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Picobirnaviruses (PBVs) are bisegmented double-stranded RNA viruses that have been

detected in a wide variety of animal species including invertebrates and in environmental

samples. Since PBVs are ubiquitous in feces/gut contents of humans and other animals

with or without diarrhea, they were considered as opportunistic enteric pathogens of

mammals and avian species. However, the virus remains to be propagated in animal

cell cultures, or in gnotobiotic animals. Recently, the classically defined prokaryotic

motif, the ribosomal binding site sequence, has been identified upstream of putative

open reading frame/s in PBV and PBV-like sequences from humans, various animals,

and environmental samples, suggesting that PBVs might be prokaryotic viruses. On

the other hand, based on the detection of some novel PBV-like RNA-dependent RNA

polymerase sequences that use the alternative mitochondrial genetic code (that of mold

or invertebrates) for translation, and principal component analysis of codon usage bias for

these sequences, it has been proposed that PBVs might be fungal viruses with a lifestyle

reminiscent of mitoviruses. These contradicting observations warrant further studies to

ascertain the true host/s of PBVs, which still remains controversial. In this minireview,

we have focused on the various findings that have raised a debate on the true host/s

of PBVs.
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INTRODUCTION

Picobirnaviruses (PBVs) are bisegmented double-stranded RNA viruses that belong to the sole
genus Picobirnavirus within the family Picobiraviridae (1). Picobirnaviruses have been widely
reported in fecal samples/gut contents of humans and various animal species with, or without
diarrhea (1–3). Traditionally, PBVs are considered as opportunistic enteric pathogens of mammals
and avian species (1–5). On the other hand, PBVs have also been detected in invertebrates and
environmental samples (6–9). During the past few years, the whole genomes, or at least the
complete/nearly complete gene segment-2 sequences of several PBV strains from humans, different
animal species and environmental samples have been obtained using next generation sequencing
technologies, or a modified non-specific primer-based amplification method (1, 4, 6–8, 10–20).
Analyses of the expanded repertoire of diverse full-length/nearly full-length PBV sequences
revealed remarkable features in the PBV genome including those that suggest that PBVs might
be actually prokaryotic or fungal viruses (1, 4, 6–8, 10–21). In this minireview, we have discussed
the various findings that have raised a debate on the true hosts of PBVs.
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PICOBIRNAVIRUS MORPHOLOGY AND
GENOME

Picobirnaviruses are spherical, non-enveloped viruses with a
diameter of ∼33–37 nm (1). Since PBVs are non-cultivable,
information on the virus capsid is based on those of recombinant
virion-like particles (22). PBV possess a simple icosahedral capsid
that is composed of 60 symmetric dimers (22). The PBV capsid
contains two segments of dsRNA, designated as gene segment-
1 (∼2.2–2.7 kb in size) and −2 (∼1.2–1.9 Kb in size) (Figure 1)
(1–3, 5). Because of their small size (“pico” in Spanish) and
bi-segmented (“bi” in Latin) nature of the viral genome, the
viruses were named “Picobirnaviruses” (23). However, PBVs with
monopartite genomes have also been reported in a few studies
(6, 24, 25).

The gene segment-1 of PBVs consists of 2 or 3 open reading
frames (ORFs), designated as ORF1, ORF2, and ORF3 from
the 5′- end (Figure 1) (1, 13). The ORF3 codes for a precursor
of the capsid protein which undergoes autocatalytic cleavage
to generate the mature capsid protein, and a charged peptide
that is believed to interact electrostatically with the viral RNA
(22). The ORF2 encodes a protein characterized by repeats of
the ExxRxNxxxE motif (1, 26). However, the function/s of this
protein is not yet known. On the other hand, the functionality,
or even the presence of ORF1 in gene segment-1 of PBVs
remain to be elucidated (1, 13, 26). The PBV gene segment-2
possess a single large ORF that encodes the RNA-dependent RNA
polymerase (RdRp) (Figure 1) (1–3, 5). The 5′- (GUAAA) and 3′-
(ACUGC) termini sequences appear to be conserved in the gene
segment 2 of PBVs (1, 10, 14–20). The PBV RdRp catalyzes RNA
synthesis with both single-stranded RNA and dsRNA templates,
and transcription occurs in a semi-conservation manner (27).
During encapsidation, the RdRp is believed to form a complex
with the viral genome (27).

Picobirnaviruses exhibit high genetic diversity within
and between host species (1–5, 10–18, 24, 28–30). A viral

FIGURE 1 | The genomic organization of human picobirnavirus genogroup-I strain Hy005102. (A) Gene segment-1 (GenBank accession number AB186897) of PBV

strain Hy005102 consists of 3 putative open reading frames (ORF), designated as ORF1, ORF2 and ORF3. The ORF3 codes for a precursor of the viral capsid protein.

(B) Gene segment-2 (GenBank accession number AB186898) of PBV strain Hy005102 possess a single ORF that encodes the viral RNA-dependent RNA

polymerase (RdRp).

metagenomics study in diarrheic free-ranging wolves has
provided evidence for genetic reassortment events among PBVs
(31). Most studies on genetic diversity of PBVs are based on gene
segment-2/RdRp sequences (2–5). The phylogenetic analysis of
PBV RdRp sequences has been shown in Figure 2. Majority of
the PBV RdRp sequences reported so far use the standard genetic
code for translation, whilst, recently, some novel PBV-like RdRp
gene sequences that use an alternative mitochondrial genetic
code have been detected in bats, humans, invertebrates, and a
mongoose (6, 11, 12, 14). Picobirnaviruses using the standard
genetic code cluster separately from PBVs using the alternative
mitochondrial genetic code (12, 14). However, three PBV-like
RdRp sequences (from a bat, a mongoose and a myriapod) that
use an alternative mitochondrial genetic code were found to
cluster with PBVs using the standard genetic code (12, 14). These
unique PBV-like RdRp sequences have been discussed in the
section “evidence that picobirnaviruses might infect fungi” of the
review article. Within the cluster of PBV RdRp sequences using
the standard genetic code, PBVs are further classified into two
genogroups (genogroup-I (GI) and GII), although several PBVs
that could not be classified into either genogroup have also been
reported (1–5, 10–20, 24, 29, 30). Picobirnavirus GI strains have
been more frequently detected compared to GII strains (2, 3, 5).

PICOBIRNAVIRUS INFECTION IN HUMANS
AND ANIMALS

Picobirnavirus infection in humans and animals have been
excellently reviewed by Ganesh et al. (2) and Malik et al. (3).
Picobirnaviruses have been detected in sporadic cases of diarrhea
as well as associated with outbreaks of gastroenteritis in humans
and in a wide variety of animals (1–3, 5). They are often
reported in coinfection with other enteric pathogens (1–5, 32–
34). On the other hand, PBVs have also been frequently detected
in apparently healthy humans and animals without diarrhea
(1–3, 5, 14, 15, 18).
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FIGURE 2 | Phylogenetic analysis of the picobirnavirus (PBV) and PBV-like RNA-dependent RNA polymerase (RdRp) sequences. The phylogenetic tree was

constructed by the Maximum Likelihood method using the MEGA6 software. Phylogenetic distances were measured using the LG + G model of substitution. The tree

was statistically supported by bootstrapping with 500 replicates. Bootstrap values <70% are not shown. Scale bar, 0.5 substitutions per amino acid. The name of the

PBV strain includes virus/host of detection/country/common name/date of collection. GenBank accession numbers are shown in parentheses. Pink circle: prototype

PBV genogroup-I (GI) strain; green circle: prototype PBV GII strain; purple triangles: PBV-like viruses that use an alternative mitochondrial genetic code to translate the

RdRp and cluster separately from PBVs using the standard genetic code; red triangles: PBV-like strains that use an alternative mitochondrial genetic code to translate

the RdRp, yet cluster within PBVs using standard genetic code.
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Based on studies in immunocompromised and
immunosuppressed humans, PBVs were considered as
opportunistic enteric pathogens (2, 3). PBVs have been reported
more frequently in HIV-infected patients with diarrhea than
those without diarrhea (35–38), and in fecal samples from kidney
transplant patients (39, 40). In organ transplant recipients, PBVs
were predictive of the occurrence of severe enteric graft-vs.-host
disease (GVHD), and correlated with the high levels of GVHD
severity markers in feces (41). Recently, it was demonstrated that
pregnant women with type 1 diabetes (T1D) are more likely to
harbor PBVs than those without T1D (42).

Prolonged fecal shedding of PBVs, characterized by
alternating periods of high-, low-, and no- virus detection,
have been observed in asymptomatic animals, and in healthy
and HIV-infected humans (35, 38, 43–50). Various factors, such
as age, stress, physiological status and environmental conditions
have been proposed to influence the PBV shedding patterns
in infected humans and animals. In studies monitoring PBV
shedding patterns in animals, highest excretion rates were
observed during the lactogenic period in pigs and sheep, whilst
increased viral shedding occurred at a young age in rabbits
(weaned), broilers (aged 2–7 weeks) and rhea (∼3 weeks of age)
(44, 46, 49, 51, 52). Based on these observations, it has been
suggested that animals could acquire PBV infection early in life,
followed by establishment of persistent infection, with infected
adults serving as asymptomatic carriers (2, 3, 5).

Although mostly reported in feces/gut contents, PBVs have
also been detected, albeit rarely, in the respiratory tract of
humans (from individuals with unexplained respiratory disease
in Netherlands and cases of severe acute respiratory infection in
Uganda) and animals (asymptomatic cattle, monkeys and pigs)
and in the plasma of a febrile horse, suggesting an expanded tissue
tropism of the virus (10, 24, 53–55).

PBVs exhibit high genetic diversity between and within
host species, and phylogenetically, species specific clustering
patterns have not been observed so far (1, 4, 10–18, 24, 28–
31). Nevertheless, based on sequence identities and phylogenetic
analysis, interspecies transmission events including zoonoses
have been proposed for PBVs, although several of these studies
were based on partial gene segment-2 sequences and are not
conclusive (2–5, 11, 40, 43, 53, 56–60).

EVIDENCE THAT PICOBIRNAVIRUSES
MIGHT INFECT PROKARYOTES

One of the intriguing recent findings on PBVs has been the
identification of a classically defined prokaryotic motif, the
ribosomal binding site (RBS) sequence (also known as Shine-
Dalgarno sequence), upstream of putative ORF/s in PBV gene
segment-1 and−2 sequences (Table 1) (13, 21). In prokaryotes,
the RBS sequence (AGGAGG), or its subset (4-, 5-, or 6- mer
of AGGAGG) enables the mRNA to bind to ribosome, resulting
in initiation of translation, and is mostly located anywhere
between −18 and −4 nucleotides upstream from the start
codon (21, 61–63). Certain viruses that infect prokaryotes have
been shown to be highly enriched for RBS sequences, such as

the bacteriophages with segmented dsRNA genomes of family
Cystoviridae (13, 21, 64, 65). Similar to prokaryotic mRNAs and
the cystoviruses, the RBS sequence, or its subset has been found
to be conserved upstream of putative ORF/s (putative ORF1, 2
and 3 in gene segment-1 and putative ORF for RdRp in gene
segment-2) in published PBV sequences from humans, animals
and environmental samples (4, 7, 8, 11–18, 21). The presence of
the conserved prokaryotic RBS sequence upstream of the putative
start codon/s in representative PBV gene segment-1 sequences,
gene segment-2 sequences of PBV GI and GII strains, and PBV-
like RdRp sequences are shown inTable 1. In fact, PBVs exhibited
an enrichment level for RBS sequences that was higher than those
observed in any known prokaryotic viral family (21). Based on
these observations, it has been proposed that PBVs might be
actually prokaryotic viruses (13, 21). Since not all prokaryotic
viruses appear to retain the prokaryotic RBS sequence, and not
every bacterial phylum exhibits a high level of enrichment for
RBS sequences, it has been hypothesized that viruses enriched for
RBS sequences, such as PBVs, were more likely to infect bacteria
that highly conserves the RBS sequences for its own genes (21).

Supporting the hypothesis on prokaryotic hosts, PBVs remain
to be successfully propagated in eukaryotic cell cultures (1).
However, previous experiences with adapting enteric viruses,
especially noroviruses to cell culture have been extremely
challenging (66). Furthermore, the lack of a cell culture platform
in itself does not rule out the possibility that PBVs are animal
viruses. Recently, attempts were made to cultivate PBVs in
prokaryotic cells by inoculating 3% cloacal suspension from
a PBV positive chicken into brain heart infusion broth (13).
The in vitro cultures were maintained under aerobic and
anaerobic conditions for 2 weeks, and regularly monitored
for PBV RNA by RT-qPCR assay. There was no evidence for
amplification of PBVs during the study period. Since the sample
was collected and frozen long-term to analyze viral nucleic acid
rather than maintain bacterial diversity or retain viral infectivity,
it might have been possible that the number of cultivable,
intact bacteria as well as the low initial infective particles were
significantly decreased. However, in the same study, expression
analysis in Escherichia coli using 6xHis-tagged recombinant
PBV segment-1 and western blot assay revealed the in vivo
functionality of PBV segment-1 sequences containing the RBS
motif in a bacterial system (13). The ubiquitous nature of PBVs,
especially high prevalence of the virus in environmental samples
including sewage water and detection of viral RNA in feces/gut
contents from a wide variety of animal species including atypical
hosts such as reptiles and invertebrates, and persistent fecal
shedding by asymptomatic animals, suggest that PBVs might be
prokaryotic viruses of the gut microbiome (1–3, 6–9, 43–52).

On the other hand, certain observations with PBVs are
reminiscent of eukaryotic viruses, such as (i) viremia in a
sick horse and respiratory tract infections in cattle, humans,
monkeys and pigs, (ii) immune response in a rabbit that
was temporally associated with PBV excretion, and (iii)
autoproteolytic processing of the PBV capsid protein and
liposome-perforating capacity of viral particles (10, 22, 24, 53–
55, 67). However, similar findings have also been reported for
bacteriophages:(i) bacteriophages have been detected in blood
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TABLE 1 | The location of the prokaryotic ribosomal binding site (RBS) sequence upstream of the putative open reading frame/s (ORF) in picobirnavirus (PBV) and

PBV-like sequences.

Host/PBV strain PBV gene segment-1

GenBank

accession

number

5′- UTR of putative ORF-1 5′ -UTR of putative ORF-2 5′ -UTR of putative ORF-3

(ORF3 codes for the Capsid)

(A) PBV GENE SEGMENT-1

Human/Hy005102 AB186897 GAAGGAGAGATGTTATGAA AAAGGAGGTTATTTAATGAC GCAGGAGGTTTATCATGAA

Pig/221/04-16/ITA/2004 KF861770 AAAGGAGAATGATCTAACATGAA TAAGGAGGTGAAAGTTATGCT ATGGAGGCTAATATGAA

Otarine/PF090307 KU729753 AAAGGAGATGTGCATTTTTAATGGA AAAGGAGGAAATGTATGAC AAAGGAGTGTTTAATATGTC

Roe

deer/SLO/D38-14/2014

NC_040752 GAAGGAGGAGATGCT AAAGGAGGACACAGTTTCATGAC TAAGGAGAATATTACAAATGAA

Wolf/PRT/891/2015 KT934310 AAAGGAGGAACTTATGTGTAGTAA AAAGGAGGAATGCA AAAGGAGACCATTAATAATGGC

Marmot/c130145_g1_i1

_libraryA_2712

KY928752 AAAGGAGGACTGTTGGAATGTT AAAGGAGGTCATGTA AAAGGATTTATTATCATGAG

Rabbit/ R5-9 NC_038919 ATAGGAGGAAGTGCTTATGAAACATGCA AAAGGAGGTGTCAATGGTATGAC CTAGGAGGTAAAATATGAA

Macaque/WUSTL MG010886 AAAGGAGAACAGATCATGGT AAAGGAGGAAACGTTTATGAC CTGGAGAAAATTATGAG

Chicken/ChPBV-S1-

ctg289/2013-HUN

MH425579 AAAGGAGGAATCAGTGTTTTATGGA AAAGGAGGTATATAATGAC ATAGGAGGAATAAATATGAA

Turkey/USA/MN-1/2011 KJ495689 AAAGGAGGCGTACGTAATGGT CAAGAAAGGAAGTGACAAACATGAC TTGGAGGAATTATCGATGGG

Host/Genogroup/PBV strain PBV gene segment-2 Host/Genogroup/PBV

strain

PBV gene segment-2

GenBank

accession

number

5′-UTR of putative ORF

(ORF codes for the RdRp)

GenBank

accession

number

5′ -UTR of putative ORF

(ORF codes for the RdRp)

(B) PBV GENE SEGMENT-2

Human/GI/Hy005102 AB186898 AAAGGAGGACTACTTATGCA Marmot/GI/c299351 KY928717 AAAGGAGGTTCACGTTATGCC

Pig/GI/221/04-16/ITA/2004 KF861773 AAAGGAGGCTAAGCATTATGCC Rat/GI/Rat9 MH412924 AAAGGAGGCTTTTCTATATGCC

Otarine/GI/PF090307 KU729767 AAAGGAGGCCATTACAATGCC Shelduck/GI/MW26 MH453875 AAAGGAGGCTATCTTTATGCC

Roe deer/GI/SLO/D38-14/2014 NC_040753 AAAGGAGGTTATCGTTATGCC Chicken/GI/ChPBV-S2-

ctg1042/2013-HUN

MH425584 AAAGGAGGTAATGCTTATGCT

Dog/GI/RVC7 KY399057 AAAGGAGGTTCACATTATGCC Turkey/GI/USA/MN-1/2011 KJ495690 AAAGGAGGTCATTCATGTATGAA

Cat/GI/K40 MF071281 AAAGGAGGTCGCGTAATGCC Human/GII/4-GA-91 AF246940 AAAGGAGGTTTACTATGAA

Cow/GI/RUBV-P GQ221268 AAAGGAGGACTACAAAATGTC Cow/GII/C372N KY120178 AAAGGAGGTTTACTATGAA

Horse/GI/Equ2 KR902505 AAAGGAGGTTACGTTATGCC Pig/GII/CYZ-II-1 KP984805 AAAGGAGGTTTACTATGAA

Water skink/GI/ZGLXR71534 MG600064 AAAGGAGGACATTAGATATGTC Mongoose/ND/M17A MN563302 TCAGGAGGTTAGTTTCTTGTGAT

Wolf/GI/PRT/1109/2015 KT934308 AAAGGAGGTCCGTTATGCC Myriapoda/ND/WGML128211 KX884187 AAAGGAGTTTTACTATGAG

Simian/GI/016593 KY053143 AAAGGAGGCCATCATTATGCC Bat/ND/P15-218 MG693102 AAAGGAGGAAACAAGAATGCC

Mongoose/GI/M17B MN563301 AAAGGAGGTTCACGTTATGCC Hermit

crab/ND/BHJJX25000

KX884060 AGAGAGGGATATCTAATGAA

The RBS sequence is underlined, whilst the putative start codon is shown with bold font, respectively. The PBV-like sequences that use an alternative mitochondrial genetic code for

translating the putative RNA-dependent RNA polymerase (RdRp) are shown with italics. UTR, untranslated region.

(phagemia) and respiratory samples, (ii) immune responses have
been raised against prokaryotic viruses, and (iii) autoproteolytic
capacities have been demonstrated for bacteriophages (68–72).

EVIDENCE THAT PICOBIRNAVIRUSES
MIGHT INFECT FUNGI

The recent detection of unique PBV-like sequences that lack a
putative ORF for RdRp using the standard genetic code, but
use an alternative mitochondrial genetic code for translation

has further complicated the ongoing debate on true hosts of
PBVs (6, 11, 12, 14). These PBV RdRp-like sequences have
been detected in bats, humans, invertebrates (crustaceans
and myriapods), and a mongoose (6, 11, 12, 14). The human
PBV-like RdRp sequences were closely related (99% sequence
identities) to that of a bat PBV-like RdRp sequence detected
in the same region (11). The PBV-like RdRp sequences
were found to translate the putative RdRp using the invertebrate
mitochondrial genetic code (transl_table=5, NCBI genetic codes,
www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi#SG5)
as well as the mold mitochondrial genetic
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code (transl_table=4, NCBI genetic codes,
www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi#SG4)
(6, 11, 12, 14). Based on phylogenetic analysis of the PBV-
and PBV-like RdRp sequences, except for three PBV-like
strains (Lysoka PBV-like virus/Bat/CMR/P16-366/2014, Hubei
PBV-like virus 3/Myriapoda/CHN/WGML128211/2013, and
PBV-like virus/Mongoose/KNA/M17A/2017), the PBV-like
RdRp sequences formed a separate cluster that was distinct
from the PBVs using standard genetic code including PBV GI
and GII strains (Figure 2) (6, 11, 12, 14). The metagenomics
data pool reporting these PBV-like RdRp sequences did not
reveal any PBV-like capsid sequences (6, 12). Based on these
observations, it has been proposed that the PBV-like strains
using the alternative mitochondrial genetic code might have a
lifestyle that is reminiscent of mitoviruses (12).

Mitoviruses (genus Mitovirus, family Narnaviridae) are plus-
stranded RNA virus-like elements that replicate in the fungal
mitochondria, although they have also been reported in
plants and invertebrates (thought to be derived from fungal
symbionts) (73–75). Mitoviruses lack a capsid, and the viral
genome consists of a single long ORF that encodes a deduced
protein with the conserved motifs of a viral RdRp. Principal
component analysis of the codon usage bias revealed close
clustering of the PBV-like RdRp sequences from bats and
invertebrates with those of mitoviruses using the mitochondrial
genetic code, corroborating the hypothesis that PBVs might
behave like mitoviruses (12). By phylogenetic analysis of RdRp
sequences from different virus families, PBVs and partitiviruses
(known to infect fungi and plants, and share similarities in
capsid architecture and genome organization with PBVs) were
found to constitute the partitivirus-picobirnavirus clade, which,
interestingly, also consisted of some naked RNA replicons that
reproduce in algae mitochondria or chloroplasts, translate using
amitochondrial genetic code, and exhibit mitovirus-like behavior
(76). Taken together, these findings suggested that PBVs might be
fungal viruses.

On the other hand, at least three PBV-like RdRp sequences
(P16-366, WGML128211, and M17A from a bat, myriapod and
mongoose, respectively) that use the alternative mitochondrial
genetic code (that of mold or invertebrate) for translation
were found to cluster within PBVs using the standard genetic
code (Figure 2) (6, 12, 14). Furthermore, a capsid sequence
was identified for the bat PBV-like strain P16-366 (12).
Based on phylogenetic analysis of RdRp sequences, it has
been hypothesized that the dsRNA viruses of the partitivirus-
picobirnavirus clade might have evolved through reassortment
events involving gene segments encoding, respectively, a dsRNA
virus capsid protein related to those of the major clade of
dsRNA viruses (cystoviruses, totiviruses, and reoviruses) and
a positive sense RNA virus RdRp (possibly from a naked
RNA replicon within the partitivirus-picobirnavirus clade) (76),
which might offer a possible explanation for the origin of P16-
366. Although the presence or absence of a capsid sequence
could not be determined for the mongoose PBV-like strain
M17A, the RdRp sequence of M17A retained the various
features (5′- terminal nucleotide sequence and the three motifs

(DFXKFD, SGSGGT and GDD) in putative RdRp) that are
conserved in gene segment-2 of PBVs, and phylogenetically,
clustered near PBV GI strains (14). Further analyses are
required to decipher the complex evolution of these PBV-
like strains.

LIMITATIONS AND FUTURE SCOPE OF
RESEARCH

Studies so far could not establish a consistent association
between PBV detection and diarrhea in humans and animals
(1, 5). Moreover, there are a few reports on detection of
PBVs in respiratory samples and in a serum sample from
mammals (10, 24, 53–55). To date, PBVs remain to be
successfully propagated in mammalian cell culture systems
and/or gnotobiotic animal models (1). As a result, the tissue
tropism and pathogenesis of PBVs in mammals remain to
be elucidated so far, necessitating further research toward
establishing mammalian cell culture systems, intestinal
organoids, and/or gnotobiotic animal models that would
support the propagation of the virus. On the other hand,
the recent speculations that PBVs might actually infect
bacteria or fungi were based on analyses of PBV and PBV-like
sequences (7, 8, 12–14, 21, 76). To date, PBVs have not yet
been isolated from cultured bacterial or fungal cells. In order to
conclusively establish that PBVs are prokaryotic or mycoviruses,
future research should focus on successful propagation
of PBVs in various prokaryotic and fungal cell culture
systems, especially those derived from the gut microbiome
of mammals.

CONCLUSIONS

Since PBVs have been mostly detected in feces/gut contents
of animals and humans with or without diarrhea, they were
considered as opportunistic enteric pathogens of mammals (2, 3).
However, the identification of the prokaryotic RBS sequence
upstream of putative ORF/s in PBV and PBV-like sequences
indicate that PBVs might actually infect bacteria (7, 8, 13, 21).
Furthermore, by phylogenetic analysis of viral RdRp sequences,
the partitivirus-picobirnavirus clade has been hypothesized to
have originated in an as-yet-undiscovered lineage of prokaryotic
RNA viruses (76). On the other hand, detection of some novel
PBV-like RdRp sequences that use the alternative mitochondrial
genetic code (that of mold or invertebrates) for translation
has raised the speculation that PBVs might be fungal viruses
with a mitovirus-like lifestyle (6, 12, 14). Based on these
observations, it might be possible that PBVs actually infect
the gut microbiome of mammals and not mammalian cells.
Taken together, these contradicting findings warrant further
studies to ascertain the true host/s of PBVs, which still
remains controversial. Until the true host/s of PBVs are proven,
caution should be exercised during interpretation of PBV-related
data in animals and humans, especially those on interspecies
transmission events.
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