing number of missing values back in time, PCA was performed on
the common interval, i.e. a period for which all considered RWS have finite values. Relative
importance values of the first two principal components (PC) were calculated to express their
importance with respect to the overall population variance.

PCA loadings represent the correlation of variables (in this case RWS) with the respective
PCs, with positive (negative) loadings indicating that the respective variable is positively (nega-
tively) correlated with the PC. If the first two axes explain a fair amount of overall variance (e.g.
> 50%), variables with similar loadings on those axes will be highly correlated with each other,
whereas such with dissimilar loadings will correlate less or-depending on the dissimilarity of
loadings and the importance of axes—even negatively [25]. Therefore, RWS with similar load-
ings will show similar temporal patterns, indicating the response to a common driver. It fol-
lows, that the higher the deviation among loadings of two RWS, the less they will represent a
common signal. Consequently, sorting RWS according to the arrangement of arrows theoreti-
cally allows for defining population gradients, which may be caused by population-internal or
external variability (for examples of causes we refer to application I in section 1). The typical
PCA biplot makes use of this circumstance by plotting loadings of the first two PCs as arrows,
thereby visualizing variables similarity and in our context which RWS react on similar growth
drivers.

To define population gradients (I and II), PCGA transforms the loadings of the first two
PCs into polar coordinates. By this PCGA for each RWS achieves its angle (in proportions of
pi) around and its distance to the origin of the rotation matrix (PC1 = 0, PC2 = 0). Theoreti-
cally, arrows with same directions and therefore equal angles respond to a similar signal. How-
ever depending on the equality of their distance to the origin, they will be more (low distance)
or less (high distance) obscured by other signals, i.e. noise with respect to the indicated signal.
This information is considered in the calculation of responder chronologies (see below). Con-
cluding, PCGA uses the achieved angles to define a continuous gradient along dominant sig-
nals. As this defines a population gradient using PCA we call our approach Principal
Component Gradient Analysis (PCGA).

To achieve responder chronologies (III), PCGA determines distinct population borders
which separate RWS representing different signals from each other. For this, PCGA initially
inspects the angle distances for significant breaks. I.e. whenever the distance of two neighbour-
ing angles exceeds 4 standard deviations of all distances, this relatively abrupt change is defined
as a border. Visually this border can be seen in PCA biplots if groups of arrows close by each
other are separated by comparably large gaps (a respective example is PP 4,). However, if a gra-
dient is sampled at a high frequency, such abrupt changes may not occur (e.g. PPs 2-4 when
sampled completely). Therefore, PCGA in a second step determines (additional) borders based
on Pearson correlations. For this, a ‘seed’ chronology is built at the margins of the distinct sub-
populations, or—if none were identified—at the margins of the overall population. The number
of RWS contributing to the ‘seed’ chronology here was chosen to be 10 percent of the overall
population size, to achieve statistically representative sample sizes for the seed chronologies. For
each tree contributing to the seed chronology its correlation to the seed chronology is calculated.
The resulting seed chronology correlations are used as criterion for the inclusion of further
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RWS along the population gradient. Ie. if the moving average (with window size also being 10
percent of population size) of RWS correlations along the population gradient differs by more
than 4 standard deviations from the seed chronology correlations, all RWS within the respective
window along the gradient are defined as belonging to a new subpopulation. We chose to use
moving window correlation averages to be conservative in our determination of responder chro-
nologies. That is, single RWS along the gradient may express low correlations with an adjacent
seed chronology if they are substantially obscured by noise (indicated by a comparably low dis-
tance to the origin of the rotation matrix), although subsequent RWS may still be correlated
well with the seed chronology. Thus, borders identified at those particular RWS would not be
correct. For each new defined population boundary, the procedure is repeated until the com-
plete gradient has been analysed. Minimum sample size of resulting responder chronologies is
again 10 percent of the overall population size, wherefore a maximum number of 10 responder
chronologies cannot be surpassed. One may consider increasing the 10 percent threshold for
small populations to retain statistically representative seed chronologies. To account for the dif-
fering noises of RWS along the population gradient, distances to the origin of the rotation
matrix of each RWS are used as a factor to weigh the RWS’ contributions to the responder chro-
nology. Le. if RWS have comparably low distances to the origin, they will only weakly contribute
to the respective responder chronology. As a measure of growth divergence, we here report the
minimum correlation and glk among responder chronologies.

To quantify the extent to which PCGA gradients allow for enhancing the strength of a com-
mon signal we used the mean inter-series correlation (rbar) [e.g. 4]. In dendrochronology rbar
is frequently used in the expressed population signal to quantify how well a finite sample repre-
sents a theoretically infinite sample [4]. In our approach we performed Monte Carlo simula-
tions with 100 permutations (i) to estimate an average expected rbar for each sample size N
between 2 and e.g. 50

N :=2...50 (1)

Exrbar, = 232?(2j1121::j+1c0r(RWSj,RWSk)) 100

Next, we calculated the two gradient rbar (grbary) sequences obtained from RWS along the
PCGA gradient at both margins with successively increasing sample size. Le. first grbar, of the
two ‘reddest’ (‘bluest’) RWS was calculated and then we included one RWS after another
along the gradient (grbars, grbar, . . . grbarsy). The relative rbar expressed as percentage
Rrbar,, = (grbar,/Exrbary) - 100% allows for quantifying the enhancement of the popula-
tion signal above an average random subsample for each N. It seems meaningful to calculate
RrbarN for each defined responder chronology to quantify their respective signal strength
enhancement in comparison to a random sub-population chronology with equal sample size.
We decided to use rbar instead of the expressed population signal (EPS [4]) as EPS strongly is
affected by sample size, this obscuring the factual increase of rbar for responder chronologies
with large sample sizes. This measure we call the relative responder chronology signal strength
(RRCSS).

2.3. Evaluating the approaches

2.3.1. Gradient detection. To compare the performance of GR, TR and PCGA with
respect to gradient detection we applied each approach to pseudo-populations (see 2.1.1.). As
existing population gradients were known, PP allowed us to correlate the ranking of each
approach with known gradients using Spearman’s rank correlation. The higher Spearman’s
rank correlation between estimated and known gradients, the better the performance with
respect to applications I and I1.
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2.3.2. Potential effects on climate transfer functions. With respect to the performance of
PCGA responder chronology definition we quantified the enhancement of rbar using RRCSS
as described in 2.2.3 (III). To highlight potential effects of responder chronology definition on
climate transfer functions (i.e. models used to predict climate parameters from RWS), we com-
puted individual correlations for each RWS. For pseudo-populations we correlated each RWS
with the signal(s) behind the PP (see section 2.1.1.). In addition, we computed the correspond-
ing signal correlations with the overall master chronology (i.e. including all RWS), and the
PCGA and HCA responder chronologies. The resulting correlations are described and
expressed as average Ar® between the population master and the responder chronologies
(application III). Please note that to allow for comparability with HCA which sometimes
detected groups with sample size lower than the PCGA minimum sample size (10 percent of
population size), we for BR:FO and DN:FO show both the standard PCGA performance and
results from analyses where we overrode the minimum sample size criterion to allow for
equally small sample sizes. To visually compare all computed correlations we plotted the results
as in [5], however with the extension of colouring single tree correlations according to their
PCGA ranking.

2.4. Real world application of PCGA

To further examine the performance of PCGA we applied it to the Alaskan data-sets (see
2.1.2.). PCGA responder groups were defined and signal enhancement was quantified using
RRCSS. Climate correlation analyses were performed against gridded monthly temperature
averages and monthly precipitation sums from 1901 to 2009. Climate data (CRU TS 3.1) were
downscaled by SNAP (Scenarios Network for Alaska and Arctic Planning 2013) via the delta
method [26, 27] and interpolated to a 2 by 2 km spatial resolution with the Parameter-Eleva-
tion Regressions on Independent Slopes Model (PRISM). From temperature and precipitation
we further calculated the Standardized Precipitation Evaporation Index (SPEI) integrated over
3 and 6 months as measures for plant water availability [28].

As the ‘true’ gradient for real-world data is not known, we were not able to test the correct
identification of gradients (I). As an example for application II and to test, whether detected
population gradients just reflect age related growth differences, we correlated population gradi-
ents against tree age. As for the pseudo-population signal correlations, we performed individ-
ual RWS as well as responder and master chronology climate correlations (III).

All analyses were programmed within the ‘R” environment (version 3.2.0) using packages
‘dpIR’ [29] and ‘SPET’. Code relevant for PCGA calculations mentioned under 2.2.3 is shown in
the supplementary, S1 Rcode. A respective ‘R’-package is under preparation.

PCGA Performance
3.1. Pseudo-population based evaluations

For the homogeneous PP1, PCGA correctly determined only one responder chronology, i.e.
the population master chronology. However, when evaluating grbary along the population gra-
dient, it seems to be slightly enhanced for one of the population margins (Fig 4, upper panel),
this reflecting an above average similarity of the added noise at this edge of the population.
HCA dendrogram inspection also suggested defining only one chronology (Fig 4, lower panel)
despite that the upper branch lengths, gave a weak indication for potential groups, probably
indicating the similarity of added noise within possible groups. For detailed statistics we refer
to Table 1.

Regarding the heterogeneous PP 2-4, mentioned statistics are presented in Table 1. Here, we
focus on PPs 2 and 4, (Figs 5 and 6) but refer to supplement S1-54 Figs for high resolution
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Fig 4. Evaluation plots for PP1. Upper panel: grbary plotted against Exrbar,, along the population gradient
for both population margins (red and blue lines). The blue line suggests a slightly higher grbary along the
gradient. Lower panel: HCA dendrogram suggests defining only one responder chronology, however with
weak indications of sub-populations, probably caused by noise similarity. HCA labels indicate to which cluster
each RWS belongs (here each belonging to cluster 1), while their colours relate to their position within the
known gradient. As no gradient exists within PP1, the colours are mixed randomly.

doi:10.1371/journal.pone.0158346.g004

images of all heterogeneous PPs. For PP 2 GR and TR failed to detect the population inherent
gradient, expressed by gradient r? close to zero. In contrast, PCGA correctly identified the popu-
lation gradient with 90 percent of explained variance. PCGA determined 3 responder chronolo-
gies, which expressed RRCSS around 109 reflected in signal explained variance being on average
15 percent higher if compared to the population master. HCA dendrogram suggested defining 2
responder chronologies, which expressed slightly lower signal strength enhancement.

Table 1. Detailed statistics of the PP based evaluations.

PP r2 Gradient r2 N (chrons) cor glk RRCSS [%] Ar?

PC1 PC2 GR TR PCGA PCGA HCA PCGA HCA
1 0.58 0.01 — — — 1 1 1 1 100 0 0/0
2 0.44 0.05 0.01 0.00 0.90 3 2 0.74 0.76 110/108/108 0.15 0.12
3 0.23 0.08 0.92 0.92 0.94 4 0.17 0.66 109-155 0.39 0.40
4 0.44 0.12 0.00 0.74 0.98 2 3 0.58 0.72 126/117 0.16 0.18
4, 0.40 0.17 0.00 0.77 0.87 3 3! 0.13 0.65 157/122/156 0.19 0.19

PC1/PC2 r2 refers to the amount of variance explained by PC1 and PC2. Gradient r2 shows the amount of true gradient variance explained by the gradient
obtained by GR, TR, and PCGA, respectively. Columns 3—6 show 3: the number of defined PCGA and HCA responder groups, 4: the minimum correlation
and glk between PCGA responder chronologies, 5: the corresponding RRCSS (see section 2.2.3.) and 6: the average signal strength enhancement for

PCGA and HCA chronologies (see section 2.3.2.). Positive values in column 6 indicate that the responder chronologies explain more variance of the

underlying signal than the population master.
"both PCGA and HCA perfectly determined the three distinct responder groups

doi:10.1371/journal.pone.0158346.1001
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Fig 5. Evaluation plots for PP 2. (for a higher resolved image we refer to supplement S1 Fig). Upper left panel: Loadings of the PCA over
RWS coloured according to the PCGA gradient. Axis labels refer to PC relative importance. Three upper right panels: Detected gradients
plotted against known gradients for PCGA, GR, and TR, respectively. Headers of these panels reflect the correlation coefficient between
detected and true gradient. Mid left: grbar, plotted against Exrbar,, along the population gradient for both population margins (red and blue
lines). Both grbary, strongly suggest a population gradient as being well above Exrbar,, . Mid right: HCA dendrogram suggested defining two
responder chronologies which mostly correctly split RWS along the known gradient. Lower left: PCGA responder chronologies (coloured
curves) show a minimum correlation of 0.74 among each other. Two lower right panels: RWS signal correlations (small dots coloured
according to PCGA gradient) show a clear relationship with PCGA gradient. PCGA (coloured ‘¢’) and HCA (black ‘X’) responder
chronologies show equal signal correlations of which the marginal responder chronologies express higher correlations than the population

master (grey ‘+).

doi:10.1371/journal.pone.0158346.9005

For PP 4, GR failed to detect the gradient, while TR performed comparably well but was
superseded by PCGA (gradient r* being 0.00, 0.77, and 0.87 respectively). PCGA and HCA
both correctly determined the three sub-populations and thus showed exactly the same signal
strength enhancement. RRCSS ranged from 122 for the central chronology up to 157 for the
marginal responder chronologies. Summarizing, from our PP evaluations PCGA seems to be
capable of applications I-III mentioned in section 1.

3.2. Real world data

Statistics of the real world data evaluations are shown in Table 2, Figs 7 and 8 and S5-S8 Figs.
Here we focus on the case of BR:FO. For all four datasets, PCGA explained at least 50 percent
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Table 2. Evaluation statistics for the Alaskan data.
Site PC1 PC2 Age r? N (chrons) cor glk RRCSS [%] Ar?

PCGA HCA PCGA HCA

BR:FO 0.36 0.15 0.00 2 4 0.08 0.88 214/121 +0.10 +0.20
BR:FO' 0.36 0.15 0.00 4 4 -0.67 0.74 213/144/173 +0.22 +0.20
BR:TL 0.34 0.19 0.02 3 3 -0.32 0.85 150/152/178 +0.20 +0.16
DN:FO 0.57 0.13 0.13 4 5 -0.33 0.78 133-202 +0.12 +0.13
DN:FO' 0.57 0.13 0.13 5 5 -0.66 0.62 122-200 +0.13 +0.13
DN:TL 0.43 0.16 0.06 4 4 -0.15 0.79 123-239 +0.10 +0.08

Same statistics as in Table 1 but for the Alaskan data and with r2 of age on the gradient. Number of trees are 122, 52, 47, and 58 for BR:FO, BR:TL, DN:FO,
and DN:TL, respectively.
1 for these populations the minimum sample size of responder chronologies was adapted to match HCA responder chronology sample size,

doi:10.1371/journal.pone.0158346.1002
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Fig 7. PCGA plots for the Alaskan sites. PCA loadings coloured according to PCGA gradients for the four
Alaskan sites. At each site PCA loadings suggest ecological gradients supported by comparably high
explained variances on the first two PCs (values are given for each PC).

doi:10.1371/journal.pone.0158346.9007

of variance along the first two PCA axes (Fig 7). Resulting grbary indicated a significant gain of
signal strength for each site, supported by RRCSS > 120 and positive A r* of at least 10 percent
if compared to the population master.

When compared to HCA in the context of application III, PCGA responder chronologies
performed comparably well however with some specifications needed for the forest plots (see
S5 and S7 Figs). For BR:FO this is to be explained by the fact, that BR:FO seems to contain a
sub-population of only 5 specimens (cluster 4 in HCA). In contrast to HCA, PCGA responder
chronologies have a minimum sample size of 10 percent of the total population size (i.e. 12 for
BR:FO), wherefore the latter is not able to resemble this specific responder chronology. If
allowing for comparably low sample sizes in PCGA, the respective responder chronology is rec-
ognized and signal correlations perform comparably well (Fig 8 lower panels vs. mid panels,
Table 2). The same is to be observed for DN:FO for which HCA determined two clusters con-
sisting of 4 and 5 specimens respectively (S7 Fig).

Discussion
4.1. Comparing PCGA to other approaches

In our comparative evaluation (section 3.1.), we were able to show that PCGA in general was
able to detect population gradients, thereby meeting I and II (see introduction). In contrast,
GR and TR failed for particular PP. This is to be explained by the approach specific designs
which rely on linear growth trends over time. PP 2 and 4 were particularly designed to express
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doi:10.1371/journal.pone.0158346.9008

no linear growth trend over time (Fig 3). As PCA loadings reflect the inter-correlations of vari-
ables [25] which will identify contrasting RWS of any sort, PCGA allowed for successful detec-
tion of these gradients. For the Alaskan data, GR and TR were also able to define comparable-
though slightly differing-responder groups if focusing on specific periods (not shown) as also
shown by earlier investigations [7, 30]. However, for other periods or data which express spe-
cific behaviour, GR and TR~-in contrast to PCGA-will fail as indicated by our comparative
evaluation.

With respect to application III, PCGA and HCA performed equally well, expressed by simi-
lar signal strength enhancement in comparison to the population master. However, for BR:FO
and DN:FO, PCGA was only able to compete with HCA, if the minimum sample size of
responder chronologies was reduced below the threshold of 10 percent of the overall popula-
tion sample size. The reasons for this is, that HCA has no restrictions with respect to minimum
sample size, whereas we believe that such a threshold is meaningful to end up with statistically
representative responder chronologies. If overriding this threshold, PCGA detected equally
well performing responder chronologies. In terms of tree-ring based climate reconstructions
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(the main purpose of signal strength enhancement), it is rather unlikely that responder chro-
nologies with such low sample sizes (4-5) will allow for reliable climate reconstructions. An
option to deal with such underrepresented responder chronologies may be to define the causes
for their deviating growth trends. Here PCGA theoretically may be of help by correlating the
population gradient against internal and external variables (see II in section 1). If causes were
identified, additional tree-cores may be obtained specifically aiming at trees which represent
comparable conditions of the respective sub-population (e.g. extremely moist or dry sites).
Although HCA performed equally well with respect to responder chronology definition we
believe that PCGA is advantageous. Namely, as soon as it comes to an explanation of HCA sub-
populations, the obtained clusters will only allow for a category based exploration, for instance
using ANOVA or Kruskal Wallis test and their related post-hoc tests. The same (categorical
groups) holds for the PCA approach suggested by [23] as they defined groups according to high
loadings on the respective principal components. In contrast, PCGA allows for analyzing gradi-
ents along a continuum (as GR and TR, which have their own disadvantages as described
above) and therefore at a much higher resolution. Hence we conclude that PCGA combines the
advantages of other approaches in one single approach with no significant drawbacks.

4.2. Potential applications and limitations of PCGA

Our analyses clearly demonstrate the potential benefit of enhancing climate signals using
PCGA. As responder group definition is based on explorative tools (PCA) which are not
directly related to climate correlation analyses, this approach cannot be considered ‘cherry
picking’ [6]. In the mentioned context ‘cherry picking’ would be to choose RWS which show
highest correlations with environmental signals for reconstruction of those. In contrast, PCGA
defines statistically supported responder groups prior to climate correlation analyses and
reconstructions. We therefore consider PCGA with subsequent responder group definition to
be an objective means that allows for enhancing the strength of climate reconstructions in a
dendroclimatological context.

Beyond the enhancement of common signals, PCGA allows for exploring occurring popula-
tion gradients. If analyzing environmental data along PCGA population gradients, the reasons
for those gradients may be elucidated. In our PP the gradients were related to the gradual tran-
sition of two signals (see 2.1.1.) which always were correctly determined (high gradient r* in
Table 1). In the Alaskan examples we correlated age against the population gradient so see
whether the different growth trends were explainable by age related growth differences. Of
course any other tree-based metadata such as competition indices, tree size, micro-site topogra-
phy, soil properties, disturbance history, etc. could be used in this way to possibly explain
detected gradients. By this, it may also become possible to explain differing climate correla-
tions, which from a dendroecological point of view is of even higher interest than increasing
the strengths of environmental signals. From the arrangement of colours in our climate corre-
lation plots (lower right panels in Figs 5, 6 and 8) it becomes clear that climate correlation coef-
ficients are related to PCGA gradients.

As an example, responder groups from BR:FO expressed differing responder chronology
correlations with summer temperature and summer SPEI (see Fig 8). Although not being able
to explain these differences with the available metadata, these correlations may indicate
drought stress for the negative responder group which could be related to differing micro-site
soil properties. For the Denali we also found contrasting summer temperature as well as cur-
rent year winter SPEI correlations (S7 and S8 Figs). Although SPEI correlations were slightly
weaker as for the Brooks Range this may again point towards summer drought stress (although
not shown summer SPEI also showed significant correlations) and in addition winter snow
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cover—effects that theoretically could be explained by micro-topographical variations. By re-
sampling sites for respective metadata (soil properties and micro-topography) these hypotheses
could be tested for by correlating PCGA gradients against these data.

We want to stress that PCGA responder groups supported earlier findings [7], namely that
RWS responder groups reacted differently to a shift in the Pacific Decadal Oscillation around
1970 which resulted in warmer and drier conditions in interior Alaska [31, 32]. This possible
connection is supported by the summer SPEI correlations found for BR:FO and highlights
another potential application of PCGA, namely event detection. Our analyses suggest that
PCGA is able to detect different growth responses to particular disturbances (climate shifts,
storms, fires, calamities, management, etc.) after which specific trees may benefit from
decreased competition whereas others may suffer from the stressors which were responsible
for the disturbance.

In contrast to the shown examples, there may be cases where growth divergence emerges
abruptly and/or occurs with a certain delay to its cause(s). For instance groundwater with-
drawal after a dike establishment may lead to successively increasing drought stress of trees
growing on well drained soils, whereas trees from poorly drained soils hardly will be affected.
As groundwater—depending on climate and geological conditions-reacts slowly (several years
to decades), growth divergence may emerge much later than the actual event. In such case
identifying the causes of growth divergence may be difficult. A possibility to cope with this is
moving window PCGA. That is, PCGA is performed for several time-windows of equal size
(e.g. 30 years) along time to separate periods in which growth divergence was absent from peri-
ods with existing growth divergence. In the mentioned example one would expect no or only
weak population gradients before the dike establishment, whereas population gradients succes-
sively should become stronger after the event. Careful inspection of emerging population gradi-
ents over time then may allow for identifying the cause of abrupt growth divergence.
Respective results may be supported by moving window climate correlations of the detected
responder groups which in the mentioned example would indicate increasing drought stress
for trees growing on well-drained soils after the dike establishment.

Although PCGA appears powerful we want to stress the following important points. As
with all statistical explorative tools, results should be interpreted carefully and it should be
assured to take into account all potential causes for detected population gradients. With respect
to this, we pre-selected age cohorts to lower the probability of age related growth differences.
While this approach was successful for three of the four real-world sites, minor effects (r* =
0.13) of age on the PCGA gradient were observed for DN:FO. It is important to note that if
PCA loadings express strong variations with respect to distance to the origin of the rotation
matrix, this is a strong indication for substantial additional noise in the data. This will however
also be reflected in low explained variances of the first two principal components. In such case,
detected gradients and defined responder chronologies should be interpreted and used with
particular caution. Here, comparison with HCA-which however also will be affected by sub-
stantial noise expressed by short branches in the dendrogram-may support PCGA responder
chronology definition.

In the context of age related effects, trend removal within RWS (detrending)-a standard
procedure in dendro-climatology [1]-needs to be mentioned. We also applied PCGA to nega-
tive exponential detrended data with slightly differing but in general similar results. Le. also
there PCGA clearly detected responder groups and allowed for signal strength enhancement
(not shown). However, other detrending techniques such as polynomial functions (‘smoothing
spline’) which tend to remove also periodical trends delivered completely differing results, as
the decadal growth trends which cause the observed dissimilarities among RWS were removed
(not shown). Detrending is a highly debated topic in dendrochronology and we are aware of
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that to reconstruct climate without effects from age or size related RWS trends one should
make sure to account for these trends correctly. As the main aim of this methodological paper
is to present the performance of PCGA not only in dendroclimatological but also dendroecolo-
gical context, we presented the horizontal mean standardized data. This we did because differ-
ing absolute growth trends—whatever may be their cause—very well are of high interest to
dendroecologists. Concluding, when considering using PCGA, detrending will be a case-
dependent and carefully to choose decision.

A potentially limiting factor for PCGA is related to the sample size of responder groups. As
shown for the real world forest plots, responder groups equal to those from HCA were only
detected when lowering the minimum sample size threshold for definition of groups. While it
in the context of sub-population detection seems justified to define responder groups with low
sample size, it in terms of climate transfer functions is less likely that responder chronologies
with small sample sizes will deliver stable and thereby reliable climate reconstructions. There-
fore we want to stress the importance that one should carefully decide whether to work with
the defined responder chronologies and propose re-sampling of under-represented groups if
aiming at climate reconstructions.

Conclusions

In this methodological study we were able to show that a new approach-the Principal Compo-
nent Gradient Analysis (PCGA)-performed well and in particular situations (PPs 2, 4, and 4,)
better than other approaches (GR and TR) with respect to population gradient detection and
comparably well in comparison to clustering techniques (HCA) in the context of responder
chronology definition. In contrast to other relevant existing explorative tools [20, 23] PCGA
allows for detection of continuous gradients. Our analyses indicate that PCGA for the shown
scenarios is able to correctly identify population gradients and to enhance the strength of tree-
ring based climate reconstructions. In metaphoric words: PCGA correctly tunes the voices
within a choir. We therefore conclude that PCGA may be of particular interest both for den-
dro-ecologists and dendro-climatologists but potentially also for scientists beyond dendrochro-
nology working on population based data of comparable structure.

Supporting Information

S1 Fig. Evaluation plots for PP2. Upper left panel: Loadings of the PCA over RWS coloured
according to the PCGA gradient. Axis labels refer to PC relative importance. Three upper right
panels: Detected gradients plotted against known gradients for PCGA, GR, and TR, respec-
tively. Headers of these panels reflect the correlation coefficient between detected and true gra-
dient. Mid left: grbary plotted against Exrbar,, along the population gradient for both
population margins (red and blue lines). Both grbary strongly suggest a population gradient as
being well above Exrbar,,. Mid right: HCA dendrogram suggested defining two responder
chronologies which mostly correctly split RWS along the known gradient. Lower left: PCGA
responder chronologies (colored curves) show a minimum correlation of 0.74 among each
other. Two lower right panels: RWS to signal correlations (small dots coloured according to
PCGA gradient) show a clear relationship with PCGA gradient. PCGA (coloured ‘¢’) and
HCA (black X’) responder chronologies show equal signal correlations of which the marginal

responder chronologies express higher correlations than the population master (grey ‘+’).
(TTF)

S2 Fig. Evaluation plots for PP 3. For detailed explanations we refer to the caption of S1 Fig.
(TTF)
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S3 Fig. Evaluation plots for PP 4. For detailed explanations we refer to the caption of S1 Fig.
(TIF)

S4 Fig. Evaluation plots for PP 4,. For detailed explanations we refer to the caption of S1 Fig.
(TTF)

S5 Fig. Evaluations plots for BR:FO. Upper left: HCA dendrogram suggests selection of four
responder chronologies. Note, that cluster four only consists of five specimens. Upper right:
grbary clearly indicates signal strength enhancement at the margins of the population. Mid
left: PCGA extreme responder chronologies show strongly negative correlations with each
other. Mid right: PCGA and HCA responder chronology signal correlations are comparably
strong: see also Table 2. Lower left: Same as mid-left but here for the analyses where the mini-
mum sample size was adjusted to match HCA minimum sample size. Lower right: Same as
mid right but here for the analyses where the minimum sample size was adjusted to match
HCA minimum sample size.

(TIF)

S6 Fig. Evaluation plots for BR:TL. For detailed explanations we refer to S5 Fig.
(TTF)

S7 Fig. Evaluation plots for DN:FO. For detailed explanations we refer to S5 Fig.
(TTF)

S8 Fig. Evaluation plots for DN:TL. For detailed explanations we refer to S5 Fig.
(TIF)

S1 R Code.
(DOCX)
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