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Abnormal expressions of long noncoding RNAs (lncRNAs) and protein-encoding messenger RNAs (mRNAs) are important for
the development of childhood acute lymphoblastic leukemia (ALL). This study developed an lncRNA-mRNA integrated
classifier for the prediction of recurrence and prognosis in relapsed childhood ALL by using several transcriptome data.
Weighted gene coexpression network analysis revealed that green, turquoise, yellow, and brown modules were preserved across
the TARGET, GSE60926, GSE28460, and GSE17703 datasets, and they were associated with clinical relapse and death status. A
total of 184 genes in these four modules were differentially expressed between recurrence and nonrecurrence samples. Least
absolute shrinkage and selection operator analysis showed that seven genes constructed a prognostic signature (including one
lncRNA: LINC00652 and six mRNAs: INSL3, NIPAL2, REN, RIMS2, RPRM, and SNAP91). Kaplan-Meier curve analysis
observed that patients in the high-risk group had a significantly shorter overall survival than those of the low-risk group.
Receiver operating characteristic curve analysis demonstrated that this signature had high accuracy in predicting the 5-year
overall survival and recurrence outcomes, respectively. LINC00652 may function by coexpressing with the above prognostic
genes (INSL3, SNAP91, and REN) and lipid metabolism-related genes (MIA2, APOA1). Accordingly, this lncRNA-mRNA-
based classifier may be clinically useful to predict the recurrence and prognosis for childhood ALL. These genes represent new
targets to explain the mechanisms for ALL.

1. Introduction

Acute lymphoblastic leukemia (ALL) which results from the
clonal proliferation of immature T- or B-lymphoid cells in
the bone marrow is the most commonmalignant hematologic
disorder in childhood, accounting for approximately 35% of
all childhood malignancies [1, 2]. Chemotherapy is the main
therapeutic approach for childhood ALL, with the rate of com-
plete remission (CR) being achieved higher than 90% [3].
However, 10% of patients still will experience relapse, leading
to their eventual death [3, 4]. Thus, it is considerably essential
to early identify cases at a high risk of relapse and predict their

overall survival (OS) to schedule more individualized
treatments.

Recently, the rapidly developed molecular technique has
led to an expansion of knowledge regarding the pathogenesis
of diseases, and several molecular biomarkers have been
suggested to predict the relapse and the prognostic outcomes
for cancers [5–8], including ALL. For example, Jia et al. [9]
identified that the midkine gene (MK)may be a possible prog-
nostic marker. The expression of MK was significantly higher
in patients with relapsed ALL than those with CR or at diagno-
sis. Patients with highly expressed MK harbored poor OS
(p = 0:022) and relapse-free survival (RFS, p = 0:047) compared
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with patients with low expression ofMK.Weng et al. [10] found
that the mRNA level of the TP53 gene was significantly higher
in patients with ALL than controls. Multivariate analysis
revealed that highly expressed TP53 was an independent factor
for the prediction of poor OS and RFS (p < 0:001). Sharaf-
Eldein et al. [11] demonstrated that macrophage migration
inhibitory factor (MIF) expressers had a significantly lower
incidence of CR, a higher incidence of relapse, and shorter
OS and disease-free survival (DFS) than low MIF expressers.
By analysis of high-throughput microarray data in the Thera-
peutically Applicable Research to Generate Effective Treat-
ments (TARGET) database and European Bioinformatics
Institute (EMBL-EBI, accession number E-MTAB-1216), Jing
and Li [12] screened 59 genes to be significantly associated with
RFS in pediatric B-ALL. Using self-collected bone marrow
specimens and microarray data, Cleaver et al. [13] modeled a
five-gene classifier that could accurately predict the relapse risk
(82% for the training dataset and 79% for the validation data-
set) and worse RFS (p < 0:05) for pediatric T-ALL patients.
However, recurrence and prognostic biomarkers for relapsed
childhood ALL remain rarely reported.

In addition to protein-encoding messenger RNAs
(mRNAs), abnormal expressions of long noncoding RNAs
(lncRNAs) have also been proved as important mechanisms
for the development of childhood ALL [14, 15]. For example,
Ouimet et al. [16] identified that lncRNA RP11-137H2.4 was
overexpressed in childhood B-ALL samples, as compared to
B-cells isolated from human cord blood. Silencing of RP11-
137H2.4 significantly reduced the proliferation and migra-
tion but increased the apoptosis and glucocorticoid sensitiv-
ity of childhood ALL cell lines (Reh and NALM-6), which
may be related to its regulation effects on the downstream
MAPK and cell cycle pathways [16]. Wang et al. [17] found
that lncRNA NALT was upregulated in the bone marrow of
childhood T-ALL compared with age-matched volunteers.
NALT promoted T-cell proliferation and stimulated a tumor
formation in a murine xenograft model by interacting with
NOTCH1 to increase its transcription [17]. Transcriptome
analysis of bone marrow T-cells from childhood T-ALL iden-
tified that lnc-INSR was highly expressed. Function assays
revealed that lnc-INSR promoted Treg distribution and
decreased the percentage of cytotoxic T lymphocytes, conse-
quentially inducing tumor growth [18]. These findings indi-
cated that lncRNAs may also have the prognostic potential
for childhood ALL, however, which had not been explored
previously.

In this study, we aimed to develop and validate a new
signature for the prediction of recurrence and prognosis in
relapsed childhood ALL patients with any immunophenotype
by integrating the expression profiles of protein-encoding
mRNAs and lncRNAs. Furthermore, the regulatory mecha-
nisms between lncRNAs and mRNAs were also predicted to
reveal the underlying functions of the identified signature.

2. Materials and Methods

2.1. Data Resources and Processing. Transcriptome and clin-
ical data of ALL patients were extracted from the TARGET
database (https://ocg.cancer.gov/programs/target, updated

December 1, 2019). Among them, 105 samples (including 13
recurrence and 92 nonrecurrence; including B-cell and T-cell)
were included in this study because the recurrence and survival
information were provided in these samples. Furthermore, the
EMBL-EBI ArrayExpress database (https://www.ebi.ac.uk/
arrayexpress/) was also searched using the key words “acute
lymphoblastic leukemia” and “paediatric/child” to identify
other transcriptome datasets. The datasets were included if they
met the following inclusion criteria: (1) expression profiles
were analyzed, (2) the bone marrow samples at relapse or
diagnosis were obtained for analysis of ALL, (3) the number
of samples (including the recurrence and nonrecurrence
comparison) wasmore than 50, and (4) survival outcomes were
provided. As a result, three microarray datasets were enrolled
according to the inclusion criteria of (1)-(3), including
GSE60926 (n = 50, including 28 recurrence and 22 nonrecur-
rence; all were B-cell precursor ALL), GSE28460 (n = 98,
including 49 recurrence and 49 nonrecurrence; all were B-cell
precursor ALL), and GSE17703 (n = 101, including 11 recur-
rence and 90 nonrecurrence; including B-ALL and T-ALL)
which were used for module validation analysis, while two
microarray datasets were enrolled because they satisfied the
inclusion criteria of (1), (2), and (4), including E-MTAB-1216
(n = 80, including 23 recurrence and 57 nonrecurrence; includ-
ing B-ALL and T-ALL) and E-MTAB-1205 (n = 50, including
21 recurrence and 29 nonrecurrence; all were T-ALL) which
were used for survival validation analysis. This integrated study
was a second analysis of public data; thus, patient consent was
not required.

The known mRNAs and lncRNAs in each transcriptome
dataset were reannotated by the HUGO Gene Nomenclature
Committee (HGNC; http://www.genenames.org/) that
includes the standard nomenclature for 4,527 lncRNAs and
19,201 protein-coding genes [19]. Only the shared mRNAs
and lncRNAs in all included datasets were used for the
following analyses.

2.2. Identification of Crucial Module RNAs in ALL. The
weighted gene coexpression network (WGCNA) [20] is a net-
work biology method that can partition the genes into different
coexpressionmodules in which the genes were considered to be
highly interconnected. Thus, construction of WGCNA may
facilitate the identification of hub genes for the development
of ALL. In the present study, ALL-related modules were
screened via the WGCNA package in R (version 1.61; https://
cran.r-project.org/web/packages/WGCNA/index.html) based
on the training dataset of TARGET and validation datasets of
GSE60926, GSE28460, and GSE17703. First, the correlations
in the expression and connectivity of RNAs among the four
datasets were analyzed to ensure their comparability. Second,
a soft-thresholding power (β) was set from 1 to 30 by using
the pickSoftThreshold function to calculate R2 of the logarithm
of the node connection log ðkÞ, and the logarithm of the prob-
ability of k is log ðpðkÞÞ. The corresponding β was selected
when R2 reached 0.9 for the first time, which means that the
network at this time may follow the scale-free topology criteria.
Third, the adjacency matrix was transformed into a topological
overlapping matrix to construct the network, and the gene
dendrogram was established according to the dissimilarity
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among different RNAs. Fourth, highly correlated coexpression
gene modules were identified using the DynamicTreeCut
method, with the threshold set as cutHeight = 0:995 and
minSize = 100. Fifth, the stability of modules screened from
training datasets was determined by the modulePreservation
statistics using the other three validation datasets. A preserva-
tion Z-score larger than 5 indicated that the module was stable,
and the coexpressed relationships identified in the training
dataset also can occur in the validation set. Sixth, the potential
functions of stable modules were annotated using the userLis-
tEnchment function. Seventh, the associations betweenmodule
eigengenes (ME, representing the expression profiles of module
genes) and clinical features were analyzed according to Pear-
son’s correlation test.

2.3. Identification of Differential RNAs in Relapsed ALL. The
differentially expressed RNAs (DERs) between recurrence
and nonrecurrence samples of four datasets (TARGET,
GSE60926, GSE28460, and GSE17703) were identified using
the MetaDE.ES function in MetaDE package (version 1.0.5,
https://cran.r-project.org/web/packages/MetaDE/). First, the
expression heterogeneity of each RNA in four datasets was
assessed by tau2 statistic and chi-square-based Q-test. Only
the RNAs with no heterogeneity (tau2 and Qp value > 0.05)
were included. Next, the difference of each RNA between
recurrence and nonrecurrence was calculated, with the false
discovery rate ðFDRÞ < 0:05 set as the cut-off point. Further-
more, the log2FC (fold change) of each RNA in each dataset
was also computed. Only the RNAs with a consistent differ-
ential trend in four datasets were selected.

2.4. Identification of a Prognostic Signature. The overlap
between stable module RNAs and differentially expressed
RNAs was obtained as the seed for screening the prognostic
signature. Using the samples in the TARGET dataset (train-
ing), univariate Cox regression analysis was first performed
to preliminarily screen the RNAs associated with OS using
the “survival” package in R (version, 2.41-1; http://
bioconductor.org/packages/survivalr/). Next, multivariate
Cox regression analysis was conducted to further identify
independent prognostic RNAs. p value < 0.05 tested by log-
rank testing was chosen as the statistical threshold. Then,
the Cox proportional hazards model (least absolute shrink-
age and selection operator (LASSO)) based on the L1-
penalized regularization regression algorithm in the penal-
ized package (version, 0.9-5; http://bioconductor.org/
packages/penalized/) [21, 22] was used to obtain the optimal
RNA combination. Finally, the prognostic risk score was
built according to the expression levels of prognostic RNAs
(ExpDERs) and their prognostic coefficients (∑βDERs), with
the calculation formula as follows:

Prognostic risk score =∑βDERs × ExpDERs:

2.5. Performance Assessment of the Prognostic Classifier. ALL
patients were classified into the high-risk and low-risk sub-
groups according to the median cut-off of the prognostic risk
score. The prognostic performance was evaluated by plotting
the Kaplan-Meier survival curve and receiver operating char-
acteristic (ROC) curve using the corresponding function in R

statistical software (version 3.4.1; https://cran.r-project.org/).
These analyses were first performed for the training dataset
(TARGET) and then for validation datasets (E-MTAB-
1216, E-MTAB-1205). To validate if the risk score was an
independent prognostic factor, univariate and multivariate
Cox regression analyses were performed based on the risk
score and various clinical features in the training dataset,
with p value < 0.05 considered statistically significant.
Furthermore, the predictive power of this prognostic classi-
fier for the probability of the relapse was also explored in
all datasets by calculating accuracy, sensitivity, specificity,
positive predictive value (PPV), and negative predictive value
(NPV) from the 2 × 2 confusion matrix [23] and ROC curve
analysis using the pROC package in R (v1.14.0; https://cran
.r-project.org/web/packages/pROC/index.html).

2.6. Function Enrichment Analyses of the Prognostic RNAs. To
detailedly clarify how these prognostic RNAs influence the
related clinical outcomes, function enrichment analyses were
performed. The functions of lncRNAs were estimated accord-
ing to their interactions with protein-encodingmRNAs in cru-
cial modules. Thus, a coexpression network was constructed
based on the Pearson correlation coefficients (PCC) between
lncRNAs andmRNAs which were calculated using the cor.test
function (https://stat.ethz.ch/R-manual/R-devel/library/stats/
html/cor.test.html) in R. The network was visualized in the
Cytoscape software (version 3.6.1; http://www.cytoscape.org/
). Then, the genes in the coexpression network were uploaded
to the online tool Database for Annotation, Visualization, and
Integrated Discovery (DAVID) (version 6.8; http://david.abcc
.ncifcrf.gov) [24] to accomplish function enrichment analysis.
Gene Ontology (GO) biological process terms and Kyoto
Encyclopedia of Genes and Genomes (KEGG) and REAC-
TOME pathways were collected to indicate the functions of
genes. A p value < 0.05 was considered statistically significant.

3. Results

3.1. Identification of Important Coexpression Modules in
Relapsed ALL. After HGNC annotation and comparison, 97
lncRNAs and 11,488 protein-encoding mRNAs were found
to be shared in all included datasets which were used for
the WGCNA analysis. As shown in Figure 1, the correlation
coefficient of any two datasets in the RNA expression levels
was larger than 0.5 and the statistical p value was less than
1e − 200 (Figure 1(a)). Additionally, the correlations for con-
nectivity were also positive, and the p values were significant
between any two datasets (Figure 1(b)). These findings sug-
gested that our included four datasets for WGCNA analysis
were comparable. When the soft-thresholding power β was
set to 6, R2 reached 0.9 for the first time (Figure 2(a)) and
the average connection degree of RNAs was equal to 1
(Figure 2(b)), indicating at this time that the network met a
scale-free distribution and had a small-world characteristic.
Using the DynamicTreeCut method, eight coexpression gene
modules (Table 1) were extracted using the training
TARGET dataset (Figure 3(a)), among which the turquoise
module contained the most genes (1,980 mRNA and 28
lncRNAs). These modules seemed to still group together in
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Figure 1: The correlation between any two datasets (TARGET, GSE60926, GSE28460, and GSE17703) in the RNA expression levels (a) and
connectivity (b).
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other three validation datasets (Figures 3(b)–3(d)), suggesting
that these modules may possess good preservation. In order to
further confirm the stability of these modules, modulePreser-
vation statistical analysis was performed. As a result, three
modules showed a Z-score between 5 and 10 (green, turquoise,
and yellow), while the Z-score was larger than 10 in one mod-
ule (brown) (Table 1), implying that the genes in these four
modules exhibiting moderate-high preservation may be espe-
cially crucial for the development of ALL. This conclusion can
also be seen from the association analysis results between the
module genes and clinical features (Figure 3(e)), in which
the brown and green modules were significantly associated
with patients’ death, while brown, turquoise, and yellow were
significantly related to patients’ relapse status.

3.2. Identification of Differentially Expressed Module RNAs in
Relapsed ALL. According to three inclusion criteria (tau2 and
Qp value > 0.05, FDR < 0:05, and similar pattern of FC), a
total of 640 RNAs were found to be differentially expressed
in four datasets (TARGET, GSE60926, GSE28460, and
GSE17703), including 321 downregulated and 319 upregu-
lated. The heat map showed that these 640 DERs can obvi-

ously distinguish the recurrence from the nonrecurrence
samples in each dataset (Figure 4(a)). Subsequently, these
640 genes were overlapped with 2,742 genes of the above-
identified four crucial modules. As a result, only 184 (includ-
ing 8 lncRNAs and 176 mRNAs) were found to be common,
23 of which belonged to the brown module, 132 of the
turquoise module, 10 of the green module, and 19 of the
yellow module (Figure 4(b)), suggesting that they represent
potential biomarkers for ALL.

3.3. Identification of a Prognostic Signature fromModule RNAs.
Univariate Cox regression analysis was performed for these 184
module RNAs to preliminarily identify prognostic biomarkers.
The results showed that 23 of them (19 mRNAs and 4
lncRNAs: ADD3-AS1, IGF2-AS, LINC00652, and LINC00588)
were significantly associated with OS, with a log-rank p-value
less than 0.05. Then, these 23 RNAs underwent additional mul-
tivariate Cox regression analysis to validate their prognostic
independence, which resulted in 9 obtained (6 mRNAs and 3
lncRNAs: ADD3-AS1, IGF2-AS, and LINC00652). LASSO
was next applied to screen the optimal RNA combination, ulti-
mately leading to a prognostic signature constructed by 7-RNA
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Figure 2: Selection graphs of the soft-thresholding power β in the adjacency matrix (a) and schematic diagram of the mean connectivity of
RNA under various power values (b).

Table 1: Stable modules screened using weighted gene coexpression network analysis.

ID Color Module size Number of mRNAs Number of lncRNAs Preservation Z-score Module annotation

Module 1 Black 138 136 2 4.6749 Neurological system process

Module 2 Blue 424 418 6 1.0193 Cell motion

Module 3 Brown 302 302 0 14.1644 Defense response

Module 4 Green 193 191 2 5.3994 Cell-cell signaling

Module 5 Grey 1658 1640 18 2.1860 Cell adhesion

Module 6 Red 174 172 2 2.7514 Ion transport

Module 7 Turquoise 2008 1980 28 8.1713 Cell-cell signaling

Module 8 Yellow 239 236 3 5.1719 Mitosis
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Figure 3: Continued.
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to be selected (Table 2). These 7 RNAs were derived from
turquoise, green, and yellow modules (Table 2), which were
in line with themodule-clinical phenotype relationship analysis
(Figure 3(e)).

The prognostic score was calculated by these 7 RNAs
according to the following formula: ð−0:00432 × expression of
LINC00652Þ+ ð0:00739 × expression of INSL3 ½insulin − like 3�Þ
+ ð0:00362 × expression of NIPAL2 ½NIPA − like domain
containing 2�Þ + ð0:02222 × expression of REN ½renin�Þ + ð
0:00769 × expression of RIMS2 ½regulating synapticmembrane
exocytosis 2�Þ + ð0:01680 × expression of RPRM ½reprimo
, TP53 dependent G2 arrest mediator homolog�Þ + ð0:02990
× expression of SNAP91 ½synaptosome associated protein 91�Þ.
According to the corresponding median cut-off, the patients in
the training and validation datasets were separated into the
low-risk and high-risk subgroups. Kaplan-Meier curve analysis
in all datasets showed that patients in the high-risk group had a
significantly shorter OS than those of the low-risk group (training
TARGET: hazard ratios ðHRÞ = 3:409, 95%confidence intervals
ð95%CIÞ = 1:788‐6:501, p = 8:281e − 05, Figure 5(a); validation
E-MTAB-1216: HR = 3:580, 95%CI = 1:419‐9:030, p = 3:892e
− 03, Figure 5(b); and validation E-MTAB-1205: HR = 2:905,

95%CI = 1:1829‐7:139, p = 1:494 − 02, Figure 5(c)). ROC curve
analysis also demonstrated that this signature had high prediction
accuracy for OS, with the 1-, 3-, and 5-year areas under the curve
(AUC) of 0.958, 0.879, and 0.846 in TARGET (Figure 5(d));
0.833, 0.775, and 0.700 in E-MTAB-1216 (Figure 5(e)); and
0.796, 0.792, and 0.750 in E-MTAB-1205 (Figure 5(f)), respec-
tively. Furthermore, univariate and multivariate Cox regres-
sion analyses were also performed to investigate whether our
model was a clinically independent prognostic factor. The
results showed that age, WBC at diagnosis, immunopheno-
type, MLL rearrangement, and the risk score were significant
factors to be associated with OS in univariate analysis, while
only age and the risk score were identified to be independent
prognostic factors after multivariate analysis (Table 3). More
importantly, the prognostic classifier was observed to provide
high predictive power for the recurrence status in all datasets
(TARGET: AUC = 0:901, Figure 6(a); GSE60926: AUC =
0:771, Figure 6(b); GSE28460: AUC = 0:784, Figure 6(c);
GSE17703: AUC = 0:836, Figure 6(d); E-MTAB-1216: AUC
= 0:748, Figure 6(e); and E-MTAB-1205: AUC = 0:761,
Figure 6(f)). The accuracy, sensitivity, specificity, PPV, and
NPV are shown in Table 4.

Module−trait relationships

–1

–0.5

0

0.5

1

Age Sex

Rela
pse

W
BC

MEbrown

MEturquoise

MEred

MEblack

MEgreen

MEblue

MEyellow

MEgrey

–0.21
(4e−53)

0.0099
(0.5)

–0.047
(7e−04)

–0.059
(3e−05)

0.16
(2e−29)

0.042
(0.003)

0.16
(2e−29)

–0.024
(0.09)

–0.1
(5e−13)

–0.11
(5e−15)

0.0099
(0.5)

0.17
(1e−34)

0.13
(7e−20)

0.22
(3e−58)

0.09
(1e−10)

0.0047
(0.7)

0.19
(8e−45)

0.15
(1e−25)

–0.033
(0.02)

–0.11
(2e−14)

–0.062
(9e−06)

0.13
(3e−22)

–0.24
(3e−66)

–0.084
(2e−09)

0.25
(2e−75)

0.054
(1e−04)

0.19
(3e−41)

–0.054
(1e−04)

–0.0044
(0.8)

−0.2
(2e−46)

0.018
(0.2)

0.24
(2e−69)

–0.083
(2e−09)

0.092
(4e−11)

–0.17
(2e−35)

–0.067
(2e−06)

0.1
(6e−13)

0.2
(6e−49)

–0.0068
(0.6)

–0.061
(1e−05)

–0.46
(6e−262)

0.12
(3e−19)

0.038
(0.007)

0.35
(1e−148)

0.2
(1e−46)

0.014
(0.3)

−0.065
(3e−06)

−0.09
(1e−10)

−0.034
(0.02)

–0.06
(2e−05)

0.032
(0.02)

0.088
(2e−10)

0.38
(1e−174)

–0.17
(3e−34)

0.21
(2e−53)

–0.2
(5e−49)

Deat
h

Im
munophen

otyp
e

MLL re
arr

an
gem

en
t

(e)

Figure 3: Clustering dendrograms of gene modules screened from the datasets TARGET (a), GSE28460 (b), GSE17703 (c), and GSE60926 (d)
and the association between functional modules of RNAs in the TARGET dataset and the clinical characteristics of acute lymphoblastic
leukemia patients (e). In the module-trait heat map, each column corresponds to clinical parameters and each row corresponds to a
module eigengene. The correlation coefficients are shown at the top of each row. The corresponding p values for each module are
displayed at the bottom of each row within parentheses. WBC: white blood cell; MLL: mixed lineage leukemia.
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Figure 4: Identification of differentially expressed module genes. (a) Heat map of differentially expressed RNAs; (b) Venn diagram to show
the overlap between differentially expressed RNAs and module genes.

Table 2: The optimal prognostic signature.

Symbol Module Expression Type
Multivariate Cox regression analysis

LASSO coefficient
HR 95% CI p value

LINC00652 Turquoise Downregulated lncRNA 0.980 0.949-0.993 2:30e − 02 -0.00432

INSL3 Green Downregulated mRNA 1.008 1.004-1.012 2:41e − 05 0.00739

NIPAL2 Yellow Upregulated mRNA 1.004 1.001-1.007 1:20e − 02 0.00362

REN Turquoise Downregulated mRNA 1.024 1.004-1.045 1:75e − 02 0.02222

RIMS2 Turquoise Upregulated mRNA 1.011 1.005-1.033 3:49e − 02 0.00769

RPRM Turquoise Upregulated mRNA 1.020 1.006-1.035 6:60e − 03 0.01680

SNAP91 Turquoise Downregulated mRNA 1.050 1.001-1.101 4:80e − 02 0.02990

HR: hazard ratio; CI: confidence interval; LASSO: least absolute shrinkage and selection operator.
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Figure 5: The prognostic performance of the risk score model established by the seven-lncRNA-mRNA signature genes. (a) Kaplan-Meier
survival curve of the training dataset, TARGET; (b) Kaplan-Meier survival curve of validation dataset 1, E-MTAB-1216; (c) Kaplan-Meier
survival curve of validation dataset 2, E-MTAB-1205; (d) ROC of the training dataset, TARGET; (e) ROC curve of validation dataset 1, E-
MTAB-1216; (f) ROC curve of validation dataset 2, E-MTAB-1205. HR: hazard ratio; ROC: receiver operator characteristic curve; AUC:
area under the ROC curve.
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3.4. Functional Annotation of Prognostic Genes. To explore the
functional involvement of the prognostic genes, a coexpres-
sion network was constructed and DAVID enrichment analy-
sis was then performed. Based on the cut-off point of
PCC > 0:4, 113 coexpression pairs (Figure 7) were collected
between prognostic LINC00652 and its target genes (including
all the prognostic protein-encoding mRNAs (INSL3, PCC =
0:51; NIPAL2, PCC = 0:43; REN, PCC = 0:471; RIMS2, PCC
= 0:57; RPRM, PCC = 0:62; and SNAP91, PCC = 0:86)). All
these 113 target genes of LINC00652 in the coexpression net-
work were uploaded into DAVID, and 41 genes of them
(including three prognostic genes: INSL3, REN, and RIMS2)
were enriched into function results, such as GO:0006508~pro-
teolysis (REN), hsa04911: insulin secretion (RIMS2), and R-
HSA-418555: G alpha (s) signaling events (INSL3) (Table 5).
Although the other prognostic genes were not enriched by
DAVID, we speculated that they (except NIPAL2) may be
involved in ALL similar to the enriched genes because all these
genes belonged to the same (turquoise) module as REN and
RIMS2 and the functions of green and turquoise modules were
shown to be similar in userListEnchment analysis (Table 1).
NIPAL2 may be involved in mitosis according to the results
of userListEnchment analysis (Table 1). Interestingly, mela-
noma inhibitory activity 2 (MIA2) and apolipoprotein A1
(APOA1) were enriched into the top function result according
to p value ranking, such as GO:0070328~triglyceride homeo-
stasis (MIA2, APOA1), GO:0042632~cholesterol homeostasis
(MIA2, APOA1), and R-HSA-174800: chylomicron-mediated
lipid transport (APOA1), suggesting that theymay also be cru-
cial downstream targets for LINC00652 to participate in the
development of ALL.

4. Discussion

Although there are studies that attempt to develop a prog-
nostic risk scoring system of lncRNAs for leukemia patients
[25–27], all of them focused on the type of acute myeloid
leukemia (AML) and did not specifically investigate the
childhood population. Also, a previous study indicated that
the predictive accuracy seemed to be better using the inte-

grated mRNA-lncRNA signature (AUC = 0:791) than the
mRNA (AUC: 0.584) or lncRNA alone (AUC: 0.527) [28].
Therefore, in this study, we aimed to, for the first time,
identify an lncRNA-mRNA prognostic signature for relapsed
childhood ALL patients. As a result, a seven-gene-based risk
score (including 1 lncRNA: LINC00652 and 6 mRNAs:
INSL3, NIPAL2, REN, RIMS2, RPRM, and SNAP91) was
constructed. ROC curve analysis demonstrated that this
prognostic signature exhibited good performance for pre-
dicting 1-, 3-, and 5-year OS of childhood ALL patients of
both the training and two validation datasets, with the
AUC ranging from 0.796 to 0.958 for 1-year OS, 0.775 to
0.879 for 3-year OS, and 0.700 to 0.846 for 5-year OS, respec-
tively. In line with the study of Xiang et al. [28], the prognos-
tic accuracy of our integrated lncRNA-mRNA signature
screened from the training dataset also seemed to be higher
than that of the study performed by Chang et al. (AUC:
0.846 vs. 0.7984, only including 15 apoptosis pathway genes)
[29]. Likewise, the predictive power of this lncRNA-mRNA
signature for recurrence outcomes was also higher than that
of the mRNA signature identified by Cleaver et al. [13]
(five-mRNA classifier: accuracy: 93.3% vs. 82%, PPV: 94.7%
vs. 81%, and sensitivity: 97.8% vs. 77%; 7-NF-κB pathway
genes: accuracy: 93.3% vs. 76%, PPV: 94.7% vs. 71%, and
sensitivity: 97.8% vs. 77%; 12-Wnt pathway genes: accuracy:
93.3% vs. 76%, PPV: 94.7% vs. 75%, NPV: 80.0% vs. 77%,
and sensitivity: 97.8% vs. 68%; and 14-cell adhesion pathway
genes: accuracy: 93.3% vs. 82%, PPV: 94.7% vs. 84%, and
sensitivity: 97.8% vs. 73%).

There were rare studies that investigate the roles of
LINC00652, except one that analyzed its functions in myocar-
dial ischemia-reperfusion injury: LINC00652 was found to be
overexpressed in the myocardial cells of mice with myocardial
ischemia-reperfusion injury. Knockdown of LINC00652 sup-
pressed cardiac pathology, infarct size, and apoptosis rates of
myocardial cells [30]. These findings indirectly reveal the pos-
sible proapoptotic effects of LINC00652. Thus, theoretically,
LINC00652 may be downregulated in cancer. This hypothesis
was confirmed in our differential analysis between recurrent
and nonrecurrent samples of four datasets (TARGET,

Table 3: Univariate and multivariate Cox regression analyses of overall survival.

Clinical characteristics TARGET (N = 105) Univariate Cox Multivariate Cox
HR (95% CI) p value HR (95% CI) p value

Age (years, mean ± SD) 8:53 ± 5:48 0.967 (0.639-0.993) 2:36e − 02 0.965 (0.903-0.989) 3:05e − 02

Sex (male/female) 61/44 0.779 (0.429-1.413) 4:10e − 01 — —

WBC at diagnosis (IU, mean ± SD) 96:28 ± 158:33 1.001 (0.999-1.003) 1:44e − 02 0.999 (0.996-1.002) 5:75e − 01

Relapse (yes/no) 10/95 1.271 (0.534-3.021) 5:87e − 01 — —

Immunophenotype (T/B/mixture) 45/37/23 1.903 (1.260-2.875) 1:78e − 03 1.779 (0.941-2.851) 1:68e − 01

MLL rearrangement (yes/no) 8/97 3.160 (1.231-8.113) 1:16e − 02 1.664 (0.350-7.913) 5:22e − 01

Prognostic score model status (high/low) 53/52 3.409 (1.788-6.501) 8:28e − 05 3.787 (1.837-7.808) 3:10e − 04
Death (dead/alive) 44/61 — — — —

Overall survival (months, mean ± SD) 41:86 ± 39:65 — — — —

SD: standard deviation; WBC: white blood cell; TARGET: Therapeutically Applicable Research to Generate Effective Treatments; HR: hazard ratio; CI:
confidence interval; MLL: mixed lineage leukemia.
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Figure 6: The predictive performance of the seven-lncRNA-mRNA signature for recurrence outcomes in different datasets: (a) ROC curve of
TARGET; (b) receiver operator characteristic curve of GSE60926; (c) ROC of GSE28460; (d) ROC curve of GSE17703; (e) ROC curve of E-
MTAB-1216; (f) ROC curve of E-MTAB-1205. ROC: receiver operating characteristic curve; AUC: area under the ROC curve.
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GSE17703, GSE28460, and GSE60926). Also, multivariate Cox
regression analysis showed that a high LINC00652 level was a
protective factor for OS (HR, 0.980; 95% CI, 0.949-0.993, p
= 2:30e − 02). However, its mechanism in cancer remains
unclear. In this study, we predicted that downregulated
LINC00652 may positively correlate with several downregu-
lated prognostic genes (INSL3, SNAP91, and REN) to influ-
ence the development of childhood ALL. These genes had
been demonstrated to be related to cancers, which may indi-
rectly verify our prediction for the roles of LINC00652. For
example, Rossato et al. used the immunohistochemistry anal-
ysis to demonstrate that INSL3 expression was negative or
decreased in Leydig cell tumor samples, but strongly and
diffusely positive in normal Leydig cells and Leydig cell hyper-
plasia [31]. Lottrup et al. also confirmed that INSL3 could not
be detectable in testicular adrenal rest tumors [32]. Kaplan-
Meier analysis of SNAP91 in the GSE7696 dataset showed that
glioblastoma patients with high expression of SNAP91 exhib-
ited a higher survival ratio compared with those having low
levels of SNAP91 [33]. Quantitative real-time PCR revealed

that SNAP91 was lowly expressed in human esophageal can-
cer tissues and cell lines. Low expression of SNAP91 was asso-
ciated with poor prognosis in patients with esophageal cancer
[34]. In accordance with these studies, we also validated that
both INSL3 and SNAP91 were downregulated in recurrent
ALL samples. However, the survival analysis of INSL3 and
SNAP91 indicated that they may be oncogenes and were risk
factors for a poor prognosis. This result seemed to be believ-
able because in vitro and in vivo studies on thyroid cancer
demonstrated that recombinant and secreted INSL3 increased
the motility and growth of thyroid carcinoma cells and
enhanced the formation of fast-growing and highly vascular-
ized xenografts in nude mice [35]. INSL3 was also demon-
strated to promote early tumor cell invasiveness in human
thyroid carcinoma cells by enhancing their metabolic activity
and elastin-degrading potential via increasing the production
of the lysosomal enzymes cathepsin-L and cathepsin-D [36].
Nevertheless, the roles of INSL3 and SNAP91 in ALL cells still
need further experimental investigation in the future. There
was evidence to demonstrate that the disappearance of REN

Table 4: Validation of the prognostic classifier models for recurrence prediction.

Accuracy (%) Positive predicted value (%) Negative predicted value (%) Sensitivity (%) Specificity (%)

TARGET 93.3 94.7 80.0 97.8 61.5

GSE60926 84 72.7 92.9 88.9 81.3

GSE28460 71.4 67.3 75.5 73.3 69.8

GSE17703 90.1 93.3 63.6 95.5 53.8

E-MTAB-1216 78.8 85.7 62.5 84.2 65.2

E-MTAB-1205 78 82.1 72.7 79.3 76.2
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expression was associated with the status of CR in ALL
patients [37] and improved survival [38]. The use of renin-
angiotensin system inhibitor losartan induced the apoptosis
of leukemic cells [39]. These results reflected the possible pos-
itive association between a high expression level of REN and
poor OS in ALL patients. This theory was validated in our
study (HR > 1).

In addition to prognostic genes, we also found a positive
coexpression relationship between LINC00652 andMIA2/A-
POA1. These two genes were enriched into the top function
result (lipid homeostasis triglyceride cholesterol), and thus,
they may also be underlying downstream targets for
LINC00652 to influence the development of ALL. MIA2
encodes a receptor in the endoplasmic reticulum, which plays
a role in the export of large prechylomicrons and pre-very-
low-density lipoproteins (pre-VLDLs). The low expression
of MIA2 may result in the accumulation of VLDLs which
was reported to be a risk factor for the development of cancer
[40, 41]. Therefore, MIA2 may be downregulated in cancer.
This assumption had been demonstrated in hepatocellular
carcinoma [42, 43] and gastric cancer [44]. Treatment with
recombinant MIA2 inhibited proliferation and invasion of
hepatocellular carcinoma cells in vitro and in vivo. Loss of
MIA2 expression significantly correlated with advanced
tumor stages [42]. APOA1 is the major protein in high-
density lipoprotein (HDL). HDL is a beneficial protein in
humans, and its low level was shown to be associated with

an increased risk of cancer [40]. Hereby, APOA1 expression
was also inversely associated with cancer risk, which was
proved in lung cancer [45]. Treatment with APOA1 and the
mimetic peptide was reported to decrease the viability and
prevented cell invasion of ovarian cancer [46]. Meta-analysis
showed that lower APOA1 was associated with unfavorable
cancer-specific survival and shorter DFS in overall cancer,
inferior total time to recurrence in hepatocellular carcinoma,
poorer locoregional RFS, and distant metastasis-free survival
in nasopharyngeal carcinoma [47]. In line with these findings,
we also identified that MIA2 and APOA1 were downregulated
in recurrent ALL samples. These findings indicated that
LINC00652 may also be involved in the progression of ALL
by regulating the balance between LDL and HDL via influenc-
ing the expressions of MIA2 and APOA1.

The function of RIMS2 in ALL was also not explored pre-
viously and could only be indirectly reflected by the studies
on other cancers. After analysis of The Cancer Genome Atlas
cases, Ke et al. [48] and Wu et al. [49] identified RIMS2 as a
prognostic gene for papillary thyroid carcinoma and lung
adenocarcinoma patients, respectively. Patients with a high
expression level of RIMS2 were reported to have a higher
probability of survival compared with cases with a low
expression level [48, 49]. Immunoprecipitation experiments
revealed that RIMS2 may promote anchorage-independent
growth and colony formation of liver metastatic breast can-
cer cells by binding with claudin-2 gene via a PDZ-binding

Table 5: Function enrichment results.

Category Term p value Genes

GO BP GO:0070328~triglyceride homeostasis 5:11e − 04 MIA2, LPL, GIP, APOA1

GO BP GO:0006508~proteolysis 3:38e − 03 ADGB, CASP5, CELA3B, CLCA2, REN, THSD4,
MEP1A, MMP26, TLL1, HABP2

GO BP GO:0042632~cholesterol homeostasis 6:93e − 03 MIA2, LPL, APOA1, MTTP

GO BP
GO:0007200~phospholipase C-activating G-protein

coupled receptor signaling pathway
7:55e − 03 GALR1, P2RY2, LHCGR, NMBR

GO BP GO:0001662~behavioral fear response 1:33e − 02 DRD1, GABRA5, NR2E1

GO BP GO:0060291~long-term synaptic potentiation 2:23e − 02 DRD1, GIP, NR2E1

GO BP
GO:0007189~adenylate cyclase-activating G-protein

coupled receptor signaling pathway
3:71e − 02 DRD1, GALR1, LHCGR

GO BP GO:0019233~sensory perception of pain 3:98e − 02 GIP, ALOXE3, SCN10A

GO BP
GO:0007186~G-protein coupled receptor signaling

pathway
4:64e − 02 OR5I1, RAMP2, FZD10, APOA1, LHCGR, CCL8, RGS7,

OR11A1, BDKRB2, NMBR, OR2W1

KEGG hsa04080: neuroactive ligand-receptor interaction 4:50e − 03 GRM5, DRD1, GALR1, P2RY2, GABRA5, LHCGR,
BDKRB2, NMBR

KEGG hsa04950: maturity onset diabetes of the young 1:62e − 02 ONECUT1, GCK, SLC2A2

KEGG hsa04911: insulin secretion 2:61e − 02 GIP, GCK, SLC2A2, RIMS2

KEGG hsa04020: calcium signaling pathway 4:56e − 02 GRM5, DRD1, TNNC1, LHCGR, BDKRB2

REACTOME
R-HSA-174800: chylomicron-mediated lipid

transport
1:12e − 02 LPL, APOA1, MTTP

REACTOME R-HSA-418555: G alpha (s) signaling events 1:54e − 02 RAMP2, INSL3, DRD1, GIP, LHCGR

REACTOME R-HSA-416476: G alpha (q) signaling events 2:473e − 02 GRM5, P2RY2, RGSL1, BDKRB2, NMBR

REACTOME R-HSA-975634: retinoid metabolism and transport 3:36e − 02 LPL, APOA1, BCO1

KEGG: Kyoto Encyclopedia of Genes and Genomes; GO BP: Gene Ontology biological process.
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motif [50]. Consistent with these findings, we also identified
that RIMS2 was upregulated in recurrent ALL samples and
high expression of RIMS2 was associated with poor OS.

Until now, no attempt had been made to study NIPAL2.
Immunostaining observed that its family member NIPAL1
was expressed in 20.3% of oral squamous cell carcinoma
patients. High NIPAL1 expression significantly correlated
with cancer cell intravasation and poorer disease-free sur-
vival. siRNA-mediated knockdown of NIPAL1 significantly
inhibited the growth and adhesion of oral squamous cell car-
cinoma cells compared with negative siRNA [51]. These find-
ings indicated that NIPAL2 may also be a tumor-promoting
factor in ALL as NIPAL1. This hypothesis was confirmed in
our study, with expression of upregulation in recurrent ALL
samples and HR > 1 in prognostic analysis.

There were some limitations in this study. First, relative
to AML, the studies on ALL were rare, and thus, the sample
size was small in most of the datasets (<100). This may be a
potential reason to lead to the expression difference in partial
genes compared with the published literatures (RPRM was
found to be downregulated in cancers due to promoter meth-
ylation [52–54], but upregulated in our ALL). Also, our used
data were retrospectively collected from TARGET and
EMBL-EBI public databases, and some clinical information
was not described. Thus, larger clinical trials should be pro-
spectively designed in our hospital to validate the expression
of all our prognostic genes, their prognostic value (alone or
combined form), and association with genetic subtypes in
ALL cohorts via quantitative PCR. Second, the coexpression
relationship between LINC00652 and INSL3/SNAP91/-
MIA2/APOA1 should be verified by coimmunoprecipitation
experiments. Third, the effects of our identified lncRNAs and
mRNAs on the proliferation, apoptosis, metastasis, and inva-
sion of childhood ALL cell lines need to be explored by over-
expression and knockout experiments in vitro and in vivo.

5. Conclusion

In the present study, we developed a new lncRNA-mRNA sig-
nature (including lncRNA LINC00652 and its six coexpression
genes, INSL3, NIPAL2, REN, RIMS2, RPRM, and SNAP91) in
relapsed ALL patients based on WGCNA and LASSO analy-
ses. This classifier had high accuracy in predicting 5-year OS
(AUC = 0:846) and recurrence outcomes (AUC = 0:901).
Therefore, it may be a potential predictive and prognostic bio-
marker applied in the clinic for childhood ALL.
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