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Text classification plays an important role in many practical applications. In the real world, there are extremely small datasets.
Most existing methods adopt pretrained neural network models to handle this kind of dataset. However, these methods are either
difficult to deploy on mobile devices because of their large output size or cannot fully extract the deep semantic information
between phrases and clauses. ,is paper proposes a multimodel-based deep learning framework for short-text multiclass
classification with an imbalanced and extremely small dataset. Our framework mainly includes five layers: the encoder layer, the
word-level LSTM network layer, the sentence-level LSTM network layer, the max-pooling layer, and the SoftMax layer. ,e
encoder layer uses DistilBERTto obtain context-sensitive dynamic word vectors that are difficult to represent in traditional feature
engineering methods. Since the transformer part of this layer is distilled, our framework is compressed. ,en, we use the next two
layers to extract deep semantic information. ,e output of the encoder layer is sent to a bidirectional LSTM network, and the
feature matrix is extracted hierarchically through the LSTM at the word and sentence level to obtain the fine-grained semantic
representation. After that, the max-pooling layer converts the feature matrix into a lower-dimensional matrix, preserving only the
obvious features. Finally, the feature matrix is taken as the input of a fully connected SoftMax layer, which contains a function that
can convert the predicted linear vector into the output value as the probability of the text in each classification. Extensive
experiments on two public benchmarks demonstrate the effectiveness of our proposed approach on an extremely small dataset. It
retains the state-of-the-art baseline performance in terms of precision, recall, accuracy, and F1 score, and through the model size,
training time, and convergence epoch, we can conclude that our method can be deployed faster and lighter on mobile devices.

1. Introduction

Text classification plays an important role in many practical
applications [1]. Especially with recent breakthroughs in
natural language processing (NLP) and text mining, it is
widely used in many information processing systems, such
as search engines [2, 3] and question answering systems
[4, 5]. Generally, text classification can be divided into 3
steps: text preprocessing, feature extraction, and text rep-
resentation, as shown in Figure 1.

In the real world, many datasets are unbalanced and
extremely small, which are difficult to solve with traditional
machine learningmethods [6]. For example, questions about
fires or accidents are usually less common than questions

about consumer disputes about property services, but these
data are too important to be ignored because of their scarcity
and implications. Knowing how to efficiently and accurately
classify those texts into specific categories according to the
content of the corpus and improve the user experience has
become an urgent problem to be solved.

To solve the abovementioned problem, most existing
methods are based on the pretrained neural network, which
can utilize a large amount of unlabeled data to learn
common language representations and mine the relation-
ship between context and target aspects [7]. Some of the
most prominent methods are based on BERT [8]. Song et al.
[9] explored the potential of utilizing BERT intermediate
layers to enhance the performance of the fine-tuning part.
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Wan and Li [10] proposed a combination model named
BERT-CNN for the classification of candidate causal sen-
tences. ,e number of encoder layers in BERT leads to not
only a large number of training parameters but also a large
output model size. ,erefore, some distillation methods [11]
have been proposed. Xiong and Yan [12] proposed a sen-
timent analysis model based on distillation bidirectional
encoder representations from transformers combined with
multiscale convolution. Adel et al. [13] presented an alter-
native event detection model based on DistilBERT and the
Hunger Games search algorithm. DistilBERT is a small, fast,
cheap, and light transformer model trained by distilling
BERT base. It has 40% fewer parameters than BERT-base-
uncased and runs 60% faster while preserving over 95% of
BERT’s performances as measured on the GLUE language
understanding benchmark. ,e core idea of distillation is
called teacher-student learning, where the student can re-
produce the large model, and the teacher learns dark
knowledge. Dark knowledge [14] includes two main parts:
model compression and specialist networks. ,e model
compression part transfer the language learned from the
ensemble models into a single smaller model to reduce test
computation, while the specialist networks training models
specialized in a confusable subset of the classes to reduce the
time to train an ensemble.

However, these methods are either difficult to deploy to
mobile devices which usually generate a large amount of
data. In the traditional computing architecture, data need to
be transferred to the cloud for processing, which not only
increases the bandwidth and data transmission time.
Deploying pretrained models on mobile devices has natural
advantages [15–17] over cloud computing. ,e entire
workflow does not need to upload data to the cloud, can run
offline, and fast response to improve data privacy. ,e
pretrained model only needs a small amount of labeled data
to complete the prediction and ensure the effectiveness of the
prediction. Because of their output model size and require
professional computing resources such as GPUs, or cannot
fully extract the deep semantic information between phrases
and clauses, leading to a low recall rate and accuracy.

To reduce the size of the model and maintain the
classification accuracy of the model, this article proposes a
multimodel-based deep learning framework for short text
multiclass classification with an imbalanced and extremely
small dataset. Our framework consists mainly of four layers.
First, we use the pretrained DistilBERT as the encoder layer
to obtain the context-sensitive dynamic word embeddings,
including the token embeddings, position embeddings, and
segment embeddings, as the input of the bidirectional LSTM
network. Second, hidden features between phrases and

clauses in the text are extracted through word-level and
sentence-level LSTM networks to obtain the deep semantic
information of sentences while stored as a feature matrix. To
reduce the parameters and network complexity, we add a
max-pooling layer to convert the feature matrix into a lower-
dimensional matrix. Finally, for the multiclass classification
task, the SoftMax layer normalizes multiple values obtained
by the neural network to make the values between [0, 1] so
that the results can be explained.

,e main contributions of our paper can be summarized
as follows:

(1) We built a multimodel-based framework combined
with DistilBERT and BI-LSTM for the task of short
text multiclass classification. Our method ensures
accuracy and compresses the size of the output,
which can be better applied to various mobile de-
vices, such as smart appliances or smart cars.

(2) In the encoder layer, DistilBERT can convert the
input to dynamic word embeddings, including token
embeddings, segment embeddings, and position
embeddings, which reduces the effective time and
space complexities.

(3) ,e BI-LSTM is used as the feature extraction layer
to extract the implicit features as fine-grained as
possible through the word-level and sentence-level
LSTM network to enhance the model’s ability to
solve polysemous word problems.

2. Related Work

As a fundamental topic in the NLP field, there is much
research related to text classification. On the one hand, text
categorization tasks are usually based on large amounts of
annotated data, no matter whether they are supervised
learning or self-supervised learning methods. Ghiassi et al.
[18] present an integrated solution that combines a new
clustering algorithm, with a domain transferrable feature
engineering approach for Twitter sentiment analysis and
spam filtering of YouTube comments. Kim et al. [19] pro-
pose a question-answer method to automatically provide
users with infrastructure damage information from textual
data. Stitini et al. [20] conclude that the linkage between
contextual information and classification enhances and
improves the recommendation results. Yang et al. [21]
proposed a new automated defect text classification system
(AutoDefect) based on a convolutional neural network
(CNN) and natural language processing (NLP) using hier-
archical two-stage encoders. Ma et al. [22] presented a level-
by-level HMTC approach based on the bidirectional gated

Training data Text preprocessing Feature extraction Text representation

Feature engineering

Classifier

Figure 1: Overview of a text classification pipeline.
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recurrent unit network model together with hybrid em-
bedding used to learn the representation of the text level-by-
level. ,ese methods explore the method of applying text
classification to practical tasks.

However, many datasets are imbalanced and extremely
small in the real world. Fakhar Bilal et al. [23] proposed a
churn prediction model based on a combination of clus-
tering and classification algorithms using an ensemble.
Wang et al. [24] propose TkTC: a framework for top k text
classification, where a novel loss function simultaneously
considers the position of the ground truth label and the
number of predictions. Zhu et al. [25] propose a simple
short-text classification approach that makes use of prompt
learning based on knowledgeable expansion, which can
consider both the short text itself and the class name while
expanding the label word space.

Although those short text classification methods based
on the pretraining model can show good performance in the
short text classification task, these models would generate a
large output, which is unsuitable for mobile devices.

,erefore, solutions based on DistilBERT are inspired.
Andersen and Maalej [26] proposed a framework for the
efficient, in-operation moderation of classifier output to
maximize the accuracy and increase the overall acceptance
of text classifiers. Chang et al. [27] developed a universal
financial fraud awareness model to avoid these cases esca-
lating to the level of crime. However, the above methods
cannot guarantee the application performance on mobile
devices, in which the memory space and computation re-
sources are often limited.

In this article, we propose a multimodel-based frame-
work combining the advantages of DistilBERTand BI-LSTM
to reduce the model size in small dataset tasks while
maintaining the performance of classification.

3. DistilBERT BI-LSTM Predictor

In this section, we propose a short-text classification
framework based on multi-model learning combined with
distillation encoder representations with bidirectional
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Figure 2: ,e framework based on multimodel-based deep learning.
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LSTM, which trains tasks in a deep learning model, and the
deep learning model combines neural networks with
different structures to benefit from it. First, this model
inputs texts into the encoder layer to obtain segment
embeddings, position embeddings, and token embeddings.
Second, the batched embeddings are sent into the forward
LSTM to extract the word-level features, and the backward
LSTM to extract the sentence-level features. Since the BI-
LSTM extracts high-dimensional features, we adopt the
max-pooling operation to sharpen the feature matrix and
finally output the classification results through the Soft-
Max layer. ,e overall structure of the model is shown in
Figure 2, and the rest of this section will introduce this
method in detail.

3.1. Encoder Layer. We remove the first input layer and have
6 encoder layers of DistilBERT [11]. DistilBERT was pro-
posed by Sanh et al. [11] which is a small, fast, cheap, and
light transformer model trained by the distilling BERT base.
It has 40% fewer parameters than BERT-base-uncased and
runs 60% faster while preserving over 95% of BERT’s per-
formances as measured on the GLUE language under-
standing benchmark. ,e main idea of distillation is to
approximate the full output distributions of the BERTmodel
using a smaller model such as DistilBERT.,us, the number
of transformer layers (encoders) in the BERT base (12 layers)
has been reduced to six. ,e first token (CLS) vector of each
encoding layer can be used as a sentence vector. We can
abstractly understand that the shallower the encode layer,
the better the sentence vector. It represents low-level se-
mantic information, and the deeper it is, it represents high-
level semantic information. We aim to obtain semantic
features while preserving relevant word features.,e specific
method of the model is to use the CLS vectors of layers 1 to 6
as input of the LSTM for classification.

Semantic representation is assumed to be the contextual
embedding learned by the token [CLS], which serves as the
semantic representation of the input tweet X. ,e task is
formulated as a multiclass classification problem. ,erefore,
the probability of X being classified as class c (i.e., an event)
is predicted as the SoftMax function used in.

Pr (c|X) � Softamax(WT∙X), (1)

where W is the weight matrix learned during the fine-tuning
of the pretrained model used during the initialization of the
feature extractor model. It is worth noting that the first five
transformer layers in the pretrained model are not trainable.
We only fine-tuned the last transformer layer (encoder) of
the pretrained model and replaced the classification layer
with two fully connected layers for feature extraction and
classification.

3.2. Word Level LSTM Network Layer. In the short text
classification task, each input unit may have different de-
grees of impact on the final classification results. ,e LSTM
network can filter the information from the input units.
Based on the RNN, the network adds gates for selecting

information, including an input gate, output gate, forgetting
gate, and a memory unit to store information and update
information through different gates.

To capture as much fine-grained classification infor-
mation as possible in a small amount of text, this paper
extracts and represents the semantic features of sentences
through word- and sentence-level LSTM networks. ,e
updating process of the word-level LSTM network is as
follows: in time step t, the forgetting gate fw

t will first judge
which information can be forgotten according to the input
xt of the current time and the output hw

t−1 of the previous
time, for example, the root units “##ing,” “##ed” and crown
words segmented. ,is can be described as follows:

f
w
t � σ Wxfxt + Whfh

w
t−1 + bf􏼐 􏼑. (2)

where W∗ represents the weight matrix and b∗ presents the
bias term, all of which are network parameters to be learned;
σ activates the sigmoid function.

,en, the input gate iwt will determine which information
has a great impact on the classification label and needs to be
updated. For example, some words have a great impact on
the classification, such as “result,” “case” and “great.” ,e
network will create a new memory cell candidate value 􏽥C

w

t

through the function. It can be described as follows:

i
w
t � σ Wxixt + Whih

w
t−1 + bi( 􏼁,

􏽥C
w

t � tan h Wxcxt + Whch
w
t−1 + bc( 􏼁.

(3)

When updating the memory cell Cw
t , it is necessary to

combine the forget gate fw
t and the memory cell Cw

t−1 at the
last time for information screening. ,e information with
the quantity product fw

t ∙Cw
t−1 close to 0 will be discarded and

added with iwt ∙􏽥C
w

t to obtain the updated memory cell Cw
t to

store the latest information. Cw
t can be described as follows:

C
w
t � f

w
t ∙C

w
t−1 + i

w
t ∙􏽥C

w

t . (4)

Finally, the output gate ow
i combines the memory unit

Cw
t and the last time output hw

t−1 with the current time input
xt to calculate the word-level time step t as the output hw

t .
,e calculation method is as follows:

o
w
i � σ Wxoxt∙Whoh

w
t−1 + bo( 􏼁,

i
w
t � o

w
i × tanh C

w
t( 􏼁.

(5)

3.3. Sentence Level LSTM Network Layer. For the feature
information output from the pretrained model, we use
another LSTM to extract its fine-grained semantics and
representation process. For the clause S � s1, . . . , sq, . . . , sn􏽮 􏽯

in sentence sq � wq1, . . . , wqp, . . . , wqm􏽮 􏽯, the implicit fea-
ture hw

sq obtained by the word-level LSTM network and the
lexical feature Bsq obtained by BERT are spliced as the se-
mantic feature representation hw

sq of the clause, that is,

h
s
sq � (1 − λ)Bsq , λh

w
sq􏽨 􏽩q ∈ [1, n],

h
w
sq � LSTM wqp􏼐 􏼑q ∈ [1, m],

(6)
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where λ represents the weight. Taking sentence
S � s1, . . . , sq, . . . , sn􏽮 􏽯 as a sequence composed of n clauses,
its feature vector is expressed as follows:

s �
h

w
s1, n � 2,

h
s
s1, h

s
s2, . . . , h

s
sn􏼂 􏼃 n≥ 2.

⎧⎨

⎩ (7)

,e feature vector is updated through the sentence-level
LSTM network to obtain the long sentence semantic rep-
resentation ht, and its process is similar to the word-level
LSTM network, that is,

ht � LSTM S h
s
st( 􏼁( 􏼁t ∈ [1, n]. (8)

3.4. Max Pooling Layer. To improve the sharpening effect of
pooling, we adopt the max-pooling operation. Because the
BI-LSTMwill eventually be connected to the fully connected
layer and the number of neurons needs to be determined in
advance, if the input length is uncertain, it is difficult to
design its network structure. We use max-pooling to process
the input X of uncertain length into a fixed-length input.
Each filter takes only one value through the pooling oper-
ation. ,e number of neurons in the pooling layer corre-
sponds to the number of filters so that the number of
neurons in the eigenvector can be fixed. After the pooling
operation, 2D or 1D arrays are usually converted to a single
value, which can also reduce the number of parameters of a
single filter or the number of hidden layer neurons for later
use in the convolution layer or fully connected hidden layer.

3.5. SoftMax Layer. ,e output of the sentence-level LSTM
network is transmitted to the full connection layer as the last
semantic feature of the sentence, and the sentence classifi-
cation result is obtained through the normalization operation
of the SoftMax function.p(li|h) presents the probability of text
S in the ith classification. Its calculation method is as follows:

p li|h( 􏼁 � Softmax hi( 􏼁i �
exp wiht + bi( 􏼁

􏽐
m
j�1 exp wjht + bj􏼐 􏼑

, (9)

where w∗ and b∗ represent the weight matrix and offset
term, respectively, andm represents the total number of tags.
In this paper, the gradient descent algorithm is used to
optimize the model and the cross entropy function is used to
calculate the model loss and update the model parameters.
,e calculation method of loss function L is as follows:

L � −
1
m

􏽘

m

i�1
yilog p li|h( 􏼁( 􏼁 + φ w∗

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

, (10)

where yi represents the value of the digital vector of the real
label of the text in the i dimension and φ represents the L2
regularization parameter.

4. Experiments

4.1. Dataset and Metrics. We use three different datasets to
evaluate our methods. ,e HUFF datasets contain ap-
proximately 200k news headlines from 2012 to 2018

obtained from HuffPost. ,is dataset could be used to
identify tags for untracked news articles or to identify the
type of language used in different news articles.,e COVID-
Q [28] dataset has 1,690 questions about COVID, which are
labeled into 16 unique categories. Considering that many
text classification datasets need at least tens of thousands,
this is a very small dataset. Finally, we evaluated it on a
private dataset to see how it performed on a real-world
application.

,e notions of precision, recall, and F measures can be
applied to each label independently in the multiclass task.
Especially for an imbalanced classification problem with
more than two classes, precision is calculated as the sum of
true positives across all classes divided by the sum of true
positives and false positives across all classes, where y

represents the set of pre di cte d(sample, label) pairs; 􏽢y

represents the set of true(sample, label) pairs; L is the set of
label pairs; S represents the set of label pairs; ys represents
the subset of y with sample s, ys ≔ (s′, l) ∈ y|s′ � s􏼈 􏼉; yl

represents the subset of y with label l. Similarly, 􏽢ys and 􏽢yl

are subsets of 􏽢y. ,e F measurements can be defined as
follows:

Fβ(A, B) ≔ 1 + β2􏼐 􏼑
P(A, B) × R(A, B)

β2P(A, B) + R(A, B)
, (11)

where P(A, B) ≔ |A∩B|/|A| for some sets Aand B;
R(A, B) ≔ |A∩B|/|A| (Conventions vary on handling
B � ∅; this implementation uses R(A, B): � 0, and similar
for P).

To give different weights to each type, we use weighted
precision, recall, and f1-score. Precision is calculated as the
sum of true positives across all classes divided by the sum of
true positives and false positives across all classes. ,en, we
define precision as follows:

1
􏽐l∈L| 􏽢yl|

􏽘
l∈L

| 􏽢yl|P(yl, 􏽢yl). (12)

For example, we may have an imbalanced multiclass
classification problem where the majority class is the neg-
ative class, but there are two positive minority classes: class 1
and class 2. Precision can quantify the ratio of correct
predictions in both positive classes. Recall is calculated as
the sum of true positives in all classes divided by the sum of
true positives and false negatives across all classes. ,e recall
is calculated as follows:

1
􏽐l∈L| 􏽢yl|

􏽘
l∈L

| 􏽢yl|R(yl, 􏽢yl). (13)

We did not calculate an overall F1 score. Instead, we
calculate the F1 score per class in a one-vs-rest manner. In
this approach, we rate the success of each class separately, as
if there are distinct classifiers for each class. ,e F1 score is
defined as follows:

1
􏽐l∈L| 􏽢yl|

􏽘
l∈L

| 􏽢yl|Fβ(yl, 􏽢yl). (14)
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4.2. Results and Discussion. According to the method in
Section 3, we construct a model and train the model on three
different datasets. We verified the ensemble learning [29] and
multimodel methods [30] on two public datasets. Moreover,
to verify the performance of ourmodel on small-scale datasets
without changing the distribution of data, since there are
approximately 200k lines of data in HUFF, we randomly
extract 5% of the data from each type of data. At the same
time, we deliberately keep the long tail problem for the data;
that is, we do not limit the number of samples from each
classification but extract them naturally from the dataset. We
segment the dataset according to 64% of the training set, 16%
of the verification set, and 20% of the test set.

We tried two different ways to mitigate the effects of
imbalance for each approach. For the ensemble model part, we
integrate algorithmic tree models like the random forest that
are relatively insensitive to data skew. For the DistilBERT+BI-
LSTMmodel part, we set the focal loss function, which focuses
on adding weight to the corresponding loss of samples
according to the difficulty of sample discrimination.,at is, we
add a smaller weight a1 to easily distinguishable samples, and
add a larger weight a2 to hard distinguishable samples.

4.2.1. Comparison with Ensemble Modeling. Ensemble
learning achieves better prediction performance by training
multiple classifiers and combining these classifiers. ,e
result of ensemble learning is usually better than a single
model, which can reduce overfitting while improving ac-
curacy, and the greater the difference between models (di-
versity), the more significant the improvement effect. ,is
difference can be reflected in data, features, models, pa-
rameters, etc.

Encouraged by the good performance of the SVM
model in the short-text classification task, we built an
ensemble model to enhance this method, which compared
10 popular classifiers to evaluate the mean accuracy of
each of them by a stratified k-fold cross-validation pro-
cedure. ,us, for the fine-tuning part, we performed a grid
search optimization for 5 classifiers. Finally, we choose a
voting classifier to combine the predictions, as shown in
Figure 3.

Considering that the correlation between base models
should be as small as possible, the performance gap
should not be too large. We chose the SVC, AdaBoost,
RandomForest, ExtraTrees, and GradientBoosting

Training 
Data

Testing Data

Majority voting Final output

RF

SVC

Extra Tree

Machine learning 
Methods

GradientBoost

AdaBoost

Figure 3: Five classifiers combined with the Ensemble model.
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classifiers for ensemble modeling on the HUFF dataset,
we also show the data distribution in Figure 4. We used
learning curves to see the effect of overfitting the training
set and the effect of the training size on the accuracy
shown in Figure 5.

GradientBoosting and AdaBoost classifiers tend to
overfit the training set. According to the growing cross-
validation curves, GradientBoosting and AdaBoost could

perform better with more training examples. ,e SVC and
ExtraTrees classifiers seem to better generalize the prediction
since the training and cross-validation curves are close to-
gether. By comparing the ensemble model with our Dis-
tilBERT BI-LSTM predictor, which is known as DBLP, the
confusion matrix results are shown in Figure 6. DBLP
improved in almost all categories and achieved a higher hit
rate.

SC
IE

N
CE

 &
 T

EC
H

M
ED

IA
M

IS
CE

LL
A

N
EO

U
S

D
IV

O
RC

E
ED

U
CA

TI
O

N
EN

TE
RT

A
IN

M
EN

T
EN

V
IR

O
N

M
EN

T

W
O

M
EN

G
RO

U
PS

 V
O

IC
ES

H
O

M
E 

&
 L

IV
IN

G
IM

PA
CT

CO
M

ED
Y

CR
IM

E

PA
RE

N
TI

N
G

PO
LI

TI
CS

RE
LI

G
IO

N

BU
SI

N
ES

S 
&

 F
IN

A
N

CE
S

SP
O

RT
S

W
EL

LN
ES

S

TR
AV

EL

W
EI

RD
 N

EW
S

W
O

RL
D

 N
EW

S

A
RT

S 
&

 C
U

LT
U

RE

ST
YL

E 
&

 B
EA

U
TY

FO
O

D
 &

 D
RI

N
K

W
ED

D
IN

G

0
200
400
600
800

1000
1200
1400

Testing Dataset
C

ou
nt

s

(a)

SC
IE

N
CE

 &
 T

EC
H

M
ED

IA
M

IS
CE

LL
A

N
EO

U
S

D
IV

O
RC

E
ED

U
CA

TI
O

N
EN

TE
RT

A
IN

M
EN

T
EN

V
IR

O
N

M
EN

T

W
O

M
EN

G
RO

U
PS

 V
O

IC
ES

H
O

M
E 

&
 L

IV
IN

G
IM

PA
CT

CO
M

ED
Y

CR
IM

E

PA
RE

N
TI

N
G

PO
LI

TI
CS

RE
LI

G
IO

N

BU
SI

N
ES

S 
&

 F
IN

A
N

CE
S

SP
O

RT
S

W
EL

LN
ES

S

TR
AV

EL

W
EI

RD
 N

EW
S

W
O

RL
D

 N
EW

S

A
RT

S 
&

 C
U

LT
U

RE

ST
YL

E 
&

 B
EA

U
TY

FO
O

D
 &

 D
RI

N
K

W
ED

D
IN

G

0

100

200

300

400
Testing Dataset

(b)

Figure 4: ,e distribution of HuffPost data. (a) Training dataset. (b) Testing dataset.
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Figure 5: Learning curves of each method. (a) RF meaning curves. (b) SVC learning curves. (c) ExtraTrees learning curves. (d) AdaBoost
learning curves. (e) GradientBoosting learning curves.
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4.2.2. Comparison withMultimodel Methods. We conducted
comparative experiments on the COVID-Q dataset. ,e
composition of the data is shown in Figure 7, where text is
the text content of the question and category represents the
category of the question. We used a total of 4113 data points
for training in 15 categories, as shown in Figure 8. ,e data
for each category are shown in the figure below. It can be
seen that most data have 280 data points, and the last data
point has 230 data points. Our data are imbalanced. Re-
garding the test data, we used a total of 668 pieces of data,
which is also imbalanced.

From Table 1, we can see that the precision of the DBLP
model is 60% in 84 minutes, while the best accuracy is 61%
based on the BERT + BI-LSTMmodel, but its training time
is also the longest, and it takes 380 minutes. Moreover, we
also see that the DistilBERT-CNN method achieves the
fastest training speed, but at the same time, the accuracy is
also reduced more. Our method obtains the highest F1
value. It shows that the bidirectional-layer LSTM network
can better capture the fine-grained classification of se-
mantic information between phrases and clauses in a small
corpus. When DBLP is only 1% lower than the BERT-
based method, the time is 100 minutes lower and only 84
minutes.

,e total parameters of the model with DistilBERT de-
creased significantly, but the trainable parameters were only
related to the feature extraction network. ,e model with the

CNN only achieved the smallest number of trainable params
94319, but its accuracy was also the lowest. ,is is because the
CNN cannot well express the information of context and the
problem of polysemy representation. On the number of
training rounds, we set the early stopping function, which
looks at the validation of the model loss score: if there is no
improvement after 3 epochs, stop the training. Our model
finally stops after 5 epochs. For the final model, because
DistilBERT has only six layers of encoders, it is approximately
half as small as the pretraining model based on BERT.

In summary, the advantages of our model are reflected in
the following aspects. It requires fewer trainable parameters
and saves computing resources. It can also be easily used by
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Figure 6: Confusion matrix comparison. (a) Ensemble modeling confusion matrix. (b) DBLP confusion matrix.

Figure 7: COVID-Q data composition.
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general in-depth learning enthusiasts and is conducive to
deployment on the mobile terminal.

4.2.3. Performance of Real-World Data Sets. Finally, we
crawled 4896 articles from the Mechatronics Encyclopedia
website, with the abstract of the article as our training
content and the topic of the article as the label to see how our
model performed on the real-world task, with 27 categories
in total, and the last category has only 49 data points. ,e
distribution of the dataset is shown in Figure 9.

We divide the dataset into 64% train, 16% val, and 20%
test. ,us, we use ranking metrics, such as accuracy and loss,
to check our classifier. We compare the ranks produced by
our classifier (ensemble classifier and DBLP classifier) to the
SVMmodel, which is suitable for an extremely small dataset.
,e results are shown in Figure 10 and Table 2.

,e result shows that the SVM classifier can solve the
problem at some stage it has a small size and can be
converged very quickly. However, SVM is limited to the
recognition of the presence of words in the training dataset
and is unable to capture the inner relationship of the
sentence. In some sentences, the appearance of multiple
keywords fooled the SVM model to label, for example,
while the negation in the first place completely converted
the case. ,e Ensemble model integrates vectors from
multiple models so it has a big model size and slow training
time. ,e DBLP can capture the semantic features of the
text better than the SVM model and Ensemble model.
Overall, the classification result was good, with accuracy of
86.65% and f1-score of 85%. By looking at some mislabeled
data, we must admit that these texts are ambiguous and
hard to classify.
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Figure 8: ,e distribution of COVID-Q data. (a) Training dataset. (b) Testing dataset.

Table 1: Method comparison.

Model Precision (%) Recall (%) F1-score (%) Time (min) Total params Trainable params Epoch Size (MB)
BERT+BI-GRU 60 54 54 241 109,920,145 1,609,873 6 419
BERT-BI-LSTM 61 53 54 380 109,247,003 936,731 11 417
BERT+CNN 58 51 52 153 108,404,591 94,319 4 413
BERT–CNN–LSTM 57 51 52 301 109,200,743 890,471 8 416
BERT-LSTM-CNN 52 44 44 189 111,918,864 3,608,592 5 427
DistilBERT+BI-GRU 59 54 54 85 66,800,785 1,609,873 5 261
DistilBERT BI-LSTM 60 54 54 84 66,127,643 936,731 5 252
DistilBERT-CNN 56 53 53 69 65,285,231 94,319 4 249
DistilBERT–CNN–LSTM 59 50 51 132 66,081,383 890,471 7 252
DistilBERT-LSTM-CNN 56 46 48 75 68,799,504 3,608,592 4 268

Computational Intelligence and Neuroscience 9



5. Conclusion

,e results show that the DBLP model is guaranteed to be
able to solve end-to-end data imbalance, small text, and
multiclassification tasks and can be directly applied to real-
world tasks. Furthermore, we can see that since we utilize the
pretrained model after distillation, the training parameters
of our model drop significantly, which is very friendly to

general developers. Due to the smaller model size, our model
can better apply AI technology to mobile smart devices, such
as new energy vehicles and smart home appliances. In
contrast, although the BERT-based pretraining model can
achieve better accuracy, the computational cost and appli-
cation cost are high, and it is more suitable for large-scale
cloud computing and scientific research scenarios such as
research institutes.
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Figure 10: Training and validation accuracy in real-world data. (a) Training and validation accuracy. (b) Training and validation loss.

Table 2: Comparison of models for log case classification.

Classification task Model Accuracy (%) F1-score (%) Time (min) Size (MB)

Log case classification (27 categories)
SVM 80.28 78 32 228

Ensemble model 84.04 82 313 751
DBLP 86.65 85 45 252
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In future research, we will improve the model in the
following two parts. We will try to combine semantic
generation models to complement the important context
that may be missing in sentences and apply our model to
various tasks on smart devices.
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