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of glycerol, glucitol and Unk5. While, F. oxysporum spe-
cies is characterised by increased level of propylene gly-
col, ethanol, 4-aminobutyrate, succinate, xylose, Unk1 and 
Unk4. In G. candidum, 3-methyl-2-oxovalerate, glutamate, 
pyruvate, glutamine and citrate were elevated. Addition-
ally, a detailed analysis of metabolic changes among A. pal-
lidofulvus, F. oxysporum and G. candidum showed that A. 
pallidofulvus seems to be the most pathogenic fungi. The 
obtained results demonstrated that targeted metabolomics 
analysis could be utilized in the future as a supporting taxo-
nomical tool for currently methods.

Keywords Metabolomics · 1H NMR spectroscopy · 
Biodiversity · Filamentous fungal pathogen

Introduction

The old taxonomic approach for fungi was generally based 
on phenotype (Guarro et al. 1999). This approach included 
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comparative studies of the morphological structures, cell 
wall composition, cytological testing, ultrastructure, cellu-
lar metabolism, fossil record, and sexual cycle (Bartnicki-
Garcia 1970, 1987; Fuller 1976; Hawksworth et  al. 1995; 
Heath 1980, 1986; Le´John 1974; Taylor 1978; Vogel 
1964). According to this method, the fungi kingdom was 
divided into the following four main phyla: Zygomycota, 
Ascomycota, Basidomycota and Fungi Imperfecti, namely 
Deuteromycota (Guarro et  al. 1999). This division has 
changed during the last two decades, especially due to the 
development of new cladistics and molecular approaches 
(phylogenetic), such as a PCR method in which universal 
oligonucleotide primers specific to fungi were selected 
and the 18S subunits of the rRNA sequences were com-
pared (Bruns et al. 1992; Golenberg et al. 1990; Hendriks 
1992; Hausner et al. 1992; Haase et al. 1995; Spatafora and 
Blackwell 1993; Swann and Taylor 1995). Currently, the 
classification system of fungi contains the following seven 
phyla: Chytridiomycota, Blastocladiomycota, Neocallimas-
tigomycota, Microsporidia, Glomeromycota, Ascomycota 
and Basidiomycota (Kirk et  al. 2001, 2008; Hibbett et  al. 
2007; Blackwell et al. 2006; David et al. 2011). It can be 
imagined that this systematic scheme might further evolve 
in the future because of the huge biodiversity of fungal spe-
cies and techniques that are still being developed.

The procedure of microbial identification can also be 
based on the analysis of the chemical compositions of 
cells (Ivanisˇevic´ et al. 2011; Semmar et al. 2007; Ceval-
los-Cevallosa et al. 2009). This approach is successfully 
used to screen for metabolic differences of various living 
systems. For example, Zieliński et al. reported that chem-
ometrics studies are useful for determination of the ori-
gin of polish monofloral and multifloral honeys, whereas 
Deja et  al. showed that multivariate analysis of primary 
endo-metabolites can exhibit correlation between fruit 
bodies and the topsoil type as well as differences in the 
chemical compositions of the stem and cap of Amanita 
muscaria (Zieliński et al. 2014; Deja et al. 2014). Apart 
from a few papers showing the possibility of organism 
classification according to their intracellular metabolite 
compositions, most of literature data demonstrated dif-
ferentiation power based on secondary endo-metabo-
lites (Frisvad et  al. 2008; Andersen et  al. 2008; Frisvad 
1992; Jennessen et al. 2005). Generally, this trend could 
be observed in studies on fungal biodiversity, where 
chemotaxonomy is referred to as being successful for 
its classification. Metabolomics approaches have proven 
to be useful to distinguish among genera such as Peni-
cilium, Aspergillus and Fusarium (Larsen et  al. 2005; 
Smedsgaard and Nielsen 2005). Kadlec et  al. exhib-
ited differentiation between Tolypocladium, Beauceria 
and Paecilomyces by using gas chromatography com-
bined with mass spectrometric analysis (Kadlec et  al. 

1994). Moreover, chemotaxonomic diversity among 
Saccharomyces cerevisiae mutant groups was observed 
(Smedsgaard and Nielsen 2004; Smedsgaard et al. 2004; 
Mas et  al. 2007). Although chemotaxonomic studies 
associated with a metabolomics approach have been con-
ducted based on secondary endo-metabolites, they have 
rarely been conducted on primary endo-metabolites. A 
few reports could be found in which components of the 
grow medium (metabolic footprint) were used for classi-
fication purposes (Junka et al. 2013; Zheng et al. 2011).

The main goal of this study was to examine a poten-
tial metabolomics-based approach for the supporting 
currently taxonomy of filamentous fungal pathogens by 
applying 1H NMR spectroscopy in association with che-
mometric analysis. The common fungal human pathogens 
Aspergillus pallidofulvus (A. pal), Fusarium oxysporum 
(F. oxy) and Geotrichum candidum (G. can) were chosen 
as model microorganisms. These fungal species belong 
to three different classes (Eurotiomycetes, Sordariomy-
cetes, and Saccharomycetes) of the Ascomycota phylum. 
It should be noted that Eurotiomycetes and Sordariomy-
cetes come from the same subphylum Pezizomycotina, 
whereas Saccharomycetes come from Saccharomycotina. 
With regard to previous reports, this is the first study in 
which the simple distinguish of filamentous fungi based 
on primary not secondary metabolites was observed. 
Moreover, the second objective was to determine charac-
teristic metabolites related to the occurrence of the tested 
fungal pathogens. Finally, the specific biochemical path-
ways were discussed.

Materials and methods

Fungal strains and culture conditions

In this study, three genus of filamentous fungi including 
Aspergillus pallidofulvus (ZK0431), Fusarium oxysporum 
(DSM 12646) and Geotrichum candidum (DSM 6593) 
were tested. Fungal strains were routinely maintained on 
potato dextrose agar (PDA, Difco), which provided profuse 
sporulation suitable for collection of the inoculum.

To evaluate the differences and biodiversity between 
Aspergillus pallidofulvus, Fusarium oxysporum and Geotri-
chum candidum based on intracellular metabolites, fungi 
were cultured on potato dextrose agar (PDA, Difco) in 
10-cm Petri dishes for 5 days at 28 °C. The inoculums of 
fungi were prepared by washing with 5 mL of 0.1% Tween 
20. The spore suspensions were adjusted to a final concen-
tration of  106  conidia/mL in 100  mL of potato dextrose 
broth (PDB, Difco) and incubated with shaking for 48 h at 
28 °C.
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Extraction of the fungal metabolites

The fungal biomasses were filtered, washed with saline 
solution and then weighed in aliquots of 100  mg of wet 
weight cells. In the next step, fungal cells were frozen for 
10 min at −80 °C. The procedure of fungal cell disintegra-
tion included two separate consecutive steps. In the first 
one, frozen samples were disrupted using QIAGEN–Tis-
sueLyser (50 Hz, 5 min), followed by the addition of 650 µL 
of PBS buffer (10%  D2O, 0.05 M, pH = 7.0, 0.15 mM TSP) 
to each sample. The second step based on ice bath ultra-
sonic cell disruption was performed for 30 min. After the 
disintegration procedure was completed, samples were cen-
trifuged (10 min, 17 500 rpm, 4 °C), and 550 µL of clarified 
homogenate was transferred into a 5 mm NMR tube. Ten 
repetitions for each strain were performed in this study.

1H NMR spectroscopy analysis of the fungal metabolites

Standard NMR experiments were performed on a Bruker 
AVANCE II 600.58  MHz spectrometer equipped with a 
5 mm TBO probe at 300 K. All one-dimensional 1H NMR 
spectra were carried out using the zgpr1d (in Bruker nota-
tion) pulse sequence by suppression of water resonance 
by presaturation. Acquisition parameters were as follows: 
spectral width, 20 ppm; acquisition time, 1.36 s per scan; 
time domain points, 32 K; relaxation delay, 3.5 s; and num-
ber of scans, 256. Prior to Fourier transformation, the FIDs 
were multiplied by an exponential function equivalent to 
that of a 0.3  Hz line-broadening factor. The spectra were 
manually corrected for phase and baseline (by a fifth order 
polynomial baseline fitting) and referenced to the TSP reso-
nance at 0.0  ppm. Additionally, the metabolite conforma-
tions were assigned through two-dimensional NMR experi-
ments 1H-1H-TOCSY (Total Correlation Spectroscopy) and 
1H-13C-HSQC (Heteronuclear Single Quantum Coherence).

Data processing and multivariate statistical data 
analysis

All spectra were exported to Matlab (Matlab v. 8.1, Math-
work Inc.) for preprocessing. Regions affected by solvent 
suppression were excluded (4.500–5.100  ppm) and align-
ment procedures involving the correlation of optimized 
warping (COW) and interval correlation shifting (icoshift) 
algorithms were applied (Tomasi et al. 2004; Savorani et al. 
2010). The spectra consisted of 30,811 data points and 
were normalized using the probabilistic quotient method to 
overcome the issue of dilution (Dieterle et al. 2006).

The multivariate and statistical data analysis were per-
formed on a set of the 51 assigned metabolites. The metab-
olite concentration measured by NMR was obtained as the 
sum of the intensities of the non-overlapping resonances 

(or a cluster of partly overlapping resonances). Such a 
transformed data matrix was the input for SIMCA-P soft-
ware (v 13.0, Umetrics, Umeå, Sweden) and Matlab for 
follow-up analysis.

Prior to the chemometric analysis, the data sets were 
unit variance scaled. For classification of the fungal 
strains, principal component analysis (PCA) was carried 
out. The fungal strains were assigned to groups according 
to the results of the homologous metabolite profiling that 
coincided with those of PCA-hierarchical cluster analysis 
(PCA-HCA). The graphical representation of the metabo-
lite and fungal strains biplot was constructed from the first 
two components. The scores and loadings in the biplot 
were expressed using correlation scaling. A heat map with 
dendrograms to show dynamic changes in metabolites in 
the hierarchical clustering of data was created.

Metabolites responsible for the separation in models 
were tested using STATISTICA 10 with the Mann–Whit-
ney–Wilcoxon test (MWW). A 0.01 level of probability 
was used as the criterion for statistical significance. Cor-
relation coefficients (r) were also calculated.

Results

Representative 1H NMR-spectra for fungal strains are 
shown in Fig.  1. In total, 45 metabolites were identi-
fied based on typical 2D NMR experiments, namely 
1H-1H-TOCSY and 1H-13C-HSQC. All assignments were 
verified using the Biological Magnetic Resonance Data 
Bank (BMRDB) and the Human Metabolome Data Base 
(HMDB) (Andersen et  al. 2001, 2003). Six metabolites 
were not assigned (Unk1, Unk2, Unk3, Unk4, Unk5, 
Unk6).

Multivariate analysis of the metabolite fingerprinting 
in A. pallidofulvus, F. oxysporum and G. candidum 

In general, PCA was calculated with four principal compo-
nents (PC) and revealed the natural grouping of the vari-
ous fungal strains based on concentrations of the assigned 
endo-metabolites (Fig. 2a).

In agreement with PCA, PCA-HCA applied on the same 
dataset revealed consistent resolution of the fungal strains 
(Fig. 3). The hierarchical clustering of the metabolite data 
showed three major groups of samples that were similar (A. 
pallidofulvus, F. oxysporum and G. candidum) to those of 
PCA. As shown in Fig. 2a, G. can is clearly separated from 
the other fungal genus. Among the other genus, A. pal and 
F. oxy were found to be the most similar to themselves.

The first and second PC (PC1 and PC2, respectively) 
accounted for 41.7% and 37.1% of the variance in the data, 
respectively. The data points of A. pal and F. oxy were 
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separated from G. can in PC1, whereas differences between 
A. pal and F. oxy were in PC2 (Fig. 2a).

The dynamic changes in the metabolite concentrations 
in the three clusters were explored using a heat map with 
hierarchical clustering (Fig.  4). The cluster of A. pal was 
characterized by increased levels of malonate, choline, sn-
glycero-3-phosphocholine, glycerol, glucitol, betaine, glu-
cose and Unk5. The group of F. oxy showed higher levels 
of leucine, isoleucine, isobutyrate, propylene glycol, etha-
nol, acetate, 4-aminobutyrate, succinate, aspartate, xylose, 
guanosine, phenylalanine, Unk1, Unk4 and Unk6.

In G. can the concentrations of 3-methyl-2-oxovalerate, 
alanine, proline, glutamate, pyruvate, glutamine, citrate, 
2-oxoisocaproate, creatine, fumarate, histidine and xanthine 
were significantly higher.

The statistical analysis performed by using the MWW 
exhibited that in every possible comparison (A. pal vs. 

F. oxy, A. pal vs. G. can, F. oxy vs. G. can), almost every 
metabolite was statistically significant (Table 1).

The most important metabolites correlated with the 
tested fungal genus were demonstrated in a biplot (Fig. 2b). 
Additionally, the correlation coefficient (r) was calculated 
for each comparison (Table 2). Taking into account the var-
iables and their correlation coefficients, in positive correla-
tion r > 0.9, and for each genus the characteristic metabo-
lites were selected. The species of A. pal is represented by 
the highest concentrations of glycerol, glucitol and Unk5 
(Fig. 5; bold italics metabolites in Table 2).

The positively correlated metabolites in F. oxy species 
were propylene glycol, ethanol, 4-aminobutyrate, succi-
nate, xylose, Unk1 and Unk4 (Fig.  2b; italics metabolites 
in Table 2). In G. can, 3-methyl-2-oxovalerate, glutamate, 
pyruvate, glutamine and citrate exhibited positive correla-
tion (Fig. 2b; bold metabolites in Table 2).

Fig. 1  Median 600 MHz 1H NMR zgpr spectra of filamentous fungal 
pathogen strains obtained from cell-free crude extracts of the follow-
ing: a Aspergillus pallidofulvus; b Fusarium oxysporum; c Geotri-
chum candidum. 1 leucine; 2 valine; 3 isoleucine; 4 isobutyrate; 5 
3-methyl-2-oxovalerate; 6 propylene glycol; 7 ethanol; 8 lactate; 9 
alanine; 10 arginine; 11 lysine; 12 acetate; 13 proline; 14 methionine; 
15 4-aminobutyrate; 16 glutamate; 17 pyruvate; 18 succinate; 19 glu-

tamine; 20 citrate; 21 2-oxoisocaproate; 22 malate; 23 aspartate; 24 
asparagine; 25 creatine; 26 malonate; 27 CHOLINE; 28 sn-glycero-
3-phosphocholine; 29 myo-inositol; 30 glycerol; 31 glucitol; 32 man-
nitol; 33 betaine; 34 threonine; 35 xylose; 36 glucose; 37 glucose-
1-phosphate; 38 uracil; 39 guanosine; 40 fumarate; 41 tyrosine; 42 
histidine; 43 phenylalanine; 44 tryptophan; 45 xanthine; 46 Unk1; 47 
Unk2; 48 Unk3; 49 Unk4; 50 Unk5; 51 Unk6



World J Microbiol Biotechnol (2017) 33:132 

1 3

Page 5 of 12 132

Discussion

There is no evidence that previously published papers 
have comparatively analyzed the metabolite profiles of 
filamentous fungal pathogens including A. pallidofulvus, 
F. oxysporum and G. candidum. Our results show that a 
simple comparison of primary endo-metabolites using 1H 
NMR-based metabolomics can clearly separate these tested 
fungi. This is contradictory to most previous reports that 

postulated the lower power of primary endo-metabolites in 
chemotaxonomy and the differentiation of microorganisms 
(Frisvad et  al. 2008; Andersen et  al. 2008; Frisvad 1992; 
Jennessen et  al. 2005). It is well-known that satisfactory 
growth of fungi and hence the production of metabolites is 
strongly dependent on the medium type and growth con-
ditions (Frisvad et  al. 2008; Andersen et  al. 2001, 2003; 
Thrane 1993). Therefore, four types of media are routinely 
used in metabolic studies of fungi including the following: 

Fig. 2   a PCA PC1/PC2 score plots of 1H NMR of the 51 total assigned metabolites and b Clusters in a two-dimensional biplot for A. pallidof-
ulvus (orange circles), F. oxysporum (yellow boxes) and G. candidum (red triangles). (Color figure online)

Fig. 3  Dendrogram of HCA results obtained from PCA based on 4 PCs
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dichloran Rose Bengal yeast extract sucrose agar, malt 
extract agar, yeast extract sucrose (YES) agar, and potato 
dextrose agar (PBA) (Andersen et  al. 2001, 2003; Thrane 
1993). In this study, a medium based on potato-dextrose 
was used.

Biodiversity in fungal primary endo-metabolites showed 
that the three pathogenic strains, A. pal, F. oxy and G. can, 
are characterized by some particular variations in their fun-
gal primary endo-metabolites despite the same growth con-
ditions and general similarities in metabolism. The main 
differences are assigned in Fig. 5, where on a simple map 
of the biochemical pathways, increased concentrations of 
various metabolites can be seen for A. pal (orange boxes), 
F. oxy (yellow boxes) and G. can (red boxes).

Biodiversity of the metabolic pathways

In comparison to F. oxy and G. can, the pathogenic strains 
of A. pal are characterized by some elevated metabolite 
levels included in galactose metabolism, namely glucitol 
(d-sorbitol) and d-glucose. Sorbitol is a sugar alcohol that 
arises from sucrose or glucose and fructose but rarely from 
glucose or fructose alone (Baek et  al. 2010). The forma-
tion of sorbitol is often related to protecting cells against 
osmotic stress (Yoo and Lee 1993; Shen et al. 1999). Thus, 
sorbitol acts as high-osmotic pressure metabolite as well 
as protecting against protein denaturation. However, it is 
well-known that sorbitol is a component of potato-dextrose 
medium. Therefore, this finding might also be associated 
with the better uptake of sorbitol by A. pal cells from the 
growth medium than with its production in biochemical 
pathways.

The second group of metabolic pathways where strains 
of A. pal revealed higher concentrations of some metabo-
lites is glycerophospholipid metabolism. Choline, sn-glyc-
ero-3-phosphocholine, glycerol and malonate are involved 
in the lipid biosynthesis necessary to form cellular mem-
branes. Glycerol can be utilized for the backbone of differ-
ent lipids as well as playing a crucial role in osmoregula-
tion and maintaining a proper anabolic reduction charge 
(Shen et  al. 1999; Vries et  al. 2003; Clark et  al. 2003). 
Sn-glycero-3-phosphocholine and choline as a source of 
methyl groups can take part in the elongation of glycerol- 
and glycerophospholipid chains. Additionally, betaine is a 
precursor for choline synthesis.

Malonate is a simple three-carbon dicarboxylic acid 
well-known to be a competitive inhibitor of succinate dehy-
drogenase (Kim 2002). The role of malonate is unclear, but 
its main objectives are related to nitrogen metabolism (Kim 
2002). In plants, malonate has been suggested as a defen-
sive metabolite when under stress.

Therefore, A. pal malonate might play a different protec-
tive role, and in addition, malonate might be included in the 
fatty acid biosynthetic pathways (components of cell wall 
and/or membrane).

Analysis of the F. oxy primary endo-metabolites 
resulted in the observation that the main differences are 
associated with a check-point of the respiration pro-
cess. In oxidative respiration, pyruvate is integrated via 
acetyl-CoA into the citric acid cycle. When the oxygen 
level becomes insufficient, pyruvate is metabolized to 
ethanol via acetate. Thus, the elevated levels of ethanol 
and acetate in the cells of F. oxy suggest that this fungus 
can switch its metabolism to direct anaerobic respiration. 

Fig. 4  The heat map with 
hierarchical clustering of the 
metabolites. The metabolites 
assigned in columns are labeled 
with the same numbering 
scheme as in Fig. 1 
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Table 1  The changes in 
intracellular primary endo-
metabolites

Metabolite Percentage difference Relative standard 
deviation (%)

 A. pal vs. F. 
oxy 

 A. pal vs. G. 
can 

 F. oxy vs. G. 
can 

 A. 
pal 

 F. 
oxy 

 G. 
can 

Leucine −20.6* 44.3* 63.5* 13.0 11.2 15.0
Valine −28.0* −18.0 10.2 14.5 10.1 15.8
Isoleucine −29.2* 13.0 41.8* 13.1 10.1 14.4
Isobutyrate −75.8* −47.4* 31.2* 7.3 8.1 10.2
3-Methyl-2-oxovalerate −46.5* −83.0* −40.3* 3.6 11.8 11.5
Propylene glycol −147.3* −5.6 144.6* 5.0 12.4 8.2
Ethanol −171.8* −4.4 170.6* 24.6 30.2 14.9
Lactate 1.0 3.9 2.8 5.8 11.7 14.0
Alanine −74.2* −77.1* −3.4 8.9 11.7 9.3
Arginine −17.8* −26.7* −9.0 5.0 10.8 10.2
Lysine −26.7* −62.2* −37.0* 9.9 10.8 11.0
Acetate −75.0* −51.4* 26.2* 9.7 10.0 15.8
Proline 7.1 −32.2* −39.1* 4.9 10.3 11.1
Methionine −9.8 −26.4* −16.7 8.5 11.6 12.5
4-Aminobutyrate −66.1* 82.1* 130.5* 6.1 10.0 9.2
Glutamate −9.8 −92.7* −84.8* 9.0 13.1 9.9
Pyruvate −31.0* −66.8* −37.7* 5.4 10.7 6.9
Succinate −61.5* −19.5* 43.2* 5.4 11.8 8.8
Glutamine 5.7 −81.7* −86.4* 3.7 11.5 8.3
Citrate 4.4 −97.3* −100.6* 4.2 12.2 7.1
2-Oxoisocaproate −5.6 −46.1* −40.8* 5.5 13.5 8.0
Malate −36.4* −46.7* −10.7 5.2 14.7 7.9
Aspartate −27.2* 23.0* 49.4* 8.9 16.9 10.8
Asparagine 12.5* −7.5 −19.9* 6.1 12.2 8.9
Creatine −6.2* −67.0* −61.4* 40.7 11.1 9.6
Malonate 57.9* 28.9* −30.2* 5.1 13.0 8.4
Choline 18.8 −3.9* −22.6 5.0 18.6 17.9
sn-Glycero-3-phosphocholine 32.2* 6.3 −26.0* 6.8 10.1 9.0
 myo-Inositol 33.2* −0.1 −33.2* 5.1 35.9 7.6
Glycerol 74.7* 116.3* 53.1* 6.9 34.1 9.0
Glucitol 55.3* 65.0* 10.7 6.1 22.9 7.0
Mannitol −5.4 106.3* 110.1* 6.9 9.6 8.8
Betaine 18.6* 26.5* 8.0 7.2 7.4 9.4
Threonine −19.5* −21.6* −2.2 8.7 8.2 11.6
Xylose −80.6* 44.8* 115.0* 10.2 24.6 6.4
Glucose 68.3* 9.9 −59.4* 8.2 6.6 15.8
Glucose-1-phosphate −61.3* −79.0* −20.1 13.0 21.0 11.7
Uracil −50.3* −63.5* −14.3 21.0 6.9 15.9
Guanosine −44.0* 45.3* 85.0* 12.9 10.0 10.4
Fumarate −33.3* −73.6* −43.0* 15.6 9.6 12.9
Tyrosine −15.7 −15.4* 0.3 12.6 6.5 9.5
Histidine −32.9* −73.7* −43.4* 12.0 17.6 9.1
Phenylalanine −22.4* 5.5 27.9* 10.9 8.1 11.0
Tryptophan −30.7* −22.8* 8.0 16.0 8.1 7.8
Xanthine −85.3* −123.8* −52.3* 13.6 23.7 20.4
Unk1 −121.7* −5.8 118.0* 17.6 17.1 11.6
Unk2 −0.8 6.2 7.0 12.0 10.9 17.6
Unk3 −135.1* −130.8* 7.8 21.3 11.4 13.6
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However, the level of succinate (main intermediate of 
oxidative respiration) was also elevated. Therefore, it 
could be assumed that F. oxysporum metabolizes pyru-
vate both via the citric acid cycle and ethanol production.

In F. oxy higher concentrations of aspartate, leucine, 
isoleucine and isobutyrate, the primary metabolites for 
protein metabolism, anabolism (biosynthesis) and catab-
olism (degradation), could be noted. Additionally, pheny-
lalanine is increased in F. oxy and can be synthesized by 
the interconversion of d-xylose (up-regulated in F. oxy) 
via the pentose phosphate pathway. Propylene glycol is 
known as a competitive inhibitor of glycerol transport 
(Castro and Loureiro-Dias 1991). Thus, it seems that F. 
oxy accumulated their metabolites more from direct pro-
tein synthesis than lipids and lipid components. However, 
the regulation of cell wall growth might be controlled by 
an elevated concentration of guanosine.

Among all of the discussed pathogenic filamentous 
fungi, G. can were characterized by highly increased 
levels of metabolites involved in oxidative respiration. 
Higher concentrations of metabolites of the citric acid 
cycle (citrate and fumarate) were noted. The excess 
of citrate can be utilized in the synthesis of glutamate 
and lysine (both in higher concentrations in the case of 
G. can) (Kanehisa et  al. 2017). Glutamate can then be 
metabolized towards glutamine (up-regulated in G. can), 
which might be used to produce purine, aminosugars and 
proline (up-regulated in G. can). Glutamate can also be 
utilized in the urea cycle that plays a pivotal role in the 
N-metabolism of fungi, which was observed as the level 
of creatine was up-regulated (Kanehisa et al. 2017).

Generally, fungi are capable of producing different 
secondary metabolites such as antibiotics, volatile com-
pounds and others, which is related to the activation of 
different metabolic pathways involving the biosynthetic 
precursors of these reactions (Zhai et  al. 2017; Alberti 
et  al. 2017). In G. can, the levels of histidine and xan-
thine, the main precursor metabolites in the biosynthe-
sis of secondary metabolites, were elevated. Thus, it 
seems that G. can switch their metabolism towards the 

production secondary metabolites more so than A. pal 
and F. oxy.

In G. can, the levels of two α-keto acids, 3-methyl-
2-oxovalerate and 2-osoisocaproate, were elevated. These 
metabolites, unique for fungal metabolism, are derived 
from amino acid degradation (Kanehisa et al. 2017). How-
ever, detailed analysis and their role in comparing the 
tested species is still unclear.

Filamentous fungal virulence

The comparative primary endo-metabolome analysis of 
the three common filamentous fungi A. pal, F. oxy and G. 
can showed the main differences, but on this basis, it could 
also indicate the most dangerous fungal pathogens. These 
results suggest that A. pal is the most dangerous of the 
three, which is in agreement with previous reports. What 
makes A. pal a successful pathogen? In its metabolism can 
be observed the targeting metabolism on the protection of 
cell wall. Most antifungal agents act against the integrity 
of the cell wall. A. pal, by the synthesis of various com-
ponents of lipids and the cell wall, might be able to resist 
these compounds. Additionally, the level of mannitol in A. 
pal is interesting. The concentration of mannitol is similar 
to that in F. oxy, and the HCA plot showed closer to group-
ing these two fungi. However, mannitol plays a very impor-
tant role in the fungi as its presence allow cells to increase 
resistance and their virulence factors (Krahulec et al. 2011; 
Calmes et al. 2013; Ruijter et al. 2003).

Conclusion

In this study the 1H NMR-based metabolomics approach 
was applied for the analysis of the biodiversity of fila-
mentous fungal pathogens. According to our prelimi-
nary results, each of the tested strain (A. pallidofulvus, F. 
oxysporum and G. candidum) cultured in the same growth 
conditions revealed a specific metabolite profile. Moreover, 
we demonstrated that targeted metabolomics analysis could 

Table 1  (continued) Metabolite Percentage difference Relative standard 
deviation (%)

 A. pal vs. F. 
oxy 

 A. pal vs. G. 
can 

 F. oxy vs. G. 
can 

 A. 
pal 

 F. 
oxy 

 G. 
can 

Unk4 −55.4* 41.9* 92.0* 13.5 10.6 12.4
Unk5 171.8* 112.7* −114.5* 14.9 50.1 159.5
Unk6 −106.7* 0.6 107.1* 29.7 45.7 35.5

The percentage difference was calculated based on the average values of relative signal integrals in each 
group. The calculations were made from left to right
*p < 0.01 using the Mann–Whitney–Wilcoxon test
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Table 2  Correlation 
coefficients (r) of intracellular 
primary endo-metabolites

Metabolite  A. pal vs. F. oxy  A. pal vs. G. can  F. oxy vs. G. can 

Leucine 0.61 −0.88 −0.91
Valine 0.69 0.61 −0.37
Isoleucine 0.74 −0.50 −0.85
Isobutyrate 0.97 0.95 −0.86
3-Methyl-2-oxovalerate 0.92 0.96 0.87
Propylene glycol 0.99 0.29 −0.99
Ethanol 0.98 0.08 −0.98
Lactate −0.05 −0.22 −0.11
Alanine 0.97 0.96 0.17
Arginine 0.74 0.84 0.41
Lysine 0.80 0.95 0.87
Acetate 0.93 0.94 −0.70
Proline −0.41 0.88 0.89
Methionine 0.43 0.79 0.59
4-Aminobutyrate 0.97 −0.99 −0.99
Glutamate 0.48 0.96 0.96
Pyruvate 0.93 0.96 0.90
Succinate 0.97 0.73 −0.92
Glutamine −0.43 0.97 0.97
Citrate −0.37 0.97 0.97
2-Oxoisocaproate 0.39 0.89 0.87
Malate 0.94 0.88 0.42
Aspartate 0.81 −0.69 −0.89
Asparagine −0.66 0.37 0.69
Creatine 0.11 0.85 0.94
Malonate −0.98 −0.86 0.81
Choline −0.63 0.15 0.54
sn-Glycero-3-phosphocholine −0.91 −0.36 0.81
myo-Inositol −0.94 0.00 0.51
Glycerol −0.98 −0.98 −0.82
Glucitol −0.98 −0.94 −0.33
Mannitol 0.34 −0.99 −0.99
Betaine −0.77 −0.89 −0.44
Threonine 0.70 0.80 0.12
Xylose 0.98 −0.83 −0.99
Glucose −0.96 −0.57 0.95
Glucose-1-phosphate 0.93 0.89 0.51
Uracil 0.83 0.94 0.54
Guanosine 0.90 −0.89 −0.97
Fumarate 0.78 0.96 0.90
Tyrosine 0.60 0.65 −0.02
Histidine 0.86 0.91 0.82
Phenylalanine 0.73 −0.29 −0.82
Tryptophan 0.81 0.71 −0.47
Xanthine 0.90 0.92 0.76
Unk1 0.98 0.17 −0.98
Unk2 0.03 −0.27 −0.24
Unk3 0.97 0.98 −0.31
Unk4 0.91 −0.86 −0.96
Unk5 −0.96 −0.93 0.63
Unk6 0.82 −0.01 −0.81
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Fig. 5  The general scheme of the metabolic pathways of A. pallidofulvus (orange boxes), F. oxysporum (yellow boxes) and G. candidum (red 
boxes). (Color figure online)
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be utilized after careful optimization by other omics as well 
as biochemical assays in the future as a supporting taxo-
nomical tool for currently methods.
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