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Abstract
Background: Down syndrome (DS) is caused by trisomy 21 (+21), but the aberrations in gene
expression resulting from this chromosomal aneuploidy are not yet completely understood.

Methods: We used oligonucleotide microarrays to survey mRNA expression in early- and late-
passage control and +21 fibroblasts and mid-gestation fetal hearts. We supplemented this analysis
with northern blotting, western blotting, real-time RT-PCR, and immunohistochemistry.

Results: We found chromosome 21 genes consistently over-represented among the genes over-
expressed in the +21 samples. However, these sets of over-expressed genes differed across the
three cell/tissue types. The chromosome 21 gene MX1 was strongly over-expressed (mean 16-
fold) in senescent +21 fibroblasts, a result verified by northern and western blotting. MX1 is an
interferon target gene, and its mRNA was induced by interferons present in +21 fibroblast
conditioned medium, suggesting an autocrine loop for its over-expression. By
immunohistochemistry the p78MX1 protein was induced in lesional tissue of alopecia areata, an
autoimmune disorder associated with DS. We found strong over-expression of the purine
biosynthesis gene GART (mean 3-fold) in fetal hearts with +21 and verified this result by northern
blotting and real-time RT-PCR.

Conclusion: Different subsets of chromosome 21 genes are over-expressed in different cell types
with +21, and for some genes this over-expression is non-linear (>1.5X). Hyperactive interferon
signaling is a candidate pathway for cell senescence and autoimmune disorders in DS, and abnormal
purine metabolism should be investigated for a potential role in cardiac defects.
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Background
Trisomy 21 (+21) is the most common human chromo-
somal aneuploidy at term, and the only one with long-
term viability. This syndrome has attracted intense
research interest as a prevalent cause of mental retarda-
tion, and adults with DS develop pathological and neu-
ropsychiatric aspects of Alzheimer's disease as early as age
40. DS is also associated with phenotypes outside of the
central nervous system. Among these are cardiac septal
defects, autoimmune diseases, and signs of premature cel-
lular senescence including skin wrinkling. A unifying
explanation for the diverse features of DS is not apparent,
although they are presumably due to abnormal expres-
sion of specific sets of critical genes, both on chromosome
21 and, through gene-gene interactions, elsewhere in the
genome.

Attempts to define a DS "critical region" on chromosome
21 by correlating clinical phenotypes with the locations of
sub-chromosomal segments duplicated in individuals

with chromosome 21 unbalanced translocations have
been somewhat successful, but the critical region for the
complete syndrome still encompasses most of the q-arm
of this chromosome [1-3]. Simplistically, a 1.5-fold
increase in expression of multiple chromosome 21 genes
might be expected in DS, and gene expression in DS tis-
sues generally but not invariably correlates with gene dos-
age, with the most straightforward and best documented
correlations found not in primary human tissues, but in a
well-controlled segmental trisomy 16 mouse model of DS
[4-12], reviewed in [13]. An alternative hypothesis is that
there might be non-linear changes in expression of genes
on chromosome 21, and on other chromosomes, because
of gene-gene interactions in the pathological genetic back-
ground of +21. According to this model, genes non-line-
arly altered in their expression would be strong candidates
for contributing to the DS phenotype. Here we show data
relevant to these issues from a screen for altered gene
expression in early and late-passage fibroblasts and fetal
hearts with +21.

Differential gene expression in control vs. +21 fibroblastsFigure 1
Differential gene expression in control vs. +21 fibroblasts. Results from supervised hierarchical clustering of the U95A 
microarray data are shown; with statistical criteria for selecting the genes indicated at the top (ANOVA, see Methods). Genes 
(probe sets) are on the x-axis and samples are on the y-axis, with expression indicated by the color scale from 0 (blue) to 5 
(red), relative to the experiment mean. A, Data from early passage cells. As shown in the panel on the right, in which genes not 
on chromosome 21 have been blacked out, the set of over-expressed genes is enriched in genes on chromosome 21 and no 
genes on chromosome 21 are in the under-expressed set. B, Data from late passage cells. The MX1 gene is markedly over-
expressed as the +21 fibroblasts become senescent. See Tables 2 and 3 for the complete lists of differentially expressed genes.
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Methods
Cells, tissues and RNA
Five normal and six DS skin fibroblasts were obtained
from the American Type Culture Collection (Rockville,
MD), from Coriell Laboratories (Camden, NJ), or as de-
identified samples from the cytogenetics laboratory,
stored by the Columbia University Pathology Department
Tissue Bank. All of the cell were maintained and passaged
at a ratio of 1:4 in DMEM (Invitrogen, Carlsbad, CA) con-
taining 10% FBS (Sigma-Aldrich, St. Louis, MO). Cell
senescence was scored by activity of acid β-galactosidase
every 3 to 5 generations. Tissue from fetal hearts at 15 to
23 weeks gestation, from cases of +21 and controls, was
obtained as de-identified cryopreserved samples from the
Columbia University Pathology Department Tissue Bank.
Total RNA was prepared by a two-step procedure using
Trizol™ reagent (Invitrogen), followed by RNeasy (Qia-
gen, Valencia, CA) purification. This work was carried out
in compliance with the Helsinki Declaration: since the
human fibroblast and heart tissues were de-identified
samples, this study was not considered human subjects
research by the Columbia University Internal Review
Board.

Northern blotting
Total RNA was resolved on formaldehyde-containing aga-
rose gels and transferred to Nytran membranes (Sch-
leicher and Schull, Keene, NH). The probes for northern
blotting were partial cDNAs prepared from RT-PCR using
gene-specific primers. Hybridization was in ULTRAhyb
buffer (Ambion) at 42°C degrees. Probes were stripped by
boiling the membranes in 0.1 % SDS/0.1 × SSC for 2 min-
utes, or were allowed to decay without stripping.

Real-time RT-PCR
Total RNA, 2 µg, was reverse transcribed with oligo-dT
primers using Superscript version II reverse transcriptase
(Invitrogen). Quantitative real-time RT-PCR was per-

formed with the Master SYBR Green I system (Roche
Molecular Biochemicals, Mannheim, Germany) in a
LightCycler apparatus (Roche) with an initial denatura-
tion at 95°C for 30 seconds followed by multiple cycles of
denaturation at 95°C for 5 seconds, primer annealing at
62°C for 5 seconds, and extension at 72°C for 12 seconds.
LightCycler Software 4.0 (Roche) was used for data analy-
sis, with mRNA content determined from inflection
points of SYBR Green fluorescence plotted as a function of
cycle number. The following oligonucleotide primers
were used for the PCR reactions: GART, sense primer 5'-
CCATAGCTTTCCTCCAGCAG-3' and anti-sense primer 5'-
AGTTCCAACGCCATCTGTTC-3'; HPRT (housekeeping
gene control), sense primer 5'-TTGCTCGAGATGTGAT-
GAAGGA-3' and anti-sense primer 5'-TTCCAGTTAAAGT-
GGAGAGATCA-3'.

Western blotting
After boiling for 10 minutes in a denaturing solution con-
taining 12 mM Tri pH6.8, 5% glycerol, 0.4% SDS, 3 mM
2-mercaptomethanol, and 0.02% bromophenol blue, 30
µg of total protein lysates from +21 and control fibrob-
lasts were subjected to electrophoresis on SDS-denaturat-
ing 4–20 % polyacylamide gels (Invitrogen). After
transferring to the nitrocellulose membrane and blocking
by 5% milk, the membrane was hybridized with mouse
antibodies against p78MX1 or α-actin (Santa Cruz Biotech-
nology, Santa Cruz, CA) in a solution containing 0.1%
BSA, 0.1% Tween-20, and 3% dry milk overnight at 4°C.
After washing, the signal was amplified using a peroxi-
dase-conjugated goat anti-mouse IgG (Amersham Phar-
marcia Biotech, Piscataway, NJ) and was visualized using
a commercial ECL plus detection system (Amersham
Pharmarcia Biotech).

Microarray screening and data analysis
HGU95A GeneChips were purchased from Affymetrix
(Santa Clara, CA). Double stranded cDNA was generated

Table 1: Characteristics of cultured fibroblasts.

Cell Line Early Passage Late Passage

Passage no. Doubling time (d) beta-gal % pos. Passage no. Doubling time (d) beta-gal % pos.

DS1 13 2 <1 23 5.5 63.4
DS2 7 1 <1 12 19.5 37.2
DS3 4 2.5 <1 11 9 41.0
DS4 10 1.5 <1 14 8 47.5
DS5 3 5 nd nd nd nd
C1 12 2 <1 24 12 55.5
C2 9 1.5 6.7 15 21 63.3
C3 5 1.5 <1 11 9.5 46.2
C4 10 2.5 <1 14 4.5 34.0
C5 3 2 n.d. n.d. n.d. n.d.
C6 3 5 n.d. n.d. n.d. n.d.
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from 5 µg of total RNA using a poly-dT oligonucleotide
that contained a T7 RNA polymerase initiation site and
the Superscript Choice System Kit (Invitrogen). The cDNA
was phenol/chloroform extracted, and biotinylated cRNA
was generated by in vitro transcription using the Bio Array
High Yield RNA Transcript Labeling System (Enzo,
Farmingdale, NY). The cRNA was purified using RNeasy.
cRNA was fragmented according to the Affymetrix proto-
col, and 15 µg of biotinylated cRNA were hybridized to
U95A microarrays (Affymetrix). After scanning, the
expression values for each gene were determined using
Affymetrix GeneChip software v. 5.0. For each sample, the
signals for each gene (probe set) were normalized to the
values for the entire microarray, using GeneSpring soft-
ware (Silicon Genetics, Redwood City, CA). Statistical
analyses and automated clustering of the microarray data
were done using the Filter Genes and Gene Tree functions
of GeneSpring. For supervised analysis, we used ANOVA
to identify all genes that differed at p < .05 and, in a sepa-
rate analysis, at p < .01, in a given cell type (early-passage
fibroblast, late-passage fibroblast, fetal hearts) as a func-
tion of the presence or absence of +21. The resulting small
sets of genes were then further filtered for data quality by
requiring Affymetrix 'presence calls' (high-reliability
hybridization data) in at least 3 samples, and were filtered
a third time for magnitude of the differences in hybridiza-
tion signals by requiring at least 3 samples with signals
>1.2-fold above the experiment mean. We did not correct
statistically for multiple comparisons (i.e. 12,000 probe
sets queried in each experiment) since doing so would
reduce the statistical power far below the level needed to
detect changes in the 1.5-fold range. We used the Gene
Tree function to group the differentially expressed genes
according to the extent of similarity in their patterns of
expression across the samples, thereby separating the
genes into over-expressed and under-expressed clades.
Fold over-expression of each gene was calculated as the

mean of the normalized signals for the +21 samples
divided by the mean of the control samples.

Antibodies and immunohistochemistry
Sections of archival formaldhehyde-fixed scalp biopsies
were deparaffinized in xylene and hydrated through
graded ethanols. Antigen retrieval was carried out in 1 mM
EDTA buffer by boiling the slides in a microwave oven for
8 minutes at the maximum power and, sequentially, boil-
ing for 15 minutes at a reduced power. Endogenous biotin
was blocked by two steps of incubation for 10–20 min-
utes with egg white and 5% skim milk in 1× Tris-buffered
saline (TBS) containing 0.5% BSA and 0.1 % NaN3,
respectively. Between the two blocking step for biotin,
slides were treated with 0.3% hydrogen peroxide in 0.1%
NaN3 to block endogenous peroxidase activity. Slides
were washed three times in 1× TBS buffer containing 0.1%
Tween-20 (TBS-T) and then incubated with 5% of the
blocking serum for 30 minutes in a humidified chamber.
After 3 TBS-T washes, slides were hybridized with a mon-
oclonal antibody against p78MX1 at room temperature
overnight. After washing in TBS-T, slides were incubated
with biotinylated secondary anti-mouse IgG antibody
(Vector Laboratories, Burlingame, CA) for 30–40 minutes
at room temperature. Antigen-antibody complexes were
developed using the Vectastain ABC kit (Vector Laborato-
ries) and a chromogenic substrate, diaminobezidine
(Dako). Sections were lightly counterstained with hema-
toxylin. For assessing the effects of interferon in +21 con-
ditioned medium, we used a goat anti-beta-interferon
antiserum (Sigma-Aldrich).

Results
Expression profiling in early- and late-passage fibroblasts 
with and without +21
For mRNA expression profiling we used Affymetrix U95A
GeneChips, which query ~10,000 human genes (12,000

Table 2: Genes over-expressed in early passage +21 fibroblasts passing ANOVA at p < .01. Genes on chromosome 21 are in bold.

Affy ID Gene name Genbank Chromosome Description Fold change

36040_at SH3BGR AI337192 21q22.3 SH3 domain binding glutamic acid-rich protein 2.52
39366_at PPP1R3C N36638 10q23-q24 Protein phosphatase 1, regulatory subunit 3C 1.99
31840_at IDE M21188 10q23-q25 Insulin-degrading enzyme 1.98
34542_at GAPDH2 AJ005371 19q13 glyceraldehyde-3-phosphate dehydrogenase 2 1.93
37555_at PWP2 X95263 21q22.3 PWP2 periodic tryptophan protein homolog 1.92
36088_at DSCR2 AJ006291 21q22.3 Leucine-rich protein 1.74
34414_at KIAA0368 AB002366 9q31.3 mRNA for KIAA0368 gene 1.69
34367_at PHGDH AF006043 1p12 3-phosphoglycerate dehydrogenase 1.66
35776_at ITSN1 AF064243 21q22.1-q22.2 Intersectin 1 (SH3 domain protein) 1.56
32236_at UBE2G2 AF032456 21q22.3 Similar to UBC7; ubiquitin conjugating enzyme 1.50
39348_at HRMT1L1 X99209 21q22.3 HMT1 hnRNP methyltransferase-like 1 1.50
38942_r_at AD024 W28610 2q24.3 Kinetochore protein Spc25 1.45
40959_at PLEKHG3 AB011171 14q23.3 Pleckstrin homology and rho GEF family 1.38
32738_at NDUFS2 AF050640 1q23 NADH-coenzyme Q reductase 1.36
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oligonucleotide probe sets), including 108 unique genes
(143 probe sets) from chromosome 21. Data obtained
using these microarrays in our laboratory have previously
shown highly reliable correlations with independent
measures of gene expression, including northern blotting
[14,15]. We analyzed mRNA from an accessible cell type,
early- and late-passage fibroblasts, with and without +21.
The growth characteristics of the fibroblast cultures are
listed in Table 1. This table shows the percentages of cells
staining for acid beta-galactosidase, a marker that scores
positively in senescent cells and negatively in pre-senes-
cent cells. We first asked whether there might be strong
and widespread changes in gene expression due to the
extra copy of chromosome 21 in the early and/or in late
passage fibroblasts. Inspection of the results of non-super-
vised hierarchical clustering of the expression data argued
against this, since this procedure did not detect the pres-
ence or absence of +21 (data not shown). We therefore
did a supervised analysis of the data, attempting to iden-
tify small subsets of genes that might differ significantly in
their expression as a function of the presence or absence
of +21. As shown in Figure 1 and Tables 2 and 3, ANOVA
with a cutoff of p < .01 yielded small sets of genes that
were 'high in +21' or 'low in +21'. We repeated the
ANOVA using a less stringent cutoff of p < .05, and the
resulting larger gene lists are shown as supplemental
tables [see Additional file 1 and Additional file 2].

Several noteworthy features were seen in the expression
data from the early passage cells. First, genes on chromo-
some 21 were strikingly over-represented, relative to those
on other chromosomes, in the 'high in +21' set. The pro-
portion of chromosome 21 genes was 6/14 (43%) by
ANOVA at p < .01, Table 2, and 17/58 (29%) by ANOVA
at p < .05 [see Additional file 1]. By comparison, the ran-
dom expectation based on the number of genes on chro-
mosome 21 divided by the number of genes on all human
chromosomes represented on the microarray is only ~1%.
Second, no genes on chromosome 21 were present in the
'low in +21' sets. Third, in these early passage cells the

magnitude of the observed over-expression for most of
the genes in the 'high in +21' subsets was small, generally
within the range expected from gene dosage (1.5X) (Table
2 and [see Additional file 1]). These results indicate that
the cell cannot fully adjust for the presence of the extra
chromosome 21, i.e. at least some genes on this chromo-
some are not subject to compensatory down-modulation
in the trisomic early passage fibroblasts.

The interferon target gene MX1 is non-linearly over-
expressed in late passage fibroblasts with +21
The expression data in the late passage fibroblasts showed
similarities and differences compared to the results in the
early passage cells. Only a single chromosome 21 gene
passed the 1-way (single parameter, presence or absence
of +21) ANOVA test at p < .01 in these senescing cells, and
this gene, MX1, was over-expressed far in excess of the 1.5-
fold change expected from chromosome dosage in the
+21 fibroblasts (mean fold increase compared to control
fibroblasts = 16, Table 3). In addition to MX1, a second
closely related chromosome 21-linked gene, MX2, passed
the less stringent ANOVA at p < .05 [see Additional file 2].
The over-expression of MX1 in senescing +21 fibroblasts,
with progressively increasing expression with increasing
passage number, was verified by northern blotting (Fig.
2b,c). In normal fibroblasts, we observed a small increase
in MX1 expression at late passages, but these cells never
achieved the very high levels of MX1 mRNA seen in the
+21 lines (Fig. 2a–c). Accordingly, in 2-way ANOVA using
both p < .01 and p < .001 criteria, with the 2 parameters
of passage (early, late) and genetic characteristic (normal,
+21), the MX1 gene did not appear among the genes
whose mRNA levels were associated with senescence inde-
pendently of genetic characteristic, but did appear among
the genes whose mRNA levels were associated with the
presence or absence of +21. The gene list from the 2-way
ANOVA with a cut-off of p < .001 for differential mRNA
expression as a function of early vs. late passage, inde-
pendent of genetic characteristic, is provided as a supple-
mental table [see Additional file 3]. While we will remain

Table 3: Genes over-expressed in late passage +21 fibroblasts passing ANOVA at p < .01. Genes on chromosome 21 are in bold.

Affy ID Gene name Genbank Chromosome Description Fold change

37014_at MX1 M33882 21q22.3 Myxovirus resistance 1, interferon-inducible p78 16.02
37111_g_at PFKFB3 AB012229 10p14-p15 6-phosphofructo-2-kinase 2.26
32714_s_at ACVRL1 L17075 12q11-q14 activin A receptor type II-like 1 2.01
34157_f_at HIST1H2AL AI200373 6p22-p21.3 Histone 1, H2al 1.90
844_at PPP1R1A U48707 12q13.2 Protein phosphatase 1, regulatory subunit 1A 1.82
31559_at SLC13A2 U26209 17p13.2 Sodium-dependent dicarboxylate transporter 1.73
32811_at MYO1C X98507 17p13 Myosin IC 1.68
32980_f_at H2BFL AI688098 6p21.3 HISTONE H2B histone family, member L 1.68
35091_at NRG2 AA706226 5q23-q33 Neuregulin 2 1.64
40370_f_at HLA-G M90683 6p21.3 histocompatibility antigen, class I, G 1.57
32474_at PAX7 X96744 1p36.2-p36.12 Paired box gene 7 1.51
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focused primarily on the effects of +21 in this report, this
list of candidate general senescence-associated genes may
be useful for future studies.

The correlation coefficient for the level of MX1 mRNA
(GeneChip data) vs. the percentage of acid beta-galactosi-
dase-positive cells was 0.63 for normal fibroblasts and
0.72 for the +21 fibroblasts. Thus, MX1 expression was
correlated to cell senescence in both types of fibroblasts,
albeit with a stronger positive correlation in +21 com-
pared to control, and with a substantially greater magni-

tude of the increased expression in the +21 cells. In
addition, western blotting of total cellular protein indi-
cated that the excess of MX1 mRNA in these cells led to the
expected excess production of p78MX1 protein, and we
observed a good correlation between MX1 mRNA and
p78MX1 protein (Fig. 3a).

The MX1 gene is a well known target of type-I interferon
signaling, as is MX2 [16,17]. While the increase in MX1
mRNA was the most dramatic effect seen during +21
fibroblast senescence, re-probing of the northern blots

Over-expression of MX1 mRNA in fibroblasts with +21Figure 2
Over-expression of MX1 mRNA in fibroblasts with +21. A, Scatter plot of the GeneChip data for MX1, showing the 
range of expression of this gene in +21 and control fibroblasts at early and late passage. The data in this figure are from the 
control and +21 fibroblast lines at the passage numbers and percentage of cells positive for acid beta-galactosidase listed in 
Table 1. B, northern blots showing the over-expression of MX1 mRNA, particularly with increasing passage, in a +21 fibroblast 
line (DS1) compared to a control fibroblast line (C1). Passage number is indicated above each lane. Re-hybridization with a 
GAPDH cDNA probe is shown as a loading control. The blots were stripped and re-hybridized with an IFI27 cDNA probe, indi-
cating that this interferon-inducible gene also becomes over-expressed as the cells senesce; but with somewhat less differential 
expression than MX1. Similar northern blotting results were obtained with two other control and two other +21 fibroblast 
lines (data not shown). C, Quantitation of the northern blot signals by Phosphorimaging shows increasing MX1 mRNA (nor-
malized to GAPDH) as a function of passage number in +21 fibroblasts, with a more modest increase in control fibroblasts.
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with an additional interferon-inducible gene, IFI27,
revealed a weaker but parallel increase in mRNA expres-
sion (Fig. 2a). IFI27 showed a 9-fold mean increase in the
late-passage +21 fibroblasts in our microarray data, but
this gene was screened out by our data analysis protocol
due to an insufficient number of Affymetrix presence calls
(see Methods). Although IFI27 is not on chromosome 21,
the receptors for interferon alpha and beta are encoded by
genes on chromosome 21. While we did not detect
increased mRNA for these genes in our survey, fibroblasts
and other cells with +21 are known to express an
increased density of cell surface interferon receptors at the
protein level, and to be hyper-responsive to signaling by
exogenous interferon [18-24]. Gene-gene interaction,
namely the presence of an extra gene copy of both an
upstream and a downstream component of the inter-

feron-signaling pathway, is a likely explanation for the
non-linear over-expression of MX1 mRNA and protein in
+21 cells. Indeed, in early work the protein product of the
MX1 gene, p78MX1, was found over-expressed in two lines
of +21 fibroblasts, compared to control fibroblasts, after
these cells were exposed to exogenous interferon [25,26].
Our current data add to this information by showing
strong constitutive over-expression of MX1 in senescing
+21 fibroblasts, and we therefore wished to test whether
this increased expression might be maintained by auto-
crine interferon signaling. Consistent with this hypothe-
sis, conditioned medium from +21 fibroblast cultures
induced the expression of MX1 mRNA in control fibrob-
lasts, and this induction was attenuated by the addition of
anti-interferon-beta antibodies to the cell cultures (Fig.
3b).

Validation of p78MX1 over-expression in +21 fibroblasts by western blotting, correlation of p78MX1 protein with MX1 mRNA, and induction of MX1 mRNA in normal fibroblasts by interferon-beta present in +21 fibroblast-conditioned mediumFigure 3
Validation of p78MX1 over-expression in +21 fibroblasts by western blotting, correlation of p78MX1 protein with 
MX1 mRNA, and induction of MX1 mRNA in normal fibroblasts by interferon-beta present in +21 fibroblast-
conditioned medium. A, p78MX1 is over-expressed in +21 fibroblasts, directly correlating with MX1 RNA. The top two pan-
els show results from a western blot of proteins from whole-cell lysates of +21 (n = 4) and control (n = 3) fibroblasts at late 
passage. The blot was re-probed with anti-beta-actin is as a loading control. The bottom panel shows the relative MX1 RNA 
levels of all the samples from the GeneChip data, normalized to the value for the late-passage C1 fibroblasts. P, passage 
number. The excess of MX1 mRNA in these cells leads to the expected excess production of p78MX1 protein. B, conditioned 
medium from fibroblasts with trisomy 21 was added to the medium of control fibroblasts at the indicated proportions, either 
with our without the addition of anti-interferon beta antibodies. RNA was extracted after 24 hours and analyzed by northern 
blotting. Addition of anti-interferon almost completely abrogates the induction of MX1 mRNA by the +21 conditioned 
medium.
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Induction of p78MX1 in lesional tissue of alopecia areata
A previous genetic association study linked intronic poly-
morphisms in the MX1 gene to the inflammatory hair loss
disorder alopecia areata [27]. This condition has long
been recognized to have an increased (up to 90-fold)
prevalence in DS [28-31]. We therefore used immunohis-
tochemistry to assess the expression of p78MX1 in scalp
biopsies. In control scalp biopsies, p78MX1 expression was
restricted to the capillary endothelial cells (data not
shown). In both of two cases of sporadic alopecia areata

that we examined there was high expression both in
endothelial cells and in a subset of the infiltrating lym-
phocytes and in epithelial cells (outer root sheath cells
and matrix cells) of the inflamed hair follicles, with no
immunoreactivity in the adjacent uninvolved hair folli-
cles (Fig. 4a–c and data not shown). We did not have
access to alopecia areata biopsies from DS, but examining
such cases will be desirable in future studies.

Activation of p78MX1 in lymphocytes and epithelial cells in a case of alopecia areataFigure 4
Activation of p78MX1 in lymphocytes and epithelial cells in a case of alopecia areata. A, low power field of a scalp 
biopsy with alopecia areata, showing an inflamed hair follicle (arrow) (H&E). B, low power field of staining with anti-p78MX1 

showing positive cells in and around the inflamed hair follicle (solid arrow), but not in an uninvolved region of another hair fol-
licle (dashed arrow). Capillary endothelial cells stain throughout the dermis (asterisks). C, high power field of staining with 
anti-p78MX1, showing that the p78-positive cells are a subset of lymphocytes (arrow) and outer root sheath epithelial cells 
(ORS, lines), as well as matrix cells (M) around the dermal papilla (DP). The inner root sheath (IRS) does not stain. A second 
case of sporadic alopecia areata revealed a similar pattern of staining (data not shown). CTS = connective tissue sheath.
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The GART gene is non-linearly over-expressed in +21 mid-
gestation fetal hearts
A similar supervised analysis of microarray data from 5
fetal hearts with +21 compared to 8 control fetal hearts
matched for gestational age (mean G.A. in +21 cases =
16.8 weeks; mean G.A. in controls = 18.5 weeks, t-test p =
.2) also revealed a systematic over-expression of chromo-
some 21-linked genes in the +21 cases. Using ANOVA at a
cutoff of p < .01, among 37 genes in the 'high in +21' cat-
egory, 7 (19%) mapped to chromosome 21; while no
chromosome 21-linked genes were in the under-expressed
category (Fig. 5 and Table 4). Similarly, the statistical anal-
ysis of the microarray data for these samples at p < .05
showed 17/110 (15%) of the over-expressed genes map-
ping to chromosome 21, a proportion much higher than
the 1% expected from the overall gene representation on
this small chromosome [see Additional file 4]. The chro-
mosome 21 gene with the strongest over-expression in
this dataset was GART, encoding a metabolic enzyme with
three catalytic activities (phosphoribosylglycinamide
formyltransferase, phosphoribosylglycinamide syn-
thetase, phosphoribosylaminoimidazole synthetase),
which acts at several steps of purine biosynthesis [32]. In
addition, several other chromosome 21 genes, including
SH3BGR, encoding a coiled-coil and SH3 domain-con-

taining protein, were modestly over-expressed on average
in the +21 hearts (Table 4 and [see Additional file 4]).
GART mRNA, while not an abundant transcript, is detect-
able by northern blotting with prolonged exposures, and
we were able to verify the strong (non-linear) over-expres-
sion of this gene, and the modest over-expression of
SH3BGR mRNA, by northern blotting and Phosphorim-
aging in 3 of the hearts with +21 for which ample RNA
remained after the GeneChip experiment, compared to 4
control hearts closely matched for gestational age (Fig.
6a). This result was further confirmed by real-time RT-
PCR comparing GART mRNA expression (normalized to
mRNA from the HPRT housekeeping gene) in 4 of the +21
fetal hearts compared to 6 of the control fetal hearts from
our GeneChip series (Fig. 6b).

As seen by comparing Tables 2, 3, 4 and the supplemental
tables [see Additional file 1], [see Additional file 2], [see
Additional file 4], the genes differentially expressed as a
function of +21 in the fetal hearts did not overlap substan-
tially with the genes that were differentially expressed in
the early- or late-passage fibroblasts. The two exceptions
were SH3BGR, which was modestly (i.e. linearly) over-
expressed in the hearts and early passage fibroblasts with
+21, and MX2, which was modestly over-expressed in
both the hearts and the late passage fibroblasts. The lim-
ited overlaps between the gene lists from the supplemen-
tal tables are highlighted by the Venn diagram in Figure 7.
Among the few genes that appear in the regions of overlap
in this diagram, a strikingly large proportion map to chro-
mosome 21.

Discussion
A number of screens for altered gene expression in DS
cells and tissues, and in the segmental trisomy 16 mouse
models of DS, have been published over the past several
years. Analysis of mRNAs in brain is clearly of major inter-
est, but several prominent aspects of the DS phenotype
involve non-CNS tissues. Our analysis of gene expression
in fibroblasts and fetal hearts with trisomy 21 leads us to
a series of conclusions. First, the extra chromosome 21
does not cause widespread strong dysregulation of gene
expression. Second, genes on chromosome 21 are in fact
disproportionately over-expressed in the +21 cells com-
pared with genes on other chromosomes. So while regula-
tory feedback mechanisms are likely to exist, the data
make it clear that fibroblasts and fetal heart cells do not
completely compensate for this chromosomal aneu-
ploidy. A similar conclusion has been reached by other
groups studying the segmental trisomy 16 mouse [6,7,33].
Third, small subsets of genes on other chromosomes are
either over- or under-expressed in the setting of +21. We
have focused here on the over-expressed genes, but genes
that are down-modulated may also be biologically rele-
vant, and these genes are listed in the supplemental tables

Differential gene expression in control vs. +21 fetal heartsFigure 5
Differential gene expression in control vs. +21 fetal 
hearts. Tissue samples were obtained from fetal hearts at 15 
to 23 weeks gestation. Results from supervised hierarchical 
clustering of the U95A microarray data are shown; with sta-
tistical criteria for selecting the genes indicated at the top 
(ANOVA, see Methods) and the expression values displayed 
as in Figure 1.
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[see Additional file 1], [see Additional file 2], [see Addi-
tional file 4]. Fourth, the sets of genes differentially
expressed as a function of the trisomy differ in different
cell types. We found that the interferon-inducible MX1
gene is strongly (non-linearly) over-expressed in senesc-
ing +21 fibroblasts, and that the GART gene, encoding a
multifunctional enzyme in de novo purine biosynthesis,
is non-linearly over-expressed in mid-gestation fetal
hearts with +21. For MX1, non-linear over-expression can
be explained at least in part by the existence of more than
one interferon pathway component encoded on chromo-
some 21. We have also shown evidence for induction of
the MX1 gene product, p78MX1, in lesional hair follicle tis-
sue of a sporadic case of alopecia areata, an autoimmune
disorder that has an elevated frequency in DS. In terms of
these genes in the prior literature, Gart was found slightly
up-regulated in heart, kidney, and muscle of segmental
trisomy 16 mice at day 30 by 1.54, 1.68, and 1.83, respec-

tively [8,11], and in the expression profiling studies by
Kahlem et al. and Lyle et al., the murine Mx1 and Mx2
genes appeared among the limited set of chromosome 16-
linked genes (13 genes) found to have >2-fold over-
expression in several adult tissues at postnatal day 10 and
at 11 months in the segmental trisomy 16 mice [8,11].

MX1 encodes a large GTPase that forms organized mul-
timeric structures in the cytoplasm. This protein is a well
known interferon target gene, and studies both in cell cul-
ture and in vivo have documented that it is an essential
component of the antiviral response. How this antiviral
activity is exerted is not yet clear, and it appears that mul-
tiple steps in the viral life cycle are inhibited by p78MX1

[34]. But p78MX1 may also function outside of anti-viral
defense. A link between MX1 and sporadic alopecia areata
has been raised by a reasonably large genetic association
study, including 165 alopecia areata cases and 510 con-

Validation of strong over-expression of GART and moderate over-expression of SH3BGR mRNA in mid-gestation fetal hearts with +21 by northern blotting and real-time RT-PCRFigure 6
Validation of strong over-expression of GART and moderate over-expression of SH3BGR mRNA in mid-gesta-
tion fetal hearts with +21 by northern blotting and real-time RT-PCR. A, northern blot containing total RNA from 
control and +21 fetal hearts at 17 to 19 weeks gestation (3.0 to 3.5 cm heel-toe length) was hybridized with the indicated 
cDNA probes, with stripping of the blot between hybridizations. Arrows indicate the specific transcripts, and the dashes show 
positions of the 18S ribosomal RNA as a size marker. The ratio of GART and SH3BGR signals to that obtained with the GAPDH 
probe, as measured by Phosphorimaging, is shown below each lane. B, real-time RT-PCR analysis of GART mRNA in control 
and +21 fetal hearts. The values for GART mRNA were normalized to HPRT expression in each sample. Stages of development 
(heel-toe length) are color-coded.
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Table 4: Genes over-expressed in +21 fetal hearts (ANOVA p < .01). Genes mapping to chromosome 21 are in bold.

Affy ID Gene Name Genbank Chromosome Description Fold change

33455_at ALDOB X02747 9q21.3-q22.2 Aldolase B 4.56
32027_at PDZK1 AF012281 1q21 PDZ domain containing 1 3.99
39151_at PAPPA2 AL031290 1q23-q25 Pregnancy-associated plasma protein 3.47
425_at ISG12 IFI27 X67325 14q32 Interferon, alpha-inducible protein 27 3.47
38384_at GART X54199 21q22.11 Trifunctional metabolic enzyme (see text) 3.02
35692_at RIS1 AL080235 3p21.3 Ras-induced senescence 1 2.63
37202_at F2 J00307 11p11-q12 Prothrombin 2.15
36256_at LSAMP U41901 3q13.2-q21 Limbic system-associated membrane protein 2.10
36245_at HTR2B X77307 2q36.3-q37.1 5-hydroxytryptamine (serotonin) receptor 2B 2.05
34316_at RPS15A W52024 16p Ribosomal protein S15a 1.96
37871_at IAPP AMYLIN X68830 12p12.3-p12.1 Islet amyloid polypeptide (IAPP). 1.94
38201_at ECA39 U21551 12pter-q12 Branched chain aminotransferase 1, cytosolic 1.88
33203_s_at FREAC-4 U59831 5q12-q13 Forkhead related activator 4 (FREAC-4) 1.87
39248_at AQP3 N74607 9p13 Aquaporin 3 1.82
37399_at AKR1C3 D17793 10p15-p14 3-alpha hydroxysteroid dehydrogenase, type II 1.81
32486_at CKMM AC005781 19q13.2-q13.3 Creatine kinase, muscle 1.81
1574_s_at IL4 M13982 5q31.1 Interleukin 4 1.72
39674_r_at ECM2 AB011792 9q22.3 Extracellular matrix protein 2 1.72
38738_at SUMO3 X99584 21q22.3 SMT3 suppressor of mif two, homolog 3 1.66
36155_at SPOCK2 D87465 10pter-q25.3 Sparc/osteonectin, proteoglycan (testican) 2 1.63
31623_f_at MT1A K01383 16q13 metallothionein-I-A 1.61
32250_at CFH X07523 1q32 Complement factor H 1.61
40587_s_at EEF1E1 AF054186 6p24.3-p25.1 Eukaryotic elongation factor 1 epsilon 1 1.60
36107_at ATP5J AA845575 21q21.1 ATP synthase, H+ transporting, mitochondrial 1.55
201_s_at B2M S82297 15q21-q22.2 Beta-2-microglobulin 1.54
39767_at CCT8 D13627 21q22.11 Chaperonin containing TCP1, subunit 8 (theta) 1.53
37177_at CD58 Y00636 1p13 CD58 antigen, (LFA-3) 1.52
33358_at PPM1H W29087 12q14.1-q14.2 Protein phosphatase 1.52
36039_s_at SH3BGR X93498 21q22.3 SH3 domain binding glutamic acid-rich protein 1.51
34995_at CALCRL L76380 2q32.1 Calcitonin receptor-like 1.46
37231_at DLG7 D13633 14q22.3 Discs, large homolog 7 (Drosophila) 1.44
39005_s_at ZNF294 AB018257 21q22.11 Zinc finger protein 294 1.43
879_at MX2 M30818 21q22.3 Myxovirus (influenza virus) resistance 2 1.40
38066_at NQO1 M81600 16q22.1 NAD(P)H:quinone oxireductase 1.40
34667_at NFX1 U15306 9p13.3 Nuclear transcription factor, X-box binding 1 1.40
33834_at CXCL12 L36033 10q11.1 Chemokine (stromal cell-derived factor 1) 1.39
37264_at ZNF131 U09410 5p12-p11 Zinc finger protein 131 1.35

trols, which showed that the +9959 intronic polymor-
phism conveyed a 1.79-fold increase in risk [27]. Since
alopecia areata is about 90 times more frequent in DS
than in the general population, our findings that MX1 is
non-linearly over-expressed in +21 cells, and that this
gene is activated in inflamed hair follicles in alopecia
areata, add credence to MX1 as an alopecia areata suscep-
tibility locus. Clinical studies using high-dose interferons
to treat hepatitis and other conditions have reported alo-
pecia as a common side effect, so intense and prolonged
interferon signaling is clearly sufficient to produce alo-
pecia [35-40]. Additional work will be needed to deter-
mine whether p78MX1 is playing an effector role in the
arrest of the hair cycle in alopecia areata.

Our observation that MX1 mRNA is modestly upregulated
in normal fibroblasts during senescence is consistent with

a report by Yoon et al., who used a cDNA microarray to
screen for genes upregulated during replicative senes-
cence, in a panel of 3 normal human fibroblast lines [41].
Based on our finding that MX1 mRNA and p78MX1 protein
are much more strongly induced as +21 fibroblasts enter
replicative senescence, it will be interesting to study the
role of this gene, and of the interferon pathway more gen-
erally, in the process of premature aging and cell senes-
cence. Various aspects of premature aging have been
studied as phenotypes in DS [42,43], and premature skin
wrinkling is accepted as a genuine component of this syn-
drome [44]. However, whether +21 dermal fibroblasts
really show reduced replicative potential has been contro-
versial, and it has been easier to document deficiencies in
DNA repair than in replicative lifespan in +21 compared
to control fibroblast lines [45,46]. Relevant to this topic,
it has been reported that epigenetic silencing of multiple
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interferon-response genes, including MX1, occurs with
cellular immortalization in tissue culture [47], suggesting
that there is in fact a strong selective pressure to lose this
pathway in order for the cells to escape senescence.

Cardiac defects, notably atrioventricular defects due to
anomalous development of structures derived from the
endocardial cushions, are a major adverse consequence of
+21 [48-51], but the basis for abnormal heart develop-
ment in this condition has remained unclear. Molecular
candidates include proteins expressed in cardiac develop-
ment that are encoded by chromosome 21 genes, such as
the adhesion protein gene DSCAM, collagen VI (COL6AI
and COL6A2 genes), the calcineurin pathway modulator
DSCR1, the SH3BGR gene, and others [52-61]. Of these
genes, SH3BGR was over-expressed on average in the +21
fetal hearts in our series, while DSCAM and the collagen
VI genes were not (DSCR1 was modestly over-expressed,
[see Additional file 4]). These negative findings do not
exclude these genes as important loci: for example, we
sampled large pieces of heart tissue, but COL6AI mRNA is
known to be abundant only in the normal endocardium

and endocardial cushions [57,60,62] and its over-expres-
sion in +21 fetal hearts might only be evident after tissue
microdissection. In fact, while this paper was under
review, Mao et al. reported COL6A1 mRNA elevated 1.4-
fold in comparing 3 fetal hearts with +21 to 3 control fetal
hearts, all dissected to enrich for the area of the atrio-ven-
tricular valves and septum, using a microarray method
similar to ours [63]. It can also be argued that minimal
over-expression over an extended time in development, or
strong over-expression in a narrow time window, could
have significant biological effects. Nonetheless, our posi-
tive data highlight another gene, GART, which might con-
tribute via its strong over-expression to cardiac defects in
DS. Purine biosynthesis can affect intracellular nucleotide
pools as well as purinergic signaling between cells and it
will be interesting to explore the functional role of GART
in heart development. Why this gene should be non-line-
arly over-expressed is not yet clear, but a previous study
using western blotting documented the relative over-
expression of the GARS-AIRS-GART protein in post-natal
cerebellum in human DS and, interestingly, found that
this over-expression was due to the failure of a normal
program of GART silencing during cerebellar maturation
[64]. Examination of additional cases over a wider range
of gestational age will be needed to ask whether the over-
expression of GART in +21 fetal hearts also reflects aber-
rant developmental regulation.

Gene expression measurements are only circumstantial
evidence, and transgenic experiments in mice [53,55],
including the recently reported whole human chromo-
some 21 transfer model [65], will be necessary to sort
through each of these candidate genes for their functional
relevance. Cardiac defects associated with +21 have been
reported in mice engineered to carry human chromosome
21 [65-67], and this system may prove useful for further
dissecting the genetics. The other important approach,
genetic mapping using partial trisomies in humans, has
led to evidence that the DSCAM gene may be in a critical
region for Tetralogy of Fallot [52,54]. GART (34 Mb on
the physical map) is located substantially centromeric to
DSCAM (41 Mb), outside this region.

From a more general viewpoint, our data and those from
other laboratories cited above clearly show that human
and mouse cells and tissues do not effectively compensate
for simple chromosomal aneuploidies, and that this lack
of compensation manifests as abnormal steady-state
mRNA levels from different sets of genes in different cell
types and tissues. For some genes the perturbations in
mRNA expression resulting from these simple chromo-
some gains are non-linear, and it may be a general princi-
ple that this phenomenon can be explained by gene-gene
interactions, as exemplified here by MX1 and other genes
in the interferon pathway.

Venn diagram showing the limited overlap of the over-expressed genes in the three cell types/tissues analyzed in this studyFigure 7
Venn diagram showing the limited overlap of the 
over-expressed genes in the three cell types/tissues 
analyzed in this study. The total numbers of genes are 
indicated, with the number of genes mapping to chromo-
some 21 shown in parentheses.
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Conclusion
Our results indicate over-expression of chromosome 21
genes in human cells and tissues with +21, and highlight
different subsets of chromosome 21 genes as selectively
over-expressed in different cell types. Our data further
indicate that for some chromosome 21 genes this over-
expression is non-linear (>1.5X). Based on the observed
non-linear over-expression of MX1 mRNA and p78MX1

protein in senescent fibroblasts with +21, and the over-
expression of p78MX1 in inflamed hair follicles of alopecia
areata, hyperactive interferon signaling is a candidate
pathway for cell senescence and autoimmune disorders in
DS. Additionally, the strong over-expression of the GART
gene that we observe in fetal hearts with +21 suggests that
abnormal purine metabolism should be investigated for a
potential role in the cardiac defects associated with DS.
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