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Background: Hepatocellular carcinoma (HCC) is one of the leading causes of

cancer-related death worldwide. Radiotherapy (RT) controls HCC

unsatisfactorily and temporarily. Histone deacetylase inhibitor (HDACi) is a

heterogeneous group of epigenetic therapeutics with promising anticancer

effects and synergism in combination with RT. HDACi modulates natural killer

(NK) cell ligand expression on tumor cells, and leads to immune evasion of

cancer cells. Expressions of NK group 2D (NKG2D) ligands on cancer cells

determine the cytotoxic effect by interacting with NKG2D receptor on NK cells.

However, the role of NKG2D signaling in HCC upon combined RT and HDACi

remains unclear.

Method: In vitro co-culture system with NK cells was tested for human and

murine HCC cell lines. Pan-HDACi (panobinostat) and specific HDAC4

knockdown (HDAC4-KD) were used for HDAC inhibition. Clonogenic assay

and flow cytometry examined HCC cell survival and NKG2D ligand expression,

respectively. Syngeneic mouse model was used to validate the radiosensitizing

effect in vivo.

Results: Combined RT and HDACi/HDAC4-KD significantly enhanced NK cell-

related cytotoxicity and increased NKG2D ligands, MICA/MICB expressions in

human and RAE-1/H60 expressions in murine HCC cells. Delayed tumor

growth in vivo by the combinational treatment of RT and HDACi/HDAC4-KD

was shown with the associated NKG2D ligand expressions. However, NKG2D

receptor did not significantly change among tumors.

Conclusion: Radiosensitizing effect with combined RT and HDAC inhibition

increased the expression of NKG2D ligands in HCC cells and enhanced their

susceptibility to NK cell-mediated cytotoxicity. These findings imply the

potential use of combined RT/HDACi and NK cell-directed immunotherapy.
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Introduction

Hepatocellular carcinoma (HCC) is one of the leading causes

of cancer-related lethality worldwide (1, 2). Radiotherapy (RT)

usually controls HCC tumors unsatisfactorily and temporarily,

which demands the need of radiosensitizers to improve the

therapeutic ratio (3, 4). Conventional RT exerts a direct anti-

tumor effect through DNA damage to cancer cells with high-

energy particles leading to subsequent cell death (5). With the

established effect of immunotherapy on HCC, it is recently

studied that RT to treat HCC often causes immune-modifying

effects and changes the tumor microenvironment (TME). Thus,

radiation may modulate the target expression of immunotherapy

(6, 7). Clinical study showed the enhanced RT effect mediated by

natural killer (NK) cells after electron irradiation (8). Previous

studies also reported the NK group 2D (NKG2D)-dependent

antitumor effects of RT against glioblastoma with a significant

tumor reduction in vivo. Besides, RT could enhance the NK cell

receptor, NKG2D expression and NK cell with antitumor

cytotoxicity in HCC cells (9, 10).

Histone deacetylase inhibitor (HDACi) is an emerging group

of agents which target HDAC and are promising radiosensitizers

currently under investigation. Trichostatin A, anHDACi, sensitizes

HCC cells to enhancedNK cell-mediated killing effect by regulating

immune-related genes, increases NKG2D ligand expressions, and

upregulates chemokines responsible for the enhanced infiltration of

NK cells into tumor tissues (11). In addition, the use of HDACi was

reported to have the immunomodulatory effect on NKG2D system,

and was able to reverse the RT-insensitive cancer cells with DNA

damage-dependent NKG2D ligands, MICA/MICB-, to MICA/

MICB+ cells as well as sensitize these cells for NK cell mediated

cytotoxicity (12, 13). Our previous report demonstrated the

potential radiosensitization of HCC with a pan-HDACi

(panobinostat) and specific HDAC4 knockdown HCC cells to

impair DNA repair process and delay ectopic HCC tumor

progression (14).

Radiofrequency ablation (RFA), similar to RT, to neoplastic

nodules of liver enhanced the release and exposure of tumor

antigens, thereby helped overcome immune tolerance towards

cancer cells (15). NK cells expressing higher levels of activated

NKG2D receptors and reduced levels of inhibitory NK receptors,

together with increased functional activity, e.g. interferon-g
production and cytotoxicity, were found in HCC patients

treated with RFA (16). Cancer cells treated with an HDACi

upregulated NKG2D ligands in an ATM/ATR-dependent
02
manner, resulted in the increased sensitivity to NK cell lysis,

and increased NKG2D ligand levels by the combined RT.

HDACi could therefore synergistically enhance the

susceptibilities of cancer cells to NK cells (17, 18). However,

the role of NKG2D system in HCC upon the combinational use

of HDAC inhibition and RT remains unclear. The present study

focused on whether radiosensitization with the combined

HDAC inhibition and RT can increase the expression of

NKG2D ligands in HCC cells and animal model and

consequently enhance their susceptibility to NK cell-

mediated cytotoxicity.
Materials and methods

Cells and materials

The human HCC cell lines PLC5 and Huh7, murine HCC

cell lines BNL CL.2 and Hepa 1-6 cells, and human NK-92 cells

were purchased from BCRC, Hsinchu, Taiwan. Adherent cell

lines were maintained in Dulbecco’s Modified Eagle Medium

(DMEM), containing 2 mmol/L L-glutamine and 10% fetal

bovine serum. Plasmid encoding short hairpin RNA (shRNA)

for HDAC4 (pLKO.1-shHDAC4) and control plasmids for the

RNA interference experiments (pLKO.1-shCON) were obtained

from the National RNAi Core Facility (Academia Sinica, Taipei,

Taiwan). For all experiments described herein, the adherent cells

were allowed to attach over a 24-hour period. Subsequently, the

experiments were carried out in serum-free medium. Cells were

g-irradiated using cesium-137 source irradiator (CIS-

BioInternational, IBA, Saclay, France).
HCC and NK cell co-culture system

Wild-type or plasmid-transfected HCC cells were placed in

six-well plates, with each well containing 1000 cells in 3 mL low-

glucose DMEM. After 24 hours, the cells were irradiated,

deposited at 37°C, and saturated with humidity of 5% CO2 for

4 hours. HCC cells treated with HDACi were washed once by

phosphate-buffered saline (PBS) with the replacement of the

medium before the subsequent co-culture procedure to remove

the toxic effect of HDACi on NK cells. Subsequently, HCC cells

were co-cultured with NK cells (0 or 20000 cells/well). Four

hours later, the well with co-cultured cells had the DMEM
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changed to remove the NK cells. Afterwards, the HCC cells were

cultured for 7 days at 37°C under saturated humidity of 5% CO2

before the subsequent assay.
Colony-formation assay

Wild-type or plasmid-transfected HCC cells (500-1000/well)

were seeded in six-well plates and treated with different doses of

radiation (2.5, 5 and 10 Gy) following 24-hour pretreatment

with pan-HDAC inhibitor (panobinostat [5 and 10 nM]; provide

by Novartis Pharma AG, NIBR, Cambridge, MA, USA) or

DMSO vehicle. The cells were cultured for 10 days, fixed, and

stained with crystal violet. All colonies (clusters of more than 50

cells) visible to the naked eye were counted. The results were

presented as means ± SEM of 3 independent experiments, with

duplicate samples for each treatment condition.
HCC ectopic allograft model

Male, 5- to 6-week-old, BALB/c mice (from BioLASCO

Taiwan Co., Ltd, Taipei, Taiwan) were used. In the ectopic

allograft HCC tumor model, BNL CL.2 cells (1×106) were

injected subcutaneously in the right hind limb of BALB/c

mouse. Tumors were allowed to attain an average volume of

100 mm3 before RT. The therapeutic effect of RT on this ectopic

allograft model was measured by the tumor growth curves. The

tumor size was measured in three dimensions twice a week, with

volumes calculated using a standard formula: width2×length/2.

All experimental procedures using these mice were performed in

accordance with protocols approved by the National Taiwan

University Institutional Animal Care and Use Committee. As

the tumors became established, mice were randomized into eight

groups to receive the following treatments (1): vehicle (saline

solution with 5% DMSO and 1% Tween 80) on days 1-5; (2)

panobinostat (25 mg/kg/day of body weight) on days 1-5; (3)

vehicle plus 7.5 Gy/day of RT on days 2-4; (4) panobinostat on

days 1-5 plus RT on days 2-4; (5) vector-control shRNA

(shCON) transfected BNL CL.2 cells; (6) shCON transfected

BNL CL.2 cells plus RT on days 2-4; (7) HDAC4 shRNA

(shHDAC4) transfected BNL CL.2 cells; (8) shHDAC4

transfected BNL CL.2 cells plus RT on days 2-4. For mice in

the RT groups, the tumors were with three 7.5-Gy using a small

animal X-ray irradiator (X-RAD SmART [Small Animal

RadioTherapy], PRECISION, USA).
Flow cytometry

The harvested tumor from ectopic allograft model were

digested into single cells. Tumoral cells and cultured human or

mouse HCC cells (5 × 105) were incubated with fluorescent dye-
Frontiers in Oncology 03
conjugated mAb (MICA, MICB, RAE1, H60, NKG2D, PD-L1)

(R&D Systems, Minneapolis, MN, USA) or the isotype controls

at 4°C for 1 h. Then, cells were washed three times with PBS. The

fluorescence was finally detected with FACS Calibur (BD

Biosciences, San Jose, CA, USA) and analyzed with BD

CellQuest Pro software.
Histological evaluation

Mice from each group were sacrificed on indicated days. The

tumor was fixed in 10% neutral buffered formalin and processed

for histopathological and immunohistochemical (IHC) staining.

After fixation, tumor tissues were embedded in paraffin blocks

and sectioned (5 mm). Tumor cells were identified in

representative stained sections. Expression of NKG2D

(GeneTex, Irvine, CA, USA) was evaluated after IHC staining

using specific antibodies according to our previous protocol (14).
Statistical analysis

Quantitative data were represented as mean ± SD. One-way

analysis of variance (ANOVA) with Fisher’s least significant

difference method was performed to evaluate the difference

between multiple groups. Repeated-measures ANOVA was

performed to evaluate the tumor growth curves. All the

statistical analyses are performed using GraphPad Prism 8.0

(GraphPad Software). Results with P values of <0.05 were

statistically significant.
Results

Treatment with HDACi or HDAC4
knockdown radiosensitizes HCC cells
and enhances NK cell cytotoxicity

To evaluate whether radiosensitization with combined

HDAC inhibition and RT can increase the vulnerability of

HCC cells and consequently enhance their susceptibility to NK

cell-mediated cytotoxicity, the pan-HDAC inhibitor,

panobinostat (LBH589) or HDAC4 knockdown combined

with various doses of RT were used for the clonogenic survival

by co-culture system. Human HCC cell lines (PLC5 and Huh7)

were significantly radiosensitized and thus had increased

cytotoxicity with cocultured NK cells to HCC under pan-

HDACi treatment (Figures 1A, B). Similar to HDACi,

shHDAC4-transfected human HCC cells had significantly

decreased clonogenic survivals when co-cultured with NK cells

(Figures 1C, D). The combination of pan-HDACi also

significantly reduced cell survival in two irradiated murine

HCC cell lines (BNL and Hepa 1-6) at 10 nM but not 5 nM
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(Figures 1E, F). The results demonstrated that either HDACi or

knockdown of HDAC4 enhanced radiosensitivity in HCC cells

and consequently increased NK cell-mediated cytotoxicity with

the decreased clonogenic survival in human HCC cells.
Combined HDACi or HDAC4 knockdown
and RT increases the expression of
NKG2D ligands and immunogenicity of
HCC cells for NK cells

To investigate whether radiosensitization with combined

HDAC inhibition and RT increases the expressions of NKG2D

ligands in HCC cells and consequently enhances their
Frontiers in Oncology 04
susceptibility to NK cell-mediated cytotoxicity, the pan-HDAC

inhibitor (panobinostat) or HDAC4 knockdown combined with

various doses of RT were used to induce NKG2D ligands by flow

cytometry with MICA/B expressions on PLC5 and Huh7 cells

co-cultured with or without NK cells. Our results showed that

MICA/B expressions on the surface of HCC cells were

significantly increased with HDAC inhibition and/or RT

(Figures 2A–F). The co-culture of HCC cells with NK cells

demonstrated the similarly increased expressions of MICA/B

(Figures 2G–L). However, HDAC4 knockdown only increased

MICB expression of HCC cells alone or co-cultured with NK

cells (Figures 2C, F, I, L). Thus, it indicates that the combined

HDACi or HDAC4 knockdown and RT significantly increased

the immunogenicity of human HCC cells for NK cells.
A B

D

E F

C

FIGURE 1

Effect of HDAC inhibition and radiotherapy on clonogenic survival in HCC cells co-cultured with or without natural killer (NK) cells. (A) Wild-type
PLC5 cells and (B) Huh7 cells irradiated with 0, 5 Gy, 10Gy and/or treated with 10 nM of panobinostat (LBH589), a pan-HDAC inhibitor were co-
cultured with 0 or 20000 NK cells; (C) HDAC4 knockdown (shHDAC4) PLC5 cells and (D) Huh7 cells as well as the corresponding shRNA vector-
control cells (shCON) irradiated with 0, 5 Gy, 10 Gy were co-cultured with 0 or 20000 NK cells; (E) Wild-type BNL cells and (F) Hepa 1-6 cells were
treated with various doses (0, 5 nM, 10 nM) of HDACi. Significant synergistic effects were observed with combined HDACi or HDAC4 knockdown
and radiotherapy on decreased cell survival and enhanced NK cell-related cytotoxicity in HCC cells. Error bars indicate SD, *P < 0.05, **p < 0.01,
***p < 0.001.
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The expressions of murine NKG2D ligands, RAE1 and H60,

of BNL and Hepa1-6 cells were analyzed. The results showed

that RAE1 expressions in both cell lines were significantly

increased with the combined HDACi or HDAC4 knockdown

and RT (Figures 3A, C, E, G). In contrast, H60 expressions
Frontiers in Oncology 05
were shown with inconsistent variations between these

two cell lines (Figures 3B, D, F, H). Hence, the results

demonstrated that HDAC inhibition radiosensitizes murine

HCC cells and increased the specific immunogenicity (RAE1)

for NK cells.
A B

D E F

G IH

J K L

C

FIGURE 2

Effect of HDAC inhibition and radiotherapy (RT) on NKG2D ligand expressions in human HCC cells co-cultured with (coNK) or without NK cells.
(A–F) Wild-type, vector-control shRNA (shCON) or HDAC4 shRNA knockdown (shHDAC4) PLC5 cells and Huh7 cells were treated with 10 nM
of a pan-HDAC inhibitor, LBH589; (G–L) Wild-type, shCON or shHDAC4 PLC5 cells and Huh7 cells were co-cultured with or without 20000 NK
cells. Combined LBH589 or shHDAC4 and RT significantly increased the expressions of NKG2D ligands (MICA/B) of HCC cells with or without
the co-cultured NK cells. Error bars indicate SD, *P < 0.05.
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Treatment with HDACi or HDAC4
knockdown enhances in vivo
radiosensitivity of ectopic HCC
allograft model

Next, we tested the therapeutic effects in mice bearing BNL

ectopic allografts. Mice bearing subcutaneous wild-type BNL

tumors or HDAC4 knockdown tumors were randomized for the

indicated treatments. Combined HDACi and RT suppressed the

growth of wild-type BNL tumors to a significantly greater extent

than RT alone or HDACi alone (Figure 4A). RT also significantly

delayed the growth of HDAC4 knockdown allografts compared

to shCON allografts (Figure 4B).
Frontiers in Oncology 06
Combined HDACi but not HDAC4
knockdown and RT increases the
surface expressions of specific
NKG2D ligands in vivo

We then examined whether combined HDAC inhibition and

RT increases the expressions of NKG2D ligands of tumor in

mice bearing BNL ectopic allografts. The expressions of murine

NKG2D ligands, RAE1 and H60, of BNL tumors were analyzed

by flow cytometry. Compared with sham group, RAE1

expression was significantly increased in RT, HDACi, and

combined HDACi and RT groups (Figure 5A). H60 expression

was significantly increased only in RT and combined HDACi/
A B D

E F G H

C

FIGURE 3

Effect of HDAC inhibition and radiotherapy (RT) on NKG2D ligand expressions in murine HCC cells. (A, B, E, F) Wild-type BNL cells and Hepa 1-6
cells were treated with 10 nM of a pan-HDAC inhibitor, LBH589; (C, D, G, H) vector-control shRNA (shCON) and HDAC4 shRNA knockdown
(shHDAC4) BNL cells and Hepa 1-6 cells were irradiated at 0, 2.5 Gy, or 5 Gy. Combined LBH589 or shHDAC4 and RT significantly increased the
expression of NKG2D ligand RAE1 but only partially increased H60 expression in murine HCC cells. Error bars indicate SD, *P < 0.05.
A B

FIGURE 4

Effect of HDAC inhibition and radiotherapy (RT) on murine allograft tumor control using BNL cells. (A) Subcutaneous (SC) allografts were treated
with RT and/or a pan-HDAC inhibitor, LBH589. (B) Allografts with vector-control shRNA (shCON) and HDAC4 shRNA knockdown (shHDAC4) BNL
cells were treated with or without RT. Combination of HDAC inhibition and RT more effectively delayed the tumor growth than either alone.
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RT groups (Figure 5B). Besides, RT increased the expression of

immune checkpoint molecule, PD-L1, while RT combined with

HDACi offset this increment (Figure 5D). However, there was

no significant increase in the NKG2D receptor among groups

(Figures 5C, G). Notably, RAE1 expression was increased in

HDAC4 knockdown tumors with or without RT (Figure 5E), but

H60 and PD-L1 expressions only responded to RT (Figures 5F,

H). IHC staining was performed to confirm tumor tissue

NKG2D expression and localization, the data were consistent

with the flow cytometry analysis, which showed no significant

changes among groups (Figure 6).
Discussion

With recent advancement of surgical techniques, RT

technology, targeted therapy and immunotherapy, patients

with HCC have more treatment options with the significantly

improved prognosis. As the importance of external RT gradually

increases in multidisciplinary treatment of HCC patients HCC,

RT combined with other treatment modalities may provide the

utmost benefit of advanced disease (19).

Our current results suggest that radiosensitization with the

combined HDAC inhibition and RT can increase the expression

of NKG2D ligands both in vitro and in vivo in our HCC models
Frontiers in Oncology 07
and consequently enhance the susceptibility of tumor cells to NK

cell-mediated cytotoxicity. NK cells play a specific role in the

control of tumor growth and metastasis, and provides innate

immunity against infection with certain viruses. Activation of

NK cells through NKG2D receptor leads to the release of

cytokines and chemokines that is capable of inducing

inflammatory responses, modulates monocyte, dendritic cells,

and granulocyte growth and differentiation, as well as influence

subsequent adaptive immune responses (20). In addition, the

expression of NKG2D ligands could be induced by proliferative,

tumor-suppressor, and stress signaling pathways linked to the

tumorigenic processes, pathogenic insults, and treatments by

chemotherapy or radiation (21). Surface expression of NKG2D

ligands sensitizes tumor cells to immune cell-mediated

destruction by engaging NKG2D to activate NK cells and co-

stimulate effector T cells initiating an immune response against

the incipient tumor (22). NK cell dysfunction is related to the

impaired antitumor immune response in HCC (23). Previous

studies revealed that down-regulation and/or loss of NKG2D

ligands contribute to the resistance of NK cell-mediated

eradication of HCC tumor (24, 25).

HDAC inhibitors have been reported to upregulate

expression of NKG2D ligands, and enhance NK cell-mediated

killing by regulating immune-related genes and chemokines

responsible for the increased infiltration of NK cells into
A B D

E F G H

C

FIGURE 5

Effect of HDAC inhibitor LBH589 and/or radiotherapy (RT) on tumoral surface expressions of NKG2D ligands (A) RAE1, (B) H60, (C) NKG2D
receptor, and (D) immune checkpoint molecule PD-L1 in ectopic HCC allografts using wild-type BNL cells, as well as (E) RAE1, (F) H60, (G)
NKG2D receptor, and (H) immune checkpoint molecule PD-L1 in allografts using HDAC4 shRNA knockdown (shHDAC4) BNL cells. The data
represented the fold change compared with vehicle or vector-control shRNA (shCON) group. Error bars indicate SD, *P < 0.05.
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tumor tissues (11, 26, 27). RT increases the expression of

NKG2D ligands in tumors, and regulates immune cells

including NK cells by inducing the secretion of IFN-g, TNF-a,
perforin, and granzyme B of NK cells through the p38-MAPK,

ATM, and NF-kB pathways (28). Our previous study

demonstrated the inhibition of HDAC4 either genetically by

shRNA or pharmaceutically by an HDACi (panobinostat)

combined with RT to reduce proliferation of HCC cells and

growth of ectopic xenografts via specific DNA repair pathway

(14). In the current study, we also use the similar strategy to

examine the possibility of NK-mediated cytotoxicity in HCC

cells and retardation of immunocompetent ectopic allografts.

Our data revealed that HDAC inhibition and/or RT increased

human NKG2D ligands (MICA/B) and murine NKG2D ligands

(RAE1, H60) and decreased clonogenic survivals especially when

HCC cells were co-cultured with NK cells. Notably, pan-HDAC

inhibitor, LBH589, showed the better effects than specific

HDAC4 knockdown (Figures 1–3). Murine HCC cells were

also tested in vitro. NKG2D ligands in BNL cells responded

significantly to HDACi/RT treatment, while Hepa 1-6 cells had

less significant responses (Figure 3).

Our in vivo results demonstrated the significant delay in

tumor growth with combined HDAC inhibition and RT, which

was consistent with the in vitro data. Similarly pan-HDAC

inhibitor showed better suppressive effect than specific HDAC4

knockdown strategy (Figure 4). The different aberrant subtypes of

HDAC have been proposed for the progression of HCC, and most

of the HDACs, including HDAC4, were upregulated in HCC (29).

It is reasonable that pan-HDAC inhibitor, panobinostat, in current

study showed greater anti-tumor effect than single HDAC4

knockdown in HCC cells/allografts. Some HDACs may hold the

effects on both oncogene and tumor suppressor in cancers (e.g.
Frontiers in Oncology 08
HDAC6 is involved in tumor suppression by non-epigenetic

regulation in HCC) (29, 30). The role of specific HDACs in

radiosensitization based on immune-modulation still requires

further investigation. NKG2D and NKG2D ligand expressions

in murine ectopic tumors also showed comparable results to in

vitro data, with the increased expression of RAE1 either in RT or

HDAC inhibition and to a greater extend when combined HDAC

inhibition with RT (Figures 5A, E). In contrast, H60 only

responded to RT or pan-HDACi/RT combination. Specific

HDAC4 knockdown did not induce tumoral H60 expression

(Figures 5B, F). Previous study revealed that RAE1 was highly

expressed in BALB/c-oriented cells (e.g. BNL tumors) and was the

major NKG2D ligand compared to H60 (31). Again, pan-HDACi

showed greater effect on in vivo NKG2D ligand expressions than

specific HDAC4 knockdown. In addition, using of paraffin

sections from SCID mice ectopic tumor model and IHC analysis

confirmed that human NKG2D ligands, MICA/B expression also

increased after either HDACi/RT alone or combined treatment in

the in vivo HCC model (Supplementary Figure 1).

In this study, NKG2D receptor was not significantly changed

among experimental groups (Figures 5C, G; Figure 6). Generally,

in NK cells, NKG2D serves as an activating receptor, which itself

is able to trigger cytotoxicity. Some CD8+ T cells also express

NKG2D, and send co-stimulatory signals to activate them (32).

Thus, the data of NKG2D may represent not only the activated

NK cells but also some NKG2D positive infiltrating CD8+ T

cells. Nevertheless, NKG2D has been reported to promote HCC

tumor growth in diethylnitrosamine induced HCC model (33),

suggesting the determined NK cell-mediated anti-tumor effects

via upregulated NKG2D ligands in our study. Of note, the

immune checkpoint molecule, PD-L1, was increased in RT

group, while RT combined with HDACi offset this increment.
FIGURE 6

Immunohistochemistry (IHC) staining of NKG2D expression in tumor tissues of (A) sham, (B) radiotherapy (RT), (C) pan-HDAC inhibitor
(LBH589), (D) combined treatment groups, as well as (E) negative control and (F) quantification data. The black arrows indicate positive cells.
Black bar = 25 mm. Error bars indicate SD.
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PD-L1 -is able to inhibit cytotoxic CD8+ T cells function by

interacting with its immune checkpoint protein, PD-1 on T cells.

On the other hand, recent research demonstrated that NK cells

are potential responders to PD-1/PD-L1 checkpoint blockade

and thus affect T cell function (34). It remains unclear that the

time sequence of activating these immune cells after RT.

Although our data supports RT with the immunosuppressive

responses such as upregulated expression of PD-L1 by tumor

cells (6), the combined HDAC inhibition may reverse the

immunosuppressive effect of RT by revitalizing NK cells and/

or cytotoxic T cells to maximize the therapeutic effect.

This study has a few limitations. First, the in vivo results of

the present study were based on ectopic allograft HCC model,

which might not represent the situation of orthotopic HCC

model or human HCC. Practical establishment of liver tumor

using hydrodynamic tail-vein injection of HCC cells (35) and

transgenic mouse that expresses human NKG2D ligands (36)

could be used for the future immuno-oncological assessments.

Second, the time point for ectopic tumor sampling in our study

might not be the perfect one to detect the most differentiating

significance in activating NKG2D ligand-receptor axis. The pre-

determined tumor size may be selected according to previous

report (37) to analyze the most reactive tumor and immune

microenvironment in the forthcoming study. Third, RT intensity

used in this study was based on our previous work (14); however,

recent report suggested that low-dose fractionated RT may be

more effective in activating tumor immune microenvironment

(38). The lower doses of RT may be tested for further

investigation of our model.

In conclusion, our study explored the immunotherapeutic

association of HDAC inhibition and NKG2D system activation

with radiosensitization of HCC, mainly with MICA/B and

RAE1. Combined HDAC inhibition and RT may be a

p romi s ing ba s i s f o r modu l a t i ng tumor immune

microenvironment for the potential use of NK cell-directed

immunotherapy to augment the therapeutic effect on HCC.
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