
O R I G I N A L  R E S E A R C H

Biomarkers of Arginine Methylation in Diabetic 
Nephropathy: Novel Insights from Bioinformatics 
Analysis
Yiming Guan, Xiayan Yin, Liyan Wang, Zongli Diao, Hongdong Huang*, Xueqi Wang *

Department of Nephrology, Beijing Friendship Hospital, Capital Medical University, Beijing, People’s Republic of China

*These authors contributed equally to this work 

Correspondence: Xueqi Wang, Hongdong Huang, Department of Nephrology, Beijing Friendship Hospital, Capital Medical University, 95 Yong An 
Road, Xi Cheng District, Beijing, 100050, People’s Republic of China, Email Xueqiwang32@hotmail.com; Huanghd1126@126.com 

Background: Diabetic nephropathy (DN) is a severe complication of diabetes influenced by arginine methylation. This study aimed 
to elucidate the role of protein arginine methylation-related genes (PRMT-RGs) in DN and identify potential biomarkers.
Methods: Differentially expressed genes in two GEO datasets (GSE30122 and GSE104954) were integrated with 9 PRMT-RGs. 
Candidate genes were identified using WGCNA and differential expression analysis, then screened using support vector machine- 
recursive feature elimination and least absolute shrinkage and selection operator. Biomarkers were defined as genes with consistent 
differential expression across both datasets. Regulatory networks were constructed using the miRNet and Network Analyst databases. 
Gene set enrichment analysis was performed to identify the signaling pathways in which the biomarkers were enriched in DN. 
Different immune cells in DN were identified using immune infiltration analysis. Meanwhile, drug prediction and molecular docking 
identified potential DN therapies. Finally, qRT-PCR and immunohistochemistry validated two biomarkers in STZ-induced DN mice 
and DN patients.
Results: Two biomarkers (FAM98A and FAM13B) of DN were identified in this study. The molecular regulatory network revealed 
that FAM98A and FAM13B were co-regulated by 6 microRNAs and 1 transcription factor and were enriched in signaling pathways. 
Immune infiltration and correlation analyses revealed that FAM98A and FAM13B were involved in developing DN along with PRMT- 
RGs and immune cells. The expression levels of Fam98a and Fam13b were significantly upregulated in the kidneys of DN mice 
revealed by qRT-PCR analysis. The expression levels of FAM98A were significantly upregulated in the kidneys of DN patients 
revealed by immunohistochemistry staining. Molecular docking showed that estradiol and rotenone exerted potential therapeutic 
effects on DN by targeting FAM98A.
Conclusion: Comprehensive bioinformatics analysis revealed that FAM98A and FAM13B were potential DN biomarkers correlated 
with PRMT-RGs and immune cells. This study provided useful insights for elucidating the molecular mechanisms and developing 
targeted therapy for DN.
Keywords: diabetic nephropathy, protein arginine methylation-related genes, biomarkers, bioinformatics analysis

Introduction
The 10-year cumulative mortality rate of diabetic nephropathy (DN), which affects approximately one-third of 
patients with diabetes mellitus, is as high as 31.1%.1 The pathogenic mechanisms of DN are diverse and complex, 
encompassing hemodynamic alterations (such as imbalanced arteriolar resistance), metabolic factors leading to 
oxidative stress, disruptions in cellular signal transduction, transcription factors (TFs), and pro-inflammatory 
factors.2 These pathways induce apoptosis and podocyte loss and decrease the glomerular filtration rate (GFR), 
contributing to the onset and progression of DN. Clinically, DN is diagnosed based on renal biopsy, an invasive 
procedure. Currently, the major therapeutics for DN are renin-angiotensin-aldosterone system inhibitors.3 Various 
randomized clinical trials have demonstrated the cardiorenal benefits of drugs, such as sodium-glucose 

Diabetes, Metabolic Syndrome and Obesity 2024:17 3399–3418                                         3399
© 2024 Guan et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php 
and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work 

you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For 
permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).

Diabetes, Metabolic Syndrome and Obesity                                           Dovepress
open access to scientific and medical research

Open Access Full Text Article

Received: 6 April 2024
Accepted: 11 September 2024
Published: 13 September 2024

http://orcid.org/0000-0002-3485-3998
http://www.dovepress.com/permissions.php
https://www.dovepress.com/terms.php
http://creativecommons.org/licenses/by-nc/3.0/
https://www.dovepress.com/terms.php
https://www.dovepress.com


cotransporter 2 inhibitors or mineralocorticoid receptor antagonist in patients with DN.4–8 However, the incidence 
of DN is increasing. This indicates that only pharmaceutical interventions may not yield favorable outcomes in 
DN. Although DN has been extensively studied, the underlying pathological mechanisms have not been elucidated. 
Further studies are needed to identify the biomarkers and elucidate the potential molecular mechanisms of DN, 
which will aid in the development of novel diagnostic and therapeutic strategies for DN.

Arginine, a basic α-amino acid residue, constitutes various proteins, including histones. Protein arginine 
methylation (PRMT) regulates several biological processes, including transcription, splicing, RNA biology, 
DNA damage response, and cell metabolism,9 which are dysregulated in kidney diseases. Several studies have 
indicated the role of PRMTs in kidney diseases, including renal fibrosis, acute kidney injury (AKI), and DN. 
PRMT1, which mainly promotes asymmetric arginine methylation of histone and nonhistone proteins, may 
mediate renal fibroblast activation and renal fibrosis development.10 In ischemia/reperfusion-induced AKI, the 
accumulation of asymmetric dimethylarginine, a metabolic product of PRMTs, activates oxidative stress, promot-
ing tubular necrosis.11 The upregulation of PRMT1 levels in DN induces oxidative stress, apoptosis in mesangial 
cells, and diabetic kidney injury, whereas the knockdown of PRMT1 alleviates diabetic kidney injury.12,13 These 
findings indicate the critical role of PRMTs in the development and maintenance of DN.

Bioinformatics is characterized by large-scale, high-dimensional, and imbalanced data sets. Machine learning 
techniques have proven highly effective in data preprocessing and feature extraction, significantly improving data 
quality.14 These techniques have become crucial in various domains, including genomics, protein structure prediction, 
biological network analysis, drug discovery, and disease prediction and diagnosis, driving significant advances in the 
biological sciences.15–18 Hongdong Han et al employed advanced machine learning algorithms such as LASSO, 
random forest (RF), and support vector machine recursive feature elimination (SVM-RFE) to accurately identify 
PRKAR2B and TGFBI as critical biomarkers for diabetic nephropathy (DN).19 This work provides robust scientific 
evidence for the early diagnosis of DN and establishes a strong foundation for future research aimed at identifying 
therapeutic targets using bioinformatics and machine learning. It also paves the way for developing specific therapeutic 
strategies for DN, highlighting the substantial potential of bioinformatics and machine learning in precision medicine. 
This study focuses on utilizing advanced bioinformatics approaches to deeply investigate the molecular mechanisms of 
protein arginine methyltransferase-related genes (PRMT-RGs) in the pathogenesis of diabetic nephropathy (DN). We 
mined the GEO database to identify differentially expressed genes between DN and normal control groups and 
performed cross-comparisons with PRMT-RGs to pinpoint key candidate genes. Subsequently, we employed various 
machine learning algorithms to identify potential biomarkers and validated their expression patterns in a mouse DN 
model and DN patients. Furthermore, we utilized bioinformatics tools such as GO annotation, KEGG pathway 
analysis, protein-protein interaction network construction, and immune infiltration analysis to comprehensively 
elucidate the roles of these genes in the pathological processes of DN. Additionally, through potential drug prediction, 
this study aims to pave new avenues for DN treatment, thereby advancing the application and development of 
precision medicine in the DN field.

Materials and Methods
Data Sources
The GSE30122 and GSE104954 microarray expression datasets retrieved from the GEO database (https://www.ncbi.nlm.nih. 
gov/geo/) served as the training and validation datasets, respectively. The GSE30122 dataset comprised the data of renal 
tubule tissues from 10 patients with DN and 12 healthy subjects on the GPL570 platform.20 Meanwhile, the GSE104954 
dataset comprised the data of renal tubule tissues from 7 patients with DN and 18 healthy subjects on the GPL22945 
platform.21 The following nine PRMT-RGs were obtained from the published literature: PRMT1, PRMT2, PRMT3, CARM1 
(also called PRMT4), PRMT5, PRMT6, PRMT7, PRMT8, and PRMT9.22 The flow chart of this study is shown in Figure 1.
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Analysis of the Correlation Between PRMT-RGs
To explore the interactions between PRMT-RGs, the gene-gene interaction network (GGI) of PRMT-RGs was con-
structed using the GeneMANIA network (http://www.genemania.org). The TOP 20 correlated genes were selected as the 
key nodes for displaying, and the TOP 7 significant pathways were presented. Furthermore, a heatmap was generated to 
illustrate the correlation between PRMT-RGs as determined using Spearman correlation coefficient.

Weighted Gene Co-Expression Network Analysis (WGCNA)
The PRMT-RG scores were calculated for each sample in the GSE30122 dataset using single-sample gene set enrichment 
analysis (ssGSEA). WGCNA was performed with PRMT-RG score as the trait data using the WGCNA package (version 
1.72–1).23 The hierarchical clustering analysis was implemented, and outlier samples were removed. Subsequently, the 
scale-free topology fit index of 0.8 was used to determine the most suitable soft threshold power. The power adjacent 
function of Pearson’s correlation matrix was used to transform filtered gene expression data into a topological overlap 
matrix (TOM). The TOM was transformed into a dissimilarity matrix from which a systematic clustering tree between 
genes was obtained. A dynamic shear tree was constructed with a minModuleSize of 100. To identify the modules 
associated with PRMT-RG scores, modules and PRMT-RG scores were subjected to Pearson’s correlation analysis. The 
correlation between modules and PRMT-RG scores was displayed as a heatmap. The module with the most significant 
correlation with PRMT-RG scores was selected as the key module.

DEG Identification
The “limma” (version 3.52.4)24 package was used to screen the DEGs between the DN and control groups in the training 
dataset based on the following criteria: adjusted p < 0.05; log2fold change (log2FC)| > 1. The DEGs were visualized 
using volcano plots and heatmaps using the packages “ggplot2” (version 3.4.1)25 and “pheatmap” (version 2.14.0), 
respectively.26

Figure 1 The flow chart of this study.
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Enrichment Analysis of DEGs
DEGs were subjected to GO and KEGG enrichment analyses using the “clusterProfiler” (version 4.7.1) package27 to 
examine the biological functions and signaling pathways associated with the DEGs (adj p < 0.05). The results were 
visualized using the “GOplot” (version 1.0.2) package (p < 0.05).28

Identification of Candidate Genes
The DEGs were intersected with the key module genes of the key module using Venn diagram analysis. Next, feature 
genes were screened using the least absolute shrinkage and selection operator (LASSO) algorithm with the “Glmnet” 
(version 4.1.7) package29 and support vector machine-recursive feature elimination (SVM-RFE) algorithm with the 
“e1071” package (version 1.7–12).30 The overlapping genes in the two algorithms were identified as candidate genes.

Diagnostic Performance Evaluation and Validation of Candidate Genes
The receiver operating characteristic (ROC) curve, which is the most central index for medical diagnostic tests, enables 
the evaluation of predictive model performance. The diagnostic efficacy of the candidate genes in the training and 
validation datasets was evaluated using the “pROC” package (version 1.18.0).31 Intergroup difference analysis was 
performed to determine the expression patterns of the candidate genes in both training and validation datasets. Finally, 
the candidate genes that passed validation were considered biomarkers for DN in this study.

Construction and Evaluation of Nomogram
The contribution of biomarkers to DN pathogenesis was presented using a nomogram. In the training dataset, the 
construction of nomograms was performed using the “rms” package (version 6.7–0).32 Furthermore, the effectiveness of 
the nomogram was assessed using decision curve analysis (DCA).

Chromosomal Localization and Clinical Analysis of Biomarkers
To clarify the location of biomarkers on human chromosomes, the “RCircos” package (version 1.2.2)33 was used to 
visualize the distribution of biomarkers on chromosomes. The correlation between biomarker expression and clinical 
characteristics (GFR) was examined using the Nephroseq V5 database (http://v5.nephroseq.org).

Gene Set Enrichment Analysis (GSEA)
The “psych” package (version 2.2.9)34 was used to perform Spearman correlation analysis between the biomarkers and the 
genes in the training dataset. Subsequently, the genes were sorted according to the degree of correlation and subjected to 
GSEA using the “clusterProfiler” (version 4.7.1) package.27 The reference gene sets were “c2.cp.reactome.v7.0.symbols.gmt” 
and “c5.go.v7.4.symbols.gmt” from Molecular Signatures Database (https://www.gsea-msigdb.org/gsea/msigdb/). The 
KEGG pathways in which the biomarkers were enriched were analyzed (adj p < 0.05). The top 10 most significantly enriched 
pathways for biomarkers were displayed using the “enrichplot” (version 1.16.2) package.35

Analysis of Immune Cell Infiltration in DN
ssGSEA, which determines the enrichment scores for 28 immune cells, was used to determine the differential immune 
infiltration status between control and DN samples.36 Samples were filtered based on p < 0.05. A heatmap illustrating 
immunological infiltration in the samples was generated using the “corrplot” (version 0.92) package.37 Further, the 
correlation of biomarkers with PRMT-RGs and different immune cells was presented using heatmaps.38

Regulatory Network Construction and Targeted Drug Prediction
The miRNet web database (https://www.mirnet.ca) was used to identify potential biomarkers targeted by miRNAs. The 
miRNA-biomarker regulatory networks were visualized using Cytoscape. NetworkAnalyst online tool (https://www. 
networkanalyst.ca) was used to generate a gene regulation network for the TF-biomarker pair. Data on target TFs and 
genes were extracted from the ENCODE chromatin immunoprecipitation-sequencing data.
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Drug Prediction and Molecular Docking
Small-molecule drugs were identified using the biomarkers available at the Comparative Toxicogenomics Database (CTD) 
(http://ctdbase.org/). The networks depicting the interaction between biomarkers and drugs were visualized using Cytoscape 
(version 3.9.1). Docking of biomarkers and small-molecule drugs was performed to identify potential biomarker-targeting 
drugs. The three-dimensional structures of drugs and proteins were obtained from the PubChem (https://pubchem.ncbi.nlm. 
nih.gov/) and UniProt (https://www.uniprot.org/) databases, respectively. AutoDock Tools were applied to perform protein 
hydrogenation, charge calculation, and charge equilibrium. Docking of biomarkers and potential drugs was performed using 
AutoDock vina (version 1.5.7). The structure exhibiting the lowest binding free energy in the resulting output was selected. 
Finally, PyMol software (version 2.0) was used to visualize the docking results.39

Construction of the Mouse Model
C57BL/6 male and female mice were obtained from Weitong Lihua Limited Company (Beijing, China) and housed in 
standardized conditions with a 12-h light/dark cycle. The animals were allowed to acclimatize for one week and 
randomly divided into the following two groups: experimental group, intraperitoneally administered with streptozotocin 
(STZ) (Sigma, CAS No. 18883–66-4, USA) at a dose of 120 mg/kg bodyweight; control group, administered with an 
equivalent volume of citrate buffer (Solarbio, China). The animals were allowed to fast for 12 h before drug adminis-
tration. The blood glucose levels of >11.1 mmol/L on day 3 post-injection suggested successful modeling. Additionally, 
the blood glucose levels were measured on day 6 post-treatment to confirm stable hyperglycemia.

Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR)
Total mRNA was extracted from five DN samples and five control samples using TRIzol (Invitrogen, Thermofisher, 
USA), following the manufacturer’s instructions. The RNA samples were subjected to standard agarose gel electrophor-
esis. The quantity and quality of RNA samples were determined using a NanoPhotometer N50 (Implen, Germany). RNA 
was reverse-transcribed into complementary DNA (cDNA) using the SureScript-First-strand-cDNA-synthesis-kit 
(Servicebio, China), following the manufacturer’s instructions. qRT-PCR analysis was performed using the 2× 
Universal Blue SYBR Green qPCR Master Mix (Servicebio, China) and the CFX Connect Real-Time Quantitative 
Fluorescence PCR Instrument (BIO-RAD, USA). The primer sequences used in qRT-PCR analysis are listed in Table 1. 
Gapdh was used as an endogenous control. The relative expression levels were determined using the 2−ΔΔCT method.40

Clinical Data Acquisition
All DN patients included in this study were admitted to the Department of Nephrology at Beijing Friendship Hospital and 
were diagnosed with DN through renal biopsy. The renal biopsies were conducted with each patient’s informed consent. 
As a control group, age-matched tissues from patients with non-diabetic minimal change disease (MCD) were simulta-
neously collected. This study received approval from the Ethical Committee of Beijing Friendship Hospital (Ethics 
approval number: BFH20240528005/BFHHZS20240146).

Table 1 Details of RT-qPCR Primers

Primers Sequencing

FAM13B F AGTGACCACGGGGATAGTGA
FAM13B R CAGGAAACGGCTCTTCCCAT

FAM98A F GGCAACTAACAGTCCAAGCG

FAM98A R TTGAAAGACCTCACTACCGCC
M-GAPDH F CCTTCCGTGTTCCTACCCC

M-GAPDH R GCCCAAGATGCCCTTCAGT
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Immunohistochemistry (IHC) Staining
Immunohistochemistry staining was carried out on 4 µm thick paraffin-embedded kidney tissue sections. After deparaffini-
zation, the fixed sections were microwaved for 20 minutes in sodium citrate buffer (pH 6.0) (Solarbio, China), followed by 
a 30-minute incubation with normal goat serum at room temperature. The sections were then treated with primary antibodies 
and left to incubate overnight at 4°C. The next day, the sections were brought back to room temperature and incubated with 
a secondary antibody (PV-9000, Zhongshan Goldenbridge, China) for 1 hour. Staining was then performed using the 
diaminobenzidine (DAB) reagent. Nuclei were counterstained with hematoxylin and washed to achieve a blue hue. 
Finally, the sections were mounted with neutral balsam. Images were captured using an Olympus CKX41 optical microscope 
(Japan). The primary antibodies used include Anti-FAM98A (PA5-90721, Invitrogen, USA).

Statistical Analysis
Statistical analysis was performed using R programming language (version 4.2.2). Categorical data were compared using 
the Wilcoxon test. Differences were considered significant at p < 0.05 unless specified otherwise.

Results
Expression Levels of PRMT1, PRMT2, PRMT3, CARM1, PRMT5, PRMT7 and PRMT8 
Were Correlated in the Training Set
The GGI network revealed that nine PRMT-RGs interacted with various genes, including HEMK1, METTL family-encoding 
genes, and ATPSCKMT, which co-regulated the methyltransferase activity (Figure 2A). Analysis of the correlation between 
PRMT-RGs demonstrated a significant positive correlation between the PRMT1 and PRMT2 expression levels (R = 0.643, 
p = 0.001) and a significant negative correlation between the PRMT8 and PRMT3 expression levels (R = −0.635, p = 0.001) 
(Figure 2B). As PRMT6 and PRMT9 were not included in the training set, the remaining seven PRMT-RGs (PRMT1, PRMT2, 
PRMT3, CARM1, PRMT5, PRMT7, and PRMT8) were used in the subsequent analyses.

Genes Associated with PRMT-RGs in DN
The enrichment scores of PRMT-RGs in the DN group were significantly higher than those in the control group. 
Therefore, the enrichment scores of PRMT-RGs were treated as traits for WGCNA (Figure 2C).

The data of all samples in the GSE30122 dataset were clustered, and no outliers were detected (Figure 2D). To ensure 
biologically meaningful scale-free topology, 17 was chosen as the minimal β value based on scale independence of > 0.8. 
(Figure 2E and F). In total, 15 co-expression modules were identified based on Pearson correlation analysis (Figure 2G). The pink 
module (R = −0.650, p = 0.001) comprising 643 genes exhibited the highest correlation with PRMT-RG scores (Figure 2H).

DEGs Were Strongly Associated with Immune-Related Functions and Cell Adhesion
The data of the DN and control groups were subjected to differential gene analysis. In the training set, 716 DEGs (622 
upregulated genes and 94 downregulated genes) were identified (Figure 3A and B).

Biological functions and signaling pathways of the DEGs were analyzed using GO and KEGG enrichment analyses. GO 
analysis revealed that 716 DEGs were enriched in 970 GO items (adj.p < 0.05) (Supplementary Table 1), which were related to 
positive regulation of cell-cell adhesion, positive regulation of cell adhesion, leukocyte-mediated immunity, positive regula-
tion of T cell activation, and positive regulation of leukocyte cell-cell adhesion (Figure 3C). Meanwhile, the DEGs were 
enriched in 48 KEGG signaling pathways (adj.p < 0.05) (Supplementary Table 2), including the phagosome, viral myocardi-
tis, cell adhesion molecule, tuberculosis, and leishmaniasis pathways (Figure 3D).

FAM13B, FAM98A, HPS5, PLBD1, and TGFBR3 Served as Candidate Genes
The number of intersection genes among 716 DEGs and 643 module genes was 15 (Figure 4A). Further, the 5 feature genes 
(FAM13B, FAM98A, HPS5, PLBD1, and TGFBR3) were selected using LASSO analysis after minimizing the model error 
(λ = 0.1) (Figure 4B and C). Subsequently, the SVM-RFE model was constructed for the training dataset to screen the feature 
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Figure 2 Correlation analysis between protein arginine methylation-related genes (PRMT-RGs). (A) Gene-gene interaction (GGI) network of PRMT-RGs. (B) Spearman 
correlation coefficient analysis of PRMT-RGs. (C). The differential enrichment scores of PRMT-RGs between the diabetic nephropathy (DN) and control groups. (D) Sample 
dendrogram and trait heatmap (the branches represent samples, while the vertical axis represents the height of hierarchical clustering). (E and F). A scale-free topological 
model determines the optimal β value. β = 17 was selected as the soft threshold based on average connectivity and scale Independence. (G) Hierarchical clustering 
dendrogram of module identifiers. The color-coded rows below the dendrogram indicate module assignments determined by dynamic tree cuts. (H) A graph of the 
correlation between the module genes and PRMT-RGs. Rows and columns correspond to module eigengenes and traits, respectively.
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genes. At the minimum error (Error rate = 0.0817), 11 feature genes were identified (Figure 4D). The feature genes obtained using 
LASSO analysis were intersected with those obtained using SVM-RFE analysis to obtain 5 candidate genes (Figure 4E).

Enhanced Diagnostic Efficacy of FAM13B and FAM98A for DN
The diagnostic efficacy of the 5 candidate genes was evaluated using the ROC curve in the training and validation datasets. The 
area under the curve (AUC) values for FAM13B, FAM98A, HPS5, PLBD1, and TGFBR3 in the training dataset were 0.958, 0.967, 
0.933, 0.983, and 0.958, respectively, while those in the validation set were 0.921, 0.921, 0.675, 0.675, and 0.976, respectively. 
Therefore, FAM13B, FAM98A, and TGFBR3 exhibited a good diagnostic efficacy for DN (AUC > 0.7) (Figure 5A and B). 
Differential expression analysis revealed that FAM13B, FAM98A, and TGFBR3 were differentially expressed. In particular, 
FAM13B and FAM98A were significantly upregulated in the validation and training datasets. Consequently, FAM13B and FAM98A 
were identified as potential biomarkers for DN (Figure 5C and D). The nomogram demonstrated the contribution of FAM13B and 
FAM98A to the incidence of DN. DCA suggested the enhanced benefit and clinical utility of the nomogram (Figure 5E and F).

Figure 3 Identification and enrichment analysis of differentially expressed genes (DEGs). (A) Volcano plot of DEGs in the diabetic nephropathy (DN) dataset. (B). Heatmap 
of DEGs in the DN dataset. (C) Gene Ontology (GO) enrichment: the size of the squares represents the number of genes enriched, while the color indicates the significance 
level. (D) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment: the size of the circles represents the number of included genes.
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FAM13B and FAM98A were Mainly Enriched in Sensory Perception and 
Modification-Dependent Macromolecule Catabolic Process
GSEA revealed that genes related to FAM13B and FAM98A were mainly enriched in sensory perception, modification- 
dependent macromolecule catabolic process, ion channel complex, G-protein-coupled receptor activity, neuroactive 
ligand-receptor interaction, and olfactory transduction signaling pathways (Figure 6A–H).

Figure 4 Identification of candidate genes for diabetic nephropathy (DN) using least absolute shrinkage and selection operator (LASSO) and support vector machine- 
recursive feature elimination (SVM-RFE) machine learning methods. (A) Venn diagram: In total, 15 candidate genes were obtained after intersecting the 716 differentially 
expressed genes (DEGs) with the 643 module genes. (B and C) The LASSO logistic regression algorithm was used to identify five candidate genes of DN. (D) The SVM-RFE 
model was employed to identify 11 feature genes. (E) Venn diagram: Five target genes were obtained after intersecting genes obtained from SVM-RFE with those obtained 
from LASSO analyses.
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Figure 5 Diagnostic nomogram model construction and efficacy assessment. (A and B) Receiver operating characteristic (ROC) profiles of five candidate genes between 
the control and diabetic nephropathy (DN) groups in the training set GSE30122 (A) and the validation set GSE104954 (B). (C and D) The expression levels of three 
candidate biomarkers in the training set GSE30122 (C) and the validation set GSE104954 (D). (E) The construction of the nomogram model based on FAM13B and FAM98A. 
***p < 0.001; ****p < 0.0001. (F) Decision curve analysis (DCA) of the nomogram model.
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Th17 Cells are Involved in DN Pathogenesis
The infiltration status of 28 immune cells in the control and DN groups was illustrated using heatmaps (Figure 7A). Compared 
with that in the control group, the proportion of 14 immune cells was markedly altered in the DN group. Meanwhile, compared 
with those in the control group, the proportions of activated CD4 T cells, central memory CD4 T cells, effector memory CD4 
T cells, effector memory CD8 T cells, immature B cells, and plasmacytoid were significantly upregulated and the proportions of 
type 17 T helper cell (Th17 cell) were downregulated in the DN group (Figure 7B). Analysis of the correlation between 
biomarkers and different immune cells revealed that FAM13B expression was positively correlated with effector memory CD4 

Figure 6 Gene set enrichment analysis (GSEA) of signaling pathways in which FAM13B and FAM98A are enriched. (A, C, E, and G). The enrichment analysis of FAM13B. (B, D, F, 
and H). The enrichment analysis of FAM98A.
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T cell proportion (R = 0.828). In contrast, FAM98A expression was significantly and negatively correlated with Th17 cell 
proportion (R = −0.575). (Figure 7C). Meanwhile, analysis of the correlation between biomarkers and PRMT-RGs revealed that 
FAM98A expression was significantly and positively correlated with PRMT3 expression (R = 0.824) but was significantly and 
negatively correlated with PRMT8 expression (R = −0.764) (Figure 7D).

FAM13B Expression is Negatively Correlated with GFR in DN
FAM13B and FAM98A were located on chromosomes 5 and 2 of the human genome, respectively (Figure 8A). 
Additionally, FAM13B expression was negatively correlated with GFR in DN (Cor = −0.731, p = 0.039) (Figure 8B).

FAM98A and FAM13B are Co-Regulated by Related Molecules
The biomarker-miRNA regulatory network predicted that 61 and 63 miRNAs target FAM98A and FAM13B, respectively. Of 
these, FAM98A and FAM13B were co-regulated by 6 miRNAs (hsa-mir-224-5p, hsa-mir-200b-3p, hsa-mir-124-3p, hsa-mir-1-3p, 
hsa-mir-218-5p, and hsa-mir-136-5p) (Figure 9A and B). The TF-biomarker regulatory network indicated that FAM98A and 
FAM13B were regulated by 17 and 14 TFs, respectively. TGIF2 regulated both FAM98A and FAM13B (Figure 9C).

Figure 7 Immune infiltration analysis. (A) Heatmap depicting the infiltration pattern of immune cells. (B) The differential immune cell enrichment scores between the 
control and diabetic nephropathy (DN) groups were analyzed using the Wilcoxon rank-sum test. (C) Heatmap depicting the correlation between biomarkers and 
differentially enriched immune cells. (D) Heatmap illustrating the correlation between biomarkers and protein arginine methylation-related genes (PRMT-RGs). *p < 0.05; 
**p < 0.01; ***p < 0.001; ****p < 0.0001.
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Estradiol and Rotenone are Potential Therapeutics for DN
The biomarker-drug network predicted that 40 and 35 drugs target FAM98A and FAM13B, respectively. Of these, seven 
drugs (ICG 001, estradiol, bisphenol A, rotenone, sodium arsenite, 1.2-dimethylhydrazine, and 7.8-dihydro- 
7,8-dihydroxybenzo(a)pyrene 9.10-oxide) targeted both FAM98A and FAM13B (Figure 9D). FAM98A exhibited favor-
able docking affinities with estradiol (binding energy = −5.24 kcal/mol) and rotenone (binding energy = −5.36 kcal/mol) 
(Table 2). Estradiol and amino acids (ARG-301, ARG-287, and SER-282) could bind to FAM98A through hydrogen 
bonds. In contrast, FAM98A did not interact with rotenone through hydrogen bonds but through hydrophobic interac-
tions, π-π stacking, cation-π, or other non-hydrogen bonding interactions (Figure 9E and F).

Validation of Biomarker Expression in the DN Mouse Model
To validate the expression of biomarkers in biological samples, a DN mouse model was constructed. The successful 
establishment of the model was confirmed by monitoring blood glucose levels, body weight changes, and kidney 
tissue staining with MASSON and PAS methods (Supplementary Tables 3, 4 and Supplementary Figure 1). qRT-PCR 
analysis revealed that the expression levels of Fam98a and Fam13b were significantly upregulated in the experi-
mental group (Figure 10A and B). These findings were consistent with those of GSE30122 and GSE104954 dataset 
analyses.

FAM98A Expression Elevated in the Renal Tubular Epithelial Cells of DN Patients
To further validate the expression of the FAM98A protein in biological samples, we collected kidney paraffin-embedded 
tissue sections from patients undergoing renal biopsy at our center. Immunohistochemical staining revealed that 
FAM98A is primarily expressed in human renal tubular epithelial cells, and its expression is significantly increased in 
DN patients compared to patients with MCD (Figure 10C). These findings also were consistent with those of GSE30122 
and GSE104954 dataset analyses.

Figure 8 Chromosomal localization and clinical analysis of FAM98A and FAM13B. (A) Chromosomal localization: FAM13B is located on the fifth chromosome of the human 
genome, while FAM98A is located on the second chromosome. (B) Correlation between FAM13B expression and glomerular filtration rate (GFR).
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Discussion
Previous studies have reported that PRMTs are involved in the development and maintenance of DN. However, the 
regulatory mechanisms or the potential biomarkers of DN have not been elucidated. This study used a combination of 
differential expression analysis and diverse machine learning approaches to identify two biomarkers of DN (FAM13B and 
FAM98A). Comprehensive bioinformatics analysis and validation using mouse kidney samples revealed that FAM13B and 
FAM98A exhibited a robust diagnostic performance for DN. FAM13B and FAM98A were significantly correlated with 
PRMT3, PRMT8, effector memory CD4 T cells, and Th17 cells, contributing to the onset and progression of DN. 
Additionally, a regulatory network for the biomarkers was constructed, which enhanced our understanding of the 
molecular mechanisms underlying DN. Finally, drugs targeting the biomarkers were predicted, offering potential 
therapeutic options for the clinical management of DN.

The following five candidate genes were identified in this study: FAM13B, FAM98A, HPS5, PLBD1, and TGFBR. 
Li et al used RNA sequencing and miRNA sequencing technologies and demonstrated that HPS5 was downregulated in 
the liver of the STZ/high-fat diet-induced diabetes rat model. Additionally, the alleviation of hepatic oxidative damage 
upregulates HPS5 expression, restoring the balance of glucose and lipid metabolism and recovering liver function.41 This 
suggests that HPS5 facilitates the progression of diabetes in the liver. However, the role of HPS5 in improving cellular 

Figure 9 Regulatory networks and drug predictions for FAM98A and FAM13B. (A) Visualization of the mRNA-miRNA regulatory network associated with FAM98A and 
FAM13B. (B) Venn diagram of miRNAs predicted using two biomarkers. (C) Transcription factor (TF) regulatory network. (D) Drug interaction network of FAM98A and 
FAM13B. The blue and yellow nodes represent drugs that target FAM98A and FAM13B, respectively, while the purple nodes represent drugs that target both FAM98A and 
FAM13B. (E) The structural foundation for the binding of estradiol and amino acids. ARG-301, ARG-287, and SER-282 in FAM98A can form hydrogen bonds with estradiol. 
(F) No hydrogen bond formation was observed between FAM98A and letrozole.
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lipid metabolism in renal tubular epithelial cells and consequently alleviating DN has not been investigated. Among the 
five candidate genes, TGFBR3 is critical for diagnosing glomerular lesions in DN.42 Meanwhile, clinical evidence 
suggests that inflammation is a key etiological factor in DN.43–47 TGFBR3 specifically binds to transforming growth 

Table 2 Binding Energy of Biomarker Binding to Targeted Drugs

Biomarkers Targeted Drugs Compound CID Binding Energy (kcal/mol)

FAM98A Bisphenol A 6623 −4.31
7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9.10-oxide 41233 −4.93

Estradiol 5757 −5.24

ICG 001 11,238,147 −3.93
Rotenone 6758 −5.36

FAM13B Bisphenol A 6623 −3.88

7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9.10-oxide 41233 −4.83
Estradiol 5757 −4.93

ICG 001 11,238,147 −3.3
Rotenone 6758 −4.86

Abbreviations: DN, diabetic nephropathy; PRMT-RGs, protein arginine methylation-related genes; TFs, transcription factors; GFR, glomerular 
filtration rate; PRMT, protein arginine methylation; AKI, acute kidney injury; DEGs, differential expressed genes; GEO, Gene Expression Omnibus; 
GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; GGI, Gene-gene interaction network; WGCNA, weighted gene 
co-expression network analysis; ssGSEA, single sample Gene Set Enrichment Analysis; TOM, topological overlap matrix; LASSO, least absolute 
shrinkage and selection operator; SVM-RFE, support vector machine-recursive feature elimination; ROC, receiver operating characteristic; DCA, 
decision curve analysis; GSEA, gene set enrichment analysis; CTD, Comparative Toxicogenomics Database; STZ, streptozotocin; qRT-PCR, 
quantitative real-time polymerase chain reaction; cDNA, complementary DNA; AUC, area under curve; Th17 cell, type 17 T helper cell; TGF-β, 
transforming growth factor-β; TNF-α, tumor necrosis factor-α; IL-1β, interleukin-1β; NF-κB, nuclear factor-κB; ERS, endoplasmic reticulum stress.

Figure 10 Validation of the expression patterns of FAM13B and FAM98A. (A) Quantitative real-time polymerase chain reaction (qRT-PCR) analysis revealed that the mRNA 
levels of Fam13b are upregulated in diabetic nephropathy (DN). (B) qRT-PCR analysis revealed that the mRNA levels of Fam98a are upregulated in DN. *p < 0.05; **p < 0.01. 
(C) IHC illustrations and quantitative results of FAM98A in the kidneys of patients with MCD and patients with DN. ***p < 0.001.
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factor-β (TGF-β), inducing the polarization of Th1 cells to M1 macrophages, which secrete tumor necrosis factor-α 
(TNF-α), interleukin-1β (IL-1β), and IL-12 to promote the inflammatory response of Th1 cells. In DN, the number of Th1 
cells increases around the proximal tubular epithelial cells. Further, TNF-α induces hormone transcription and promotes 
inflammation and cell apoptosis through nuclear factor-κB (NF-κB) signal transduction.48,49 PLBD1, a phospholipase 
mainly expressed in the bone marrow, is expressed in the kidneys.50 Additionally, PLBD1 functions as a lipid mediator 
and induces inflammation. The upregulation of PLBD1 exacerbates heart failure after myocardial infarction, indicating 
that PLBD1 expression may represent a general inflammatory signal.51 However, the role of PLBD1 in DN has not been 
reported. This study used SVM-RFE and LASSO analyses to demonstrate that PLBD1 is a key gene involved in DN 
pathogenesis. The underlying molecular mechanism of PLBD1 may involve the induction of inflammation, leading to the 
development of DN. These findings suggest that HPS5, PLBD1, and TGFBR are potential diagnostic genes for DN.

In this study, five genes identified from the training and validation sets were subjected to ROC curve analysis. 
FAM13B, FAM98A, and TGFBR3 exhibited strong diagnostic ability (AUC values > 0.7). The expression levels of 
FAM98A and FAM13B were upregulated in the DN group. qRT-PCR analysis confirmed the upregulation of Fam98a and 
Fam13b in the kidneys of DN mice, which was consistent with the results of bioinformatics analysis. These findings 
suggest that FAM98A and FAM13B have diagnostic values in DN. Thus, FAM98A and FAM13B were considered 
biomarkers for DN.

The roles of FAM98A and FAM13B in the kidney and DN pathogenesis are unclear. Akter et al first identified FAM98A 
as a substrate for PRMT1 using mass spectrometry. The C-terminus of proteins contains multiple RGG/RG motifs, which 
can be recognized by PRMT1, promoting direct arginine methylation.52 Additionally, Prmt1 is upregulated in the kidneys 
of DN mice,53 exerting regulatory effects through the induction of oxidative stress, inflammation, and endoplasmic 
reticulum stress (ERS). In the STZ-induced DN rat model, Prmt1 expression is upregulated. The suppression of Prmt1 
upregulation effectively improved the histopathological changes in the kidneys of diabetic rats.54 This study performed 
Spearman correlation analysis to examine the correlation of FAM13B and FAM98A with PRMT-RGs and demonstrated 
that FAM98A and FAM13B were positively correlated with PRMT3. This suggests that both FAM98A and FAM13B are 
potential substrates for PRMT3, which is a novel discovery. In the invasive micropapillary carcinoma model, PRMT3 
regulates the ERS signaling pathway by promoting the arginine methylation of substrates.55 Additionally, PRMT3 is 
involved in activating ERS and mediating cisplatin-induced ototoxicity processes.56 However, the post-translational 
modifications and folding of proteins typically occur in the endoplasmic reticulum and Golgi apparatus.57 In this process, 
vesicular transport from the endoplasmic reticulum to the Golgi membrane plays a crucial role. GSEA revealed that 
FAM98A was positively associated with Golgi vesicle transport and proteasomal-mediated ubiquitin-dependent protein 
catabolic process. In the term cellular components, both FAM98A and FAM13B were positively correlated with Golgi 
membrane and endoplasmic reticulum to Golgi transport vesicle membrane. The results of this study and previous studies 
suggest that the overexpression of FAM98A, a substrate of PRMT1 in DN renal tubular epithelial cells, may lead to 
accelerated cell death by inducing ERS through PRMT1-mediated arginine methylation, resulting in kidney damage. 
Further in vivo and in vitro experiments to elucidate the underlying mechanisms are currently in the planning stages.

Inflammation and immunity play crucial roles in the pathogenesis of DN. Preclinical studies have demonstrated the 
roles of inflammation and immunity in the pathogenesis of DN and the progression of renal damage.58,59 Previous studies 
have identified the presence of effector memory CD4 T cells in the urine of patients with DN.60 However, the infiltration 
status of effector memory CD4 T cells in the kidneys in DN has not been previously elucidated. This study identified two 
biomarkers. ssGSEA revealed the infiltration of effector memory CD4 T cells in the kidneys of patients with DN. 
FAM13B and FAM98A exhibited the strongest positive correlation with effector memory CD4 T cells. This indicates that 
the upregulation of FAM98A and FAM13B is critical for the inflammation and damage mediated by effector memory CD4 
T cells in DN. Further experimental studies are needed to understand the specific contributions of CD4 T cells to the 
pathophysiology of DN.

This study demonstrates innovation in research methodology by successfully identifying biomarkers for DN through the 
use of public databases and bioinformatics techniques. Importantly, this study did not limit analysis to the theoretical level but 
also conducted experimental validation using animal and patient samples to confirm the existence and functionality of these 
biomarkers, thereby ensuring the reliability and practicality of the findings. Additionally, this study offers new insights into the 
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pathogenesis of DN by thoroughly examining the correlation between two key biomarkers—arginine methyltransferase and 
immune cells. Finally, the study predicted potential drugs targeting these biomarkers, which may provide new avenues for 
developing molecular-targeted therapy strategies for DN. In conclusion, this study not only offers novel perspectives on the 
diagnosis and clinical treatment of DN but also showcases unique innovation in both research methodology and the 
application of results. However, this study has not yet fully elucidated the molecular mechanisms underlying the biomarkers 
of diabetic nephropathy (DN), and it is crucial to validate these findings using a larger number of biological samples from DN 
patients. To address this, we plan to design and conduct more complex in vitro and in vivo validation experiments. In the 
future, we will thoroughly investigate the specificity, sensitivity, and clinical applicability of the newly identified biomarkers 
FAM98A and FAM13B, with the aim of advancing early diagnosis and intervention for DN. Additionally, we intend to first 
explore the regulatory effects of potential pharmacological compounds on FAM98A and FAM13B through in vitro studies, 
followed by assessing their impact on the progression of DN in animal models. Moreover, we will expand our research scope 
to explore the association of these biomarkers with other pathophysiological mechanisms of DN and actively search for new 
therapeutic targets.

Conclusion
This study performed comprehensive bioinformatics analysis to identify 5 DEGs in DN (FAM13B, FAM98A, HPS5, 
PLBD1, and TGFBR). ROC curve analysis and expression validation in two databases revealed that FAM98A and 
FAM13B serve as biomarkers with an AUC value of > 0.9 and exhibit consistent expression patterns. Further studies 
revealed that these biomarkers were correlated with PRMT3, PRMT8, effector memory CD4 T cell, and Th17 cell, 
contributing to DN onset and progression. qRT-PCR analysis revealed that the expression levels of Fam98a and Fam13b 
were significantly upregulated in the kidneys of DN mice. Additionally, the CTD database was used to predict potential 
drugs that target FAM98A and FAM13B, offering novel therapeutic modalities for DN.

Data Sharing Statement
The datasets (GSE30122 and GSE104954) used and analyzed in the current study are available from GEO database 
(https://www.ncbi.nlm.nih.gov/gds).

Ethics Approval and Consent to Participate
The animal protocol conformed to the guidelines outlined in “Laboratory Animal- Guidelines for Ethical Review of 
animal Welfare (GB/T 35892-2018)” to ensure laboratory animals’ ethical treatment and welfare. All procedures 
involving animals were approved by the ethical committee of Capital Medical University (Permit Number: AEEI- 
2022-284), Beijing, China. All procedures involving human participants and human data including publicly available 
data were approved by the ethical committee of Beijing Friendship Hospital, Capital Medical University (Permit 
Number: BFH20240528005/BFHHZS20240146), Beijing, China.

Acknowledgments
Thanks all the contributors to the GEO database.

Author Contributions
All authors made a significant contribution to the work reported, whether that is in the conception, study design, 
execution, acquisition of data, analysis and interpretation, or in all these areas; took part in drafting, revising or critically 
reviewing the article; gave final approval of the version to be published; have agreed on the journal to which the article 
has been submitted; and agree to be accountable for all aspects of the work.

Funding
This work was sponsored by Department of Nephrology at the Beijing Friendship Hospital, Capital Medical University 
(to X Wang), the National Natural Science Foundation of China (82003833, to L Wang), Beijing Friendship Hospital the 
Seed Program (YYZZ202114, to Y Guan).

Diabetes, Metabolic Syndrome and Obesity 2024:17                                                                          https://doi.org/10.2147/DMSO.S472412                                                                                                                                                                                                                       

DovePress                                                                                                                       
3415

Dovepress                                                                                                                                                            Guan et al

Powered by TCPDF (www.tcpdf.org)

https://www.ncbi.nlm.nih.gov/gds
https://www.dovepress.com
https://www.dovepress.com


Disclosure
The authors declare that they have no competing interests.

References
1. Yao L, Liang X, Qiao Y, Chen B, Wang P, Liu Z. Mitochondrial dysfunction in diabetic tubulopathy. Metabolism. 2022;131:155195. doi:10.1016/j. 

metabol.2022.155195
2. Vasanth Rao VR, Tan SH, Candasamy M, Bhattamisra SK. Diabetic nephropathy: an update on pathogenesis and drug development. Diabetes 

Metab Syndr. 2019;13(1):754–762. doi:10.1016/j.dsx.2018.11.054
3. de Boer IH, de Boer IH, Rue TC, et al. Temporal trends in the prevalence of diabetic kidney disease in the United States. JAMA. 2011;305 

(24):2532–2539. doi:10.1001/jama.2011.861
4. Perkovic V, Jardine MJ, Neal B, et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med. 2019;380 

(24):2295–2306. doi:10.1056/NEJMoa1811744
5. Heerspink H, Langkilde AM, Wheeler DC. Dapagliflozin in patients with chronic kidney disease. Reply N Engl J Med. 2021;384(4):389–390. 

doi:10.1056/NEJMc2032809
6. Pitt B, Filippatos G, Agarwal R, et al. Cardiovascular events with finerenone in kidney disease and type 2 diabetes. N Engl J Med. 2021;385 

(24):2252–2263. doi:10.1056/NEJMoa2110956
7. Bakris GL, Agarwal R, Anker SD, et al. Effect of finerenone on chronic kidney disease outcomes in type 2 diabetes. N Engl J Med. 2020;383 

(23):2219–2229. doi:10.1056/NEJMoa2025845
8. Herrington WG, Baigent C, Haynes R. Empagliflozin in patients with chronic kidney disease. N Engl J Med. 2023;388(24):2301–2302. 

doi:10.1056/NEJMc2301923
9. Wu Q, Schapira M, Arrowsmith CH, Barsyte-Lovejoy D. Protein arginine methylation: from enigmatic functions to therapeutic targeting. Nat Rev 

Drug Discov. 2021;20(7):509–530. doi:10.1038/s41573-021-00159-8
10. Zhu Y, Yu C, Zhuang S. Protein arginine methyltransferase 1 mediates renal fibroblast activation and fibrogenesis through activation of Smad3 

signaling. Am J Physiol Renal Physiol. 2020;318(2):F375–F387. doi:10.1152/ajprenal.00487.2019
11. Nakayama Y, Ueda S, Yamagishi S, et al. Asymmetric dimethylarginine accumulates in the kidney during ischemia/reperfusion injury. Kidney Int. 

2014;85(3):570–578. doi:10.1038/ki.2013.398
12. Mei X, Zeng J, Liu DF, et al. Abnormalities of the PRMT1-ADMA-DDAH1 metabolism axis and probucol treatment in diabetic patients and 

diabetic rats. Ann Palliat Med. 2021;10(3):3343–3353. doi:10.21037/apm-21-417
13. Park MJ, Han HJ, Kim DI. Lipotoxicity-induced PRMT1 exacerbates mesangial cell apoptosis via endoplasmic reticulum stress. Int J Mol Sci. 

2017;18(7):1421. doi:10.3390/ijms18071421
14. Akalin PK. Introduction to bioinformatics. Mol Nutr Food Res. 2006;50(7):610–619. doi:10.1002/mnfr.200500273
15. Rauschert S, Raubenheimer K, Melton PE, Huang RC. Machine learning and clinical epigenetics: a review of challenges for diagnosis and 

classification. Clin Clin Epigenet. 2020;12(1):51. doi:10.1186/s13148-020-00842-4
16. Basu S, Faghmous JH, Doupe P. Machine learning methods for precision medicine research designed to reduce health disparities: a structured 

tutorial. Ethn Dis. 2020;30(Suppl 1):217–228. doi:10.18865/ed.30.S1.217
17. Terranova N, Venkatakrishnan K, Benincosa LJ. Application of machine learning in translational medicine: current status and future opportunities. 

AAPS J. 2021;23(4):74. doi:10.1208/s12248-021-00593-x
18. Pruneski JA, Williams RJ 3rd, Nwachukwu BU, et al. The development and deployment of machine learning models. Knee Surg Sports Traumatol 

Arthrosc. 2022;30(12):3917–3923. doi:10.1007/s00167-022-07155-4
19. Han H, Chen Y, Yang H, et al. Identification and verification of diagnostic biomarkers for glomerular injury in diabetic nephropathy based on 

machine learning algorithms. Front Endocrinol. 2022;13:876960. doi:10.3389/fendo.2022.876960
20. Na J, Sweetwyne MT, Park AS, Susztak K, Cagan RL. Diet-induced podocyte dysfunction in drosophila and mammals. Cell Rep. 2015;12 

(4):636–647. doi:10.1016/j.celrep.2015.06.056
21. Grayson PC, Eddy S, Taroni JN, et al. Metabolic pathways and immunometabolism in rare kidney diseases. Ann Rheum Dis. 2018;77 

(8):1226–1233. doi:10.1136/annrheumdis-2017-212935
22. Wei HH, Fan XJ, Hu Y, et al. A systematic survey of PRMT interactomes reveals the key roles of arginine methylation in the global control of RNA 

splicing and translation. Sci Bull. 2021;66(13):1342–1357. doi:10.1016/j.scib.2021.01.004
23. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinf. 2008;9:559. doi:10.1186/1471-2105- 

9-559
24. Ritchie ME, Phipson B, Wu D, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 

2015;43(7):e47. doi:10.1093/nar/gkv007
25. Cao T, Li Q, Huang Y, Li A. plotnineSeqSuite: a Python package for visualizing sequence data using ggplot2 style. BMC Genomics. 2023;24 

(1):585. doi:10.1186/s12864-023-09677-8
26. Gu Z, Eils R, Schlesner M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics. 2016;32 

(18):2847–2849. doi:10.1093/bioinformatics/btw313
27. Wu T, Hu E, Xu S, et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation. 2021;2(3):100141. doi:10.1016/j. 

xinn.2021.100141
28. Walter W, Sánchez-Cabo F, Ricote M. GOplot: an R package for visually combining expression data with functional analysis. Bioinformatics. 

2015;31(17):2912–2914. doi:10.1093/bioinformatics/btv300
29. Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear models via coordinate descent. J Stat Softw. 2010;33(1):1–22. 

doi:10.18637/jss.v033.i01
30. Li Z, Qin Y, Liu X, et al. Identification of predictors for neurological outcome after cardiac arrest in peripheral blood mononuclear cells through 

integrated bioinformatics analysis and machine learning. Funct Integr Genomics. 2023;23(2):83. doi:10.1007/s10142-023-01016-0

https://doi.org/10.2147/DMSO.S472412                                                                                                                                                                                                                               

DovePress                                                                                                                                

Diabetes, Metabolic Syndrome and Obesity 2024:17 3416

Guan et al                                                                                                                                                             Dovepress

Powered by TCPDF (www.tcpdf.org)

https://doi.org/10.1016/j.metabol.2022.155195
https://doi.org/10.1016/j.metabol.2022.155195
https://doi.org/10.1016/j.dsx.2018.11.054
https://doi.org/10.1001/jama.2011.861
https://doi.org/10.1056/NEJMoa1811744
https://doi.org/10.1056/NEJMc2032809
https://doi.org/10.1056/NEJMoa2110956
https://doi.org/10.1056/NEJMoa2025845
https://doi.org/10.1056/NEJMc2301923
https://doi.org/10.1038/s41573-021-00159-8
https://doi.org/10.1152/ajprenal.00487.2019
https://doi.org/10.1038/ki.2013.398
https://doi.org/10.21037/apm-21-417
https://doi.org/10.3390/ijms18071421
https://doi.org/10.1002/mnfr.200500273
https://doi.org/10.1186/s13148-020-00842-4
https://doi.org/10.18865/ed.30.S1.217
https://doi.org/10.1208/s12248-021-00593-x
https://doi.org/10.1007/s00167-022-07155-4
https://doi.org/10.3389/fendo.2022.876960
https://doi.org/10.1016/j.celrep.2015.06.056
https://doi.org/10.1136/annrheumdis-2017-212935
https://doi.org/10.1016/j.scib.2021.01.004
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1186/s12864-023-09677-8
https://doi.org/10.1093/bioinformatics/btw313
https://doi.org/10.1016/j.xinn.2021.100141
https://doi.org/10.1016/j.xinn.2021.100141
https://doi.org/10.1093/bioinformatics/btv300
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.1007/s10142-023-01016-0
https://www.dovepress.com
https://www.dovepress.com


31. Robin X, Turck N, Hainard A, et al. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinf. 2011;12:77. 
doi:10.1186/1471-2105-12-77

32. Wang M, Tang H, Chen X, et al. Opportunistic muscle evaluation during chest CT is associated with vertebral compression fractures in old adults: 
a longitudinal study. J Gerontol a Biol Sci Med Sci. 2024;79(2):glad162. doi:10.1093/gerona/glad162

33. Zhang H, Meltzer P, Davis S. RCircos: an R package for Circos 2D track plots. BMC Bioinf. 2013;14:244. doi:10.1186/1471-2105-14-244
34. Dapprich AL, Derks LM, Holtmann M, Lange WG, Legenbauer T, Becker ES. Hostile and threatening interpretation biases in adolescent inpatients 

are specific to callous-unemotional traits and social anxiety. Eur Child Adolesc Psychiatry. 2023;33:1143–1150. doi:10.1007/s00787-023-02227-3
35. Zhang C, Zheng Y, Li X, Hu X, Qi F, Luo J. Genome-wide mutation profiling and related risk signature for prognosis of papillary renal cell 

carcinoma. Ann Transl Med. 2019;7(18):427. doi:10.21037/atm.2019.08.113
36. Charoentong P, Finotello F, Angelova M, et al. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and 

predictors of response to checkpoint blockade. Cell Rep. 2017;18(1):248–262. doi:10.1016/j.celrep.2016.12.019
37. Wang L, Wang D, Yang L, et al. Cuproptosis related genes associated with Jab1 shapes tumor microenvironment and pharmacological profile in 

nasopharyngeal carcinoma. Front Immunol. 2022;13:989286. doi:10.3389/fimmu.2022.989286
38. Wang X, Ning Y, Zhang P, Li C, Zhou R, Guo X. Hair multi-bioelement profile of Kashin-Beck disease in the endemic regions of China. J Trace 

Elem Med Biol. 2019;54:79–97. doi:10.1016/j.jtemb.2019.04.002
39. Zhang MM, Wang D, Lu F, et al. Identification of the active substances and mechanisms of ginger for the treatment of colon cancer based on 

network pharmacology and molecular docking. BioData Min. 2021;14(1):1. doi:10.1186/s13040-020-00232-9
40. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. 

Methods. 2001;25(4):402–408. doi:10.1006/meth.2001.1262
41. Li J, Luo M, Hu M, et al. investigating the molecular mechanism of aqueous extract of cyclocarya paliurus on ameliorating diabetes by 

transcriptome profiling. Front Pharmacol. 2018;9:912. doi:10.3389/fphar.2018.00912
42. Li C, Su F, Zhang L, et al. Identifying potential diagnostic genes for diabetic nephropathy based on hypoxia and immune status. J Inflamm Res. 

2021;14:6871–6891. doi:10.2147/JIR.S341032
43. Li S, Jia Y, Xue M, et al. Inhibiting Rab27a in renal tubular epithelial cells attenuates the inflammation of diabetic kidney disease through the 

miR-26a-5p/CHAC1/NF-kB pathway. Life Sci. 2020;261:118347. doi:10.1016/j.lfs.2020.118347
44. Salti T, Khazim K, Haddad R, Campisi-Pinto S, Bar-Sela G, Cohen I. Glucose induces IL-1α-dependent inflammation and extracellular matrix 

proteins expression and deposition in renal tubular epithelial cells in diabetic kidney disease. Front Immunol. 2020;11:1270. doi:10.3389/ 
fimmu.2020.01270

45. Zhou Y, Ma XY, Han JY, et al. Metformin regulates inflammation and fibrosis in diabetic kidney disease through TNC/TLR4/NF-κB/miR-155-5p 
inflammatory loop. World J Diabetes. 2021;12(1):19–46. doi:10.4239/wjd.v12.i1.19

46. Cui X, Li Y, Yuan S, et al. Alpha-kinase1 promotes tubular injury and interstitial inflammation in diabetic nephropathy by canonical pyroptosis 
pathway. Biol Res. 2023;56(1):5. doi:10.1186/s40659-023-00416-7

47. Yang WX, Liu Y, Zhang SM, et al. Epac activation ameliorates tubulointerstitial inflammation in diabetic nephropathy. Acta Pharmacol Sin. 
2022;43(3):659–671. doi:10.1038/s41401-021-00689-2

48. Yang M, Zhang Y, Ren J. Acetylation in cardiovascular diseases: molecular mechanisms and clinical implications. Biochim Biophys Acta Mol Basis 
Dis. 2020;1866(10):165836. doi:10.1016/j.bbadis.2020.165836

49. Zouhal H, Zare-Kookandeh N, Haghighi MM, et al. Physical activity and adipokine levels in individuals with type 2 diabetes: a literature review 
and practical applications. Rev Endocr Metab Disord. 2021;22(4):987–1011. doi:10.1007/s11154-021-09657-x

50. Fagerberg L, Hallström BM, Oksvold P, et al. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and 
antibody-based proteomics. Mol Cell Proteomics. 2014;13(2):397–406. doi:10.1074/mcp.M113.035600

51. Vanhaverbeke M, Vausort M, Veltman D, et al. Peripheral Blood RNA Levels of QSOX1 and PLBD1 are new independent predictors of left 
ventricular dysfunction after acute myocardial infarction. Circ Genom Precis Med. 2019;12(12):e002656. doi:10.1161/CIRCGEN.119.002656

52. Akter KA, Mansour MA, Hyodo T, Ito S, Hamaguchi M, Senga T. FAM98A is a novel substrate of PRMT1 required for tumor cell migration, 
invasion, and colony formation. Tumour Biol. 2016;37(4):4531–4539. doi:10.1007/s13277-015-4310-5

53. Matsuguma K, Ueda S, Yamagishi S, et al. Molecular mechanism for elevation of asymmetric dimethylarginine and its role for hypertension in 
chronic kidney disease. J Am Soc Nephrol. 2006;17(8):2176–2183. doi:10.1681/ASN.2005121379

54. Ojima A, Ishibashi Y, Matsui T, et al. Glucagon-like peptide-1 receptor agonist inhibits asymmetric dimethylarginine generation in the kidney of 
streptozotocin-induced diabetic rats by blocking advanced glycation end product-induced protein arginine methyltransferase-1 expression. Am 
J Pathol. 2013;182(1):132–141. doi:10.1016/j.ajpath.2012.09.016

55. Zhi R, Wu K, Zhang J, et al. PRMT3 regulates the progression of invasive micropapillary carcinoma of the breast. Cancer Sci. 2023;114 
(5):1912–1928. doi:10.1111/cas.15724

56. Deith M, Brodie JF. Predicting defaunation: accurately mapping bushmeat hunting pressure over large areas. Proc Biol Sci. 2020;287 
(1922):20192677. doi:10.1098/rspb.2019.2677

57. Wang Y, Jin M, Cheng CK, Li Q. Tubular injury in diabetic kidney disease: molecular mechanisms and potential therapeutic perspectives. Front 
Endocrinol. 2023;14:1238927. doi:10.3389/fendo.2023.1238927

58. Rayego-Mateos S, Morgado-Pascual JL, Opazo-Ríos L, et al. Pathogenic pathways and therapeutic approaches targeting inflammation in diabetic 
nephropathy. Int J Mol Sci. 2020;21(11):3798. doi:10.3390/ijms21113798

59. Rayego-Mateos S, Rodrigues-Diez RR, Fernandez-Fernandez B, et al. Targeting inflammation to treat diabetic kidney disease: the road to 2030. 
Kidney Int. 2023;103(2):282–296. doi:10.1016/j.kint.2022.10.030

60. Kopetschke K, Klocke J, Grießbach AS, et al. The cellular signature of urinary immune cells in Lupus nephritis: new insights into potential 
biomarkers. Arthritis Res Ther. 2015;17(1):94. doi:10.1186/s13075-015-0600-y

Diabetes, Metabolic Syndrome and Obesity 2024:17                                                                          https://doi.org/10.2147/DMSO.S472412                                                                                                                                                                                                                       

DovePress                                                                                                                       
3417

Dovepress                                                                                                                                                            Guan et al

Powered by TCPDF (www.tcpdf.org)

https://doi.org/10.1186/1471-2105-12-77
https://doi.org/10.1093/gerona/glad162
https://doi.org/10.1186/1471-2105-14-244
https://doi.org/10.1007/s00787-023-02227-3
https://doi.org/10.21037/atm.2019.08.113
https://doi.org/10.1016/j.celrep.2016.12.019
https://doi.org/10.3389/fimmu.2022.989286
https://doi.org/10.1016/j.jtemb.2019.04.002
https://doi.org/10.1186/s13040-020-00232-9
https://doi.org/10.1006/meth.2001.1262
https://doi.org/10.3389/fphar.2018.00912
https://doi.org/10.2147/JIR.S341032
https://doi.org/10.1016/j.lfs.2020.118347
https://doi.org/10.3389/fimmu.2020.01270
https://doi.org/10.3389/fimmu.2020.01270
https://doi.org/10.4239/wjd.v12.i1.19
https://doi.org/10.1186/s40659-023-00416-7
https://doi.org/10.1038/s41401-021-00689-2
https://doi.org/10.1016/j.bbadis.2020.165836
https://doi.org/10.1007/s11154-021-09657-x
https://doi.org/10.1074/mcp.M113.035600
https://doi.org/10.1161/CIRCGEN.119.002656
https://doi.org/10.1007/s13277-015-4310-5
https://doi.org/10.1681/ASN.2005121379
https://doi.org/10.1016/j.ajpath.2012.09.016
https://doi.org/10.1111/cas.15724
https://doi.org/10.1098/rspb.2019.2677
https://doi.org/10.3389/fendo.2023.1238927
https://doi.org/10.3390/ijms21113798
https://doi.org/10.1016/j.kint.2022.10.030
https://doi.org/10.1186/s13075-015-0600-y
https://www.dovepress.com
https://www.dovepress.com


Diabetes, Metabolic Syndrome and Obesity                                                                                       Dovepress 

Publish your work in this journal 
Diabetes, Metabolic Syndrome and Obesity is an international, peer-reviewed open-access journal committed to the rapid publication of the 
latest laboratory and clinical findings in the fields of diabetes, metabolic syndrome and obesity research. Original research, review, case reports, 
hypothesis formation, expert opinion and commentaries are all considered for publication. The manuscript management system is completely 
online and includes a very quick and fair peer-review system, which is all easy to use. Visit http://www.dovepress.com/testimonials.php to 
read real quotes from published authors.  

Submit your manuscript here: https://www.dovepress.com/diabetes-metabolic-syndrome-and-obesity-journal

DovePress                                                                                              Diabetes, Metabolic Syndrome and Obesity 2024:17 3418

Guan et al                                                                                                                                                             Dovepress

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
http://www.dovepress.com/testimonials.php
https://www.facebook.com/DoveMedicalPress/
https://twitter.com/dovepress
https://www.linkedin.com/company/dove-medical-press
https://www.youtube.com/user/dovepress
https://www.dovepress.com
https://www.dovepress.com

	Introduction
	Materials and Methods
	Data Sources
	Analysis of the Correlation Between PRMT-RGs
	Weighted Gene Co-Expression Network Analysis (WGCNA)
	DEG Identification
	Enrichment Analysis of DEGs
	Identification of Candidate Genes
	Diagnostic Performance Evaluation and Validation of Candidate Genes
	Construction and Evaluation of Nomogram
	Chromosomal Localization and Clinical Analysis of Biomarkers
	Gene Set Enrichment Analysis (GSEA)
	Analysis of Immune Cell Infiltration in DN
	Regulatory Network Construction and Targeted Drug Prediction
	Drug Prediction and Molecular Docking
	Construction of the Mouse Model
	Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR)
	Clinical Data Acquisition
	Immunohistochemistry (IHC) Staining
	Statistical Analysis

	Results
	Expression Levels of PRMT1, PRMT2, PRMT3, CARM1, PRMT5, PRMT7 and PRMT8 Were Correlated in the Training Set
	Genes Associated with PRMT-RGs in DN
	DEGs Were Strongly Associated with Immune-Related Functions and Cell Adhesion
	FAM13B, FAM98A, HPS5, PLBD1, and TGFBR3 Served as Candidate Genes
	Enhanced Diagnostic Efficacy of FAM13B and FAM98A for DN
	FAM13B and FAM98A were Mainly Enriched in Sensory Perception and Modification-Dependent Macromolecule Catabolic Process
	Th17 Cells are Involved in DN Pathogenesis
	FAM13B Expression is Negatively Correlated with GFR in DN
	FAM98A and FAM13B are Co-Regulated by Related Molecules
	Estradiol and Rotenone are Potential Therapeutics for DN
	Validation of Biomarker Expression in the DN Mouse Model
	FAM98A Expression Elevated in the Renal Tubular Epithelial Cells of DN Patients

	Discussion
	Conclusion
	Data Sharing Statement
	Ethics Approval and Consent to Participate
	Acknowledgments
	Author Contributions
	Funding
	Disclosure

