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Abstract

Human interpersonal communications drive political, technological, and economic systems,

placing importance on network link prediction as a fundamental problem of the sciences.

These systems are often described at the network-level by degree counts —the number of

communication links associated with individuals in the network—that often follow approxi-

mate Pareto distributions, a divergence from Poisson-distributed counts associated with

random chance. A defining challenge is to understand the inter-personal dynamics that give

rise to such heavy-tailed degree distributions at the network-level; primarily, these distribu-

tions are explained by preferential attachment, which, under certain conditions, can create

power law distributions; preferential attachment’s prediction of these distributions breaks

down, however, in conditions with no network growth. Analysis of an organization’s email

network suggests that these degree distributions may be caused by the existence of individ-

ual participation-shift dynamics that are necessary for coherent communication between

humans. We find that the email network’s degree distribution is best explained by turn-taking

and turn-continuing norms present in most social network communication. We thus describe

a mechanism to explain a long-tailed degree distribution in conditions with no network

growth.

Introduction

Fundamental to the prediction of network phenomena is an explanation of heavy-tailed degree

distributions—the enumeration of links among individuals in a network. Indeed, many obser-

vations of social networks and communication networks in particular is that the emergent

degree distribution of emergent degree is “non-normal” and heavy-tailed [1]. In many systems,

a few individuals dominate counts of network interactions and have very many links, whereas

most individuals have just a few links. Researchers have observed such long-tailed, approxi-

mate Pareto-distributed degree distributions in a number of social networks [2–5], including

human communication networks [6, 7]. The ubiquity of this observed approximate Pareto dis-

tribution has been of considerable interest to social scientists, as it deviates from Poisson-dis-

tributed counts that would normally be associated with random chance. Often, Pareto-
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distributed degree is explained by researchers via preferential attachment, which, under certain

conditions, can create power law distributions. [8–12]; however, in conditions where the net-

work has no growth in the number of nodes, preferential attachment instead converges to a

complete graph [13]. Explanations of long-tailed degree in networks without growth thus still

requires explanation.

A possible explanation for approximate power-law distributions in communication net-

works without growth could be conversational dynamics and norms present in many human

interaction networks. A common process found in many social network communications is

the existence of participation-shifts—a rules-based sequential shift in roles of speaker, recipi-

ent, and unaddressed recipient. Building upon previous models of conversation analysis, Gib-

son [14] asserts two propositions: first, that conversation is identifiable as an ordered

phenomenon with rules governing who is to speak, and who is to be addressed; second, that

conversation is comprised of actors with attributes (e.g. personality, hierarchical position, or

other attributes) that affect the frequency and timing of their participation in the conversation.

Without these two basic propositions, conversation would be chaotic, and successful commu-

nication impossible to achieve. Participation shifts are thus the sequential reshuffling of partici-

pation roles that depend upon the past history of the network. In the dyadic case, for example,

a speaker, Person A, sends a communication event to Person B, who then responds. (The par-

ticipation shifts framework was developed with a sender, recipient, and unaddressed recipient

(audience) in mind as an implicit assumption. Unlike corporate meetings [14] or radio net-

works [15], email networks do not have an audience of the entire group at once, and side con-

versations—private communications between actors that are not seen by the group at large—

are endemic. With this in mind, we test a pair of recency effects: RRecSnd (turn-taking with

intervening events taking place) and RSndSnd (turn-continuing with intervening events tak-

ing place). Conceptualizing recency effects in addition to participation shifts allows intermedi-

ate events (emails) to occur between responses.). This participation shift is labeled AB-BA, in

the typology developed by Gibson. See Table 1 for a list of all dyadic participation shifts. As a

communication process continues, role shifts depend heavily upon the past history of the com-

munication network series; e.g., the rate with which an individual is addressed in the past will

affect their participation going forward. Without p-shifts, mutual intelligibility would be

Table 1. Dyadic participation-shifts (P-shifts).

Participation

Shift

Explanation

PSAB-BA Turn receiving: conversation event from A to B is immediately followed by conversation event

B to A (special case of RRecSnd)

PSAB-BY Turn receiving: conversation event from A to B is immediately followed by conversation event

B to Person Y
PSAB-XA Turn usurping: conversation event from A to B is immediately followed by conversation event

X to A
PSAB-XB Turn usurping: conversation event from A to B is immediately followed by conversation event

X to B
PSAB-XY Turn usurping: conversation event from A to B is immediately followed by conversation event

X to Y
PSAB-AY Turn continuing: conversation event from A to B is immediately followed by conversation

event X to Y (special case of RSndSnd)

RRecSnd Recency of conversation event from Person A to Person B affects Person B’s future rate of

communicating with Person A
RSndSnd Recency of conversation event from Person A to Person B affects Person A’s future rate of

communicating with Person B

https://doi.org/10.1371/journal.pone.0217240.t001

Participation shifts explain degree distributions in a human communications network

PLOS ONE | https://doi.org/10.1371/journal.pone.0217240 May 23, 2019 2 / 13

https://doi.org/10.1371/journal.pone.0217240.t001
https://doi.org/10.1371/journal.pone.0217240


limited, and conversation incoherent [14, 16, 17]. These participation shifts are indeed a strong

predictor of communication networks in a number of contexts; humans typically maintain

turn-taking and turn-continuing dynamics in radio networks, corporate meetings, and class-

rooms [14, 15, 18].

Our natural line of inquiry then is to investigate the link between the ubiquity of p-shifts in

human communication dynamics and ubiquitous long-tailed degree distributions in these net-

works. For example, strong dyadic turn-taking norms could require most conversation partici-

pants to be silent while few actors respond to one another, causing most degree counts to be

highly concentrated in just a few participants. Given the prevalence of this type of communica-

tion dynamic in human social networks, we expect email networks to have similar rules gov-

erning the participation framework over time. For email networks, p-shifts could explain why

certain individuals send or receive more emails than others—through e.g., AB-BA (turn-taking

dynamics), AB-AY (mass email events), or AB-BY (passing on information). With strong p-

shift effects, those nodes that communicated early in the series could accumulate a higher

degree by the continuation of past conversational dynamics into the future.

Shown in Fig 1, we analyze data collected from a hierarchical networked organization com-

posed of active duty staff of the United States Army and United Kingdom as they participated

in and conducted operations during a large-scale distributed military exercise at the Mission

Command Battle Laboratory (Fort Leavenworth, Kansas) using a sophisticated simulation

environment to drive scenario events. The key Mission Command staff consisted of three core

units: a U.S. Division and two sub-ordinate Brigades; a U.S. Heavy Brigade Combat Team and

a U.K. Coalition Brigade Combat Team.

Materials and methods

Army Research Lab IRB approved the following study; verbal consent was granted by partici-

pants. The military organization addressed specific problems that occurred in simulation and

during mission execution over a two week period as they conducted both military and civil-

military operations. This dataset reflects the operations of a work-directed networked organi-

zation functioning as a purposive social system where staff members are readily known to one

another by role and position and work collaboratively to accomplish one or more common

objectives [19]. The responsibility for accomplishing the various tasks and sub-tasks were

divided and assigned among the staff and included monitoring key events, analyzing informa-

tion, adhering to work routines, developing work products, and coordinating an effective

response, given resource limitations.

Our focus on a work-directed network organization differs from conventional network

studies that are focused on self-perceived social relationships or structurally-defined social sce-

narios [20]. The data collection and analysis focused on all email activity (9,750 total messages)

among all 94 participants involved in the two-week exercise. Only emails between participants

were considered for study. Thus, our setting consists of a time-stamped communications net-

work with self-directed emails as discrete ephemeral links between endpoints. This differs

from conventional approaches that are based on social-structure as enduring self-reported or

observed relationships. Participation shifts and preferential attachment of social actions by def-

inition depend upon the history of social actions in the past. We model sequential participa-

tion shifts by incorporating the past history of the network, using relational events models

(REM) [15]. We aim to test the efficacy of the preferential attachment (PA) versus participa-

tion shifts in predicting degree distribution.

Social network models typically treat network ties as having a persistent form. Friendship

networks, sexual partnerships, organizational ties, etc., all are higher-level concepts that
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represent a meaningful label to the repeated interactions between actors. Typically, however,

these social ties do have periodic interactions, or social actions. These social actions then com-

bine to form a gestalt relationship, viewed by the participants and outsiders as having a mean-

ingful form outside of the interactions themselves. Most network models, such as SAOMs,

ERGMs, and DNR, aim to predict network structure by predicting the relationship itself,

rather than the interactions that comprise these relationships [21, 22]. Here, we are interested

specifically in the conversational dynamics between members of an organization, i.e., the social

actions separate from their proscribed meanings.

Fig 1. Coalition joint task force. (a) (left) Organizational structure of the Coalition Joint Task Force during the two-

week military training exercise held at the Mission Command Battle Laboratory (Fort Leavenworth, Kansas). The

network organization spans multiple echelons from Joint Command to Division to Brigade to support Battalions.

(right) The core units exercised during the training event and subjected to our analysis- the Mission Command staff of

a U.S. Division and two sub-ordinate Brigades, a U.S. Heavy Brigade Combat Team and a U.K. Coalition Brigade

Combat Team. Individual situation awareness data was collected from the participating staff of these three core units.

(b) Example seating chart for the Mission Command staff of the U.S. Division.

https://doi.org/10.1371/journal.pone.0217240.g001
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Relational events modeling (REM) [15] uses the past history of social actions to predict the

next actions in the sequence. Each action a has three elements, a sender s, a recipient r, and a

timestamp t. In REM, social action dynamics are governed by the function:

lðsðaÞ; rðaÞ;Xa;At; yÞ ¼ exp ½lo þ y
TuðsðaÞ; rðaÞ;Xa;AtÞ� ð1Þ

where

• λ0 is the baseline rate of social actions in the network.

• Xa are covariates

• At represents the past history of social actions.

• u is a vector of sufficient statistics.

• θ are the model coefficients associated with the corresponding u.

The function above is analogous to a “hazard analysis” (also called event sequence, or sur-

vival analysis) of instantaneous tie formation, where each event is governed by a hazard func-

tion with inputs from the past network history. It compares a baseline rate of social actions in

the network with covariates associated with the past event sequence, i.e., elements associated

with past tie formation. For a more complete treatment of relational events modeling, see [15].

We use Butts’ relevent package for our analysis [23].

The use of relational events modeling allows us to test the effects of both preferential attach-

ment and participation shift dynamics as it relates to the observed degree distribution in the

network. REM includes elements of the past communication sequence as a predictor of future

communications: the extent to which, for example, high-indegree nodes participate more in

future social activity. As an example using a p-shift, REM also allows us to measure the past

participatory action sequence to spot email responses, either through the next email event in

the sequence (AB-BA) or by a recency effect (RecRecSnd); it handles the AB-BY series by mea-

suring whether the recipient of the action immediately in the past then becomes the sender in

the next event. Through these parameters, we can predict which effects are responsible for the

long-tailed degree distribution found in the network.

Results

REM parameter results are listed in Table 2. The strongest are normalized indegree affecting

future sending (NIDSnd) and receiving (NIDRec) rates. These are traditionally referred to as

preferential attachment—effects that represent individuals being drawn into the conversation

through repeated interactions. We note that though these are the strongest effects in the

model, they do not recreate the exact degree distribution in simulations, as predicted by [13].

Second, normalized out-degree effects (NODSnd and NODRec) are strong for future sending

rate, but not for future receiving rates. Though individuals may decide to send many messages

into the network, it does not affect how many they receive in the future. Recency-receive effect

(RRecSnd) is a dyadic-level effect that puts a rank-ordered response priority on recency of

messages sent to person i from others in the network. For example, the last person to send a

message to person i is scored a 1, the second-to-last person to send person i a message is scored

a 1/2, and so on. Recency-send effect (RSndSnd) is a rank-ordered send priority from i to j
when i has already sent emails to j in the past. Both of these effects have strong, positive coeffi-

cients in prediction of the next event in the series. Individual-level payrank and situational

awareness also affected send rates positively; payrank was associated with future receive rates,

but situational awareness was not. The greater the difference in payrank between actors, the

Participation shifts explain degree distributions in a human communications network
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more priority for response the lower-payrank actor gave to higher-payrank actors’ emails.

Actors with lower situational awareness (SA) sent emails more often to those of higher SA

than to those with the same or lower SA. As discussed above, most of the tested dyadic p-shifts

were found to be significant and positive, the most powerful one being the AB-AY shift (the

AB-AY shift also includes group emails). Residual deviance was 95712.11 on a null deviance

was 173523.1 (AIC 95748.11).

Though many parameters were strongly predictive of the relational events sequence in this

network, only a few approached the degree distribution found in the data: PSAB-BY,

PSAB-BA, and recency effects (RRecSnd and RSndSnd). (The participation shifts AB-BY and

AB-BA are special cases of the recency effects listed here). Surprisingly, our in- and outdegree

distributions were less heavy-tailed than preferential attachment would predict (i.e., what

would be expected given on NIDSnd and NIDRec in the model). This is a somewhat different

result as predicted in [13], which predicted a complete network with no network growth; we

suspect that given a longer time series, their predictions may stand. As described above, our

results suggest that participation shifts are responsible for the degree distributions in our

network.

We find substantial effects for both preferential attachment and participation shifts in pre-

dicting social actions in this communication network. Past normalized indegree (received

emails) greatly affects future participation in the network (outdegree), as well as future inde-

gree. As participants are drawn into conversation in the network, the more they participate.

This result highlights the kinetics of human networked communications. Among effects for

participation shifts, turn-continuing (so-called AB-AY p-shifts) was the strongest predictor of

future email behavior, while turn-receiving (AB-BY and AB-BA) were also strong indicators

of future social actions. Similarly, recency effects were also strong, suggesting that email

Table 2. Relational events model of an email network among a command-and-control military exercise. Signif. codes: p< 0���; p< 0.001��; p< 0.01�.

Parameter Estimate Std Err Z value Pr sig.

NIDSnd 12.93 1.24 10.44 0 ���

NIDRec 25.00 0.92 27.1 0 ���

NODSnd 13.56 0.40 34.02 0 ���

NODRec -0.61 0.42 -1.46 0.14

RRecSnd 1.19 0.04 30.09 0 ���

RSndSnd 3.12 0.04 70.77 0 ���

Payrank: Send 0.42 0.09 4.48 0 ���

SA: Send 0.35 0.14 2.39 0.02 �

Payrank: Receive 0.47 0.06 7.79 0 ���

SA: Receive -0.09 0.10 -0.9 0.37

Rank Difference � Recency 0.01 0.00 15.2 0 ���

Payrank Homophily 0.04 0.04 0.99 0.32

SA Difference 1.07 0.03 38.57 0 ���

PSAB-BA 2.05 0.12 17.08 0 ���

PSAB-BY 0.70 0.11 6.4 0 ���

PSAB-XA 0.06 0.12 0.5 0.62

PSAB-XB 0.29 0.12 2.4 0.02 �

PSAB-AY 5.25 0.03 184.96 0 ���

Null deviance 173531.1

Residual deviance 95712.11

AIC: 95748.11

https://doi.org/10.1371/journal.pone.0217240.t002
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responses were prioritized by how recently the messages were received. As expected, norma-

tive conversational behavior is prevalent in this network series, confirming findings in other

contexts. [14, 15, 18]

Individual-level attributes also had significant effects on email behavior. Those of higher

payrank—a cross-comparable measure of social capital based on published monthly salary tak-

ing into account both military rank and years of service—had higher hazard for both sending

and receiving emails. We also measured the situational awareness of each individual to ongo-

ing events as a daily pop-quiz [24]; those with higher measures of situational awareness during

the exercise had higher hazard of sending emails but not receiving them. A small interaction

effect for recency by payrank suggests that actors were slightly more likely to respond faster to

emails received from higher-ranked actors than others.

We are primarily interested in how preferential attachment and participation shifts rela-

tively affect the in- and out-degree distributions observed in our network. Using relational

events modeling, we build minimal models for each theory, each with its own covariate set.

Our intention is to discover the simplest models needed to reproduce the observed degree dis-

tribution. We first included two measures of preferential attachment: normalized indegree

affecting future rate of sending; and normalized indegree affecting future rate of receiving.

Both use the past indegree in predicting future activity in the network, which reflects a prefer-

ential attachment process. Second, we consider only effects for participation shifts, one by one,

in separate relational events models. Parameters are estimated in each model fit, which are

then used to predict the email network. We compared predicted degree distributions with the

observed distributions using the Kolmogorov-Smirnov test [25].

We find that two classes of participation shifts predict the long-tailed in- and outdegree dis-

tributions in our network. The primary driver of the indegree distribution was dyadic turn-

taking dynamics (AB-BA, see Fig 2a). Turn-taking dynamics are a key aspect of coherent com-

munications in human social networks with multiple participants [14, 15, 26]. The best model

for prediction of the outdegree distribution was the turn-continuing shift (AB-AY). In an

email network, this includes instances where an individual sends emails in bursts, a common

feature of communication networks [27]. Researchers [28] maintain that human communica-

tion patterns are “bursty” as the inter-event arrival times between messages tends to follow a

Fig 2. Predicted network comparisons. Preferential attachment and participation shifts as explanations of network structure in

observed data. Figs (a)-(b) are simulated email networks using fitted parameters from a model including only preferential

attachment and participation shifts, respectively. The network structure in simulated network (b) tends to resemble the observed

network (c), though (a) is the typical explanation of long-tailed degree structure. 300 email events were simulated among 94 nodes.

https://doi.org/10.1371/journal.pone.0217240.g002

Participation shifts explain degree distributions in a human communications network
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power-law distribution with short intervals between many messages but yawning gaps between

others. In a model combining these two effects, we find that the predicted and observed degree

distributions are not significantly different, suggesting that these two parameters alone are suf-

ficient to produce the observed distributions found in our network.

We also test whether models including preferential attachment reproduce the network’s

distributions (see Fig 3). According to [13], the network series should converge on a complete

network given no growth and preferential attachment. There are strong effects for preferential

attachment (see Fig 4), as those with high levels of normalized indegree greatly affect future

participation rates. Though the effects are strong, predictions from models only including

preferential attachment produce degree distributions significantly different from the ones

found in the observed network (KS test p< .001). The prediction that preferential attachment

will converge on a complete network did not occur, it may have converged on a long enough

time series. Here, the effects of preferential attachment were such only a very few nodes had

any degree at all. While this does contradict previous work, future studies should determine

whether these results will hold in other communication networks.

Discussion

Our models show many possible candidates for prediction of the degree distribution, as we

found many significant ecological and individual-level attributes predicting communication

dynamics (see Fig 4). However, out of all explanations we tested, dyadic turn-taking dynamics

Fig 3. (a) Predicted indegree distribution by participation shift type. Each prediction is drawn from a separate

relational events model including only the participation shift shown. PSAB-BA best predicts the indegree distribution,

but is not fully adequate to do so. (b) Predicted outdegree distribution by participation shift type. PSAB-AY

participation shift perfectly reproduces the outdegree distribution without any other parameter.

https://doi.org/10.1371/journal.pone.0217240.g003
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Fig 4. Relational events modeling of email comms. Parameters from a relational events model predicting sequential,

dyadic communicative actions between actors in the network. The strongest effects (NIDSnd and NIDRec) represent

preferential attachment, as those with greater indegree participate more in the future. The next strongest class of

predictors are “burstiness” parameters (NODSnd and PSAB-AY). The effect size for PSAB-BA participation shift

(turn-taking dynamics) is relatively smaller, but strong.

https://doi.org/10.1371/journal.pone.0217240.g004

Participation shifts explain degree distributions in a human communications network
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and turn-continuing dynamics best explain the long-tailed degree distributions found in an

observed communications network. These two concepts—turn-taking and turn-continuing—

are essential elements of coherent communications between humans [14, 16, 17]. In some

cases, turn-continuing p-shifts are referred to as “burstiness”, and have been used as an expla-

nation of other long-tailed distributions such as response waiting times in communications

networks [27]. The prevalence of these participation-shifts in social networks, combined with

the prevalence of their long-tailed degree distributions, suggests a possible implicit link that

should be investigated further using other communication network settings. Actor-level nor-

malized indegree affecting future participation rates had strong effects in our model, but did

not reproduce observed in- and outdegree distributions (see Fig 5(c) and 5(d)), as predicted in

[13].

Other work has focused on preferential attachment plus growth that results in approximate

power laws for tie distributions [10]; a key distinction between the network described here is

that during our natural experiment, the set of nodes remains fixed, and no growth was

observed. Additionally, this network is relatively small compared to other studies, which

makes it more suitable for the computational load required by network analytic methods like

REM. This paper thus provides a mechanism for approximate Pareto-distributed degree where

growth is not required, and the network is small. Future work should investigate if these results

hold in a other communication networks, especially those with a growing number of actors,

and in larger networks.

Fig 5. (a)-(b) CDF of observed versus predicted degree distributions (via relational events model) given only selected participation

shifts (AB-BA, AB-BY, RecRecSnd) in the model. Predicted degree distributions match that of observed (KS test p> .05). (c)-(d)

CDF of observed versus predicted degree distributions given only preferential attachment. Predicted degree distributions (via

relational events model) did not match observed (KS test p< .001).

https://doi.org/10.1371/journal.pone.0217240.g005
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A final insight from this analysis is the success of an ecological factor (norms necessary for

inter-human communication) in predicting an ecological outcome (the shape of the degree

distribution across actors in the network). In our network, no individual-level factors were

necessary in predicting the degree distribution; if the p-shift parameter sizes were held con-

stant, individuals are completely interchangeable with regards to their effects on the degree

distribution. Indeed, some aspects of human activity emerge from groups of individuals, and

the prediction of this activity should then include aspects independent of the composition of

individuals within [29].

Conclusion

Long-tailed degree distributions are found among many social phenomena. Preferential

attachment is the most common explanation, but have limitation in networks with a static

number of nodes. We find that participation shifts—turn-taking and turn-continuing partici-

pation norms found in nearly all measured human communication networks—predicts degree

distributions that match those of the observed network with an unchanging number of nodes.

The prevalence of participation shifts in communication networks provides a viable explana-

tion of long-tailed degree in many observed social networks, and should be considered in fur-

ther investigations of similar settings.
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