
Hindawi Publishing Corporation
Obstetrics and Gynecology International
Volume 2012, Article ID 921082, 11 pages
doi:10.1155/2012/921082

Review Article

Stem Cell Interaction with Somatic Niche May Hold the Key to
Fertility Restoration in Cancer Patients

Deepa Bhartiya, Kalpana Sriraman, and Seema Parte

Stem Cell Biology Department, National Institute for Research in Reproductive Health, Parel, Mumbai 400 012, India

Correspondence should be addressed to Deepa Bhartiya, bhartiyad@nirrh.res.in

Received 6 October 2011; Revised 8 December 2011; Accepted 19 December 2011

Academic Editor: Isabelle Demeestere

Copyright © 2012 Deepa Bhartiya et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

The spontaneous return of fertility after bone marrow transplantation or heterotopic grafting of cryopreserved ovarian cortical
tissue has surprised many, and a possible link with stem cells has been proposed. We have reviewed the available literature on
ovarian stem cells in adult mammalian ovaries and presented a model that proposes that the ovary harbors two distinct populations
of stem cells, namely, pluripotent, quiescent, very small embryonic-like stem cells (VSELs), and slightly larger “progenitor” ovarian
germ stem cells (OGSCs). Besides compromising the somatic niche, oncotherapy destroys OGSCs since, like tumor cells, they
are actively dividing; however VSELs persist since they are relatively quiescent. BMT or transplanted ovarian cortical tissue may
help rejuvenate the ovarian niche, which possibly supports differentiation of persisting VSELs resulting in neo-oogenesis and
follicular development responsible for successful pregnancies. Postnatal oogenesis in mammalian ovary from VSELs may be
exploited for fertility restoration in cancer survivors including those who were earlier deprived of gametes and/or gonadal tissue
cryopreservation options.

1. Introduction

Stem cells hold tremendous potential and promise for
regenerative medicine and have raised the hope of the public
for a cure for several diseases. Reproductive biologists and
infertile couples are further excited by the concept of deriving
“synthetic gametes” from pluripotent stem cells, but one
wonders whether generation of “synthetic gametes” is more
of science fiction or a realistic option for healthy babies in
the future. Hübner et al. [1] were the first to report sponta-
neous generation of oocytes enclosed within structures that
resembled developing ovarian follicles by differentiation of
mouse embryonic stem cells in vitro. Fetal pig skin stem cells
[2] and rat pancreatic stem cells [3] cultured in vitro have also
been shown to generate oocyte/follicle-like structures. Daley
[4] summarized that the development of synthetic gametes
from embryonic stem cells is fascinating basic research, but
the clinical application is still a hypothetical possibility. The
idea of producing gametes from induced pluripotent stem
cells derived from skin fibroblasts has also been proposed

[5]. Although interesting, the major concern that would limit
translation of these research efforts into clinical applications
is epigenetic and genetic stability of the gametes produced
[6]. The other challenge involves establishing protocols to
achieve robust and functional oocyte differentiation from
embryonic stem cells, and at present this remains a highly
inefficient process.

Another fast expanding area is the presence of stem cells
in adult mammalian ovaries. The mammalian ovary harbors
stem cells and possibly undergoes postnatal oogenesis during
reproductive life rather than being endowed with a finite pool
of primordial follicles at birth. Johnson et al. [7] provided
evidence in support of postnatal oogenesis and challenged
the six-decade-old paradigm by conducting simple exper-
iments. The group demonstrated using mouse ovary the
rate at which follicular atresia occurs, the ovary should
be devoid of follicles by young adulthood, but this never
happens. However, the idea of the ovary harboring stem cells
is still not well accepted amongst reproductive biologists,
and Notarianni [8] have recently reviewed available data in
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support and against the presence of stem cells in the postnatal
ovary. Research in the area of germ line stem cells in mice as
well as human ovaries by various groups has recently been
elaborately reviewed [9].

One of the markers to identify stem cells is OCT-4
(Pou5f1), an octamer binding nuclear transcription factor.
It is normally used to define pluripotent state of a stem cell
and is well studied in embryonic (ES) and carcinoma stem
cells. It is also a germline-specific maternally expressed factor
[10]. During embryonic development, OCT-4 is expressed
by primordial germ cells (PGCs) and germ cells. Recently
OCT-4 positive pluripotent very small embryonic-like stem
cells (VSELs) have been reported in various adult somatic
tissues including bone marrow and cord blood in mice as
well as humans [11–13]. OCT-4 biology has indeed surprised
and confused stem cell biologists due to the existence of
its isoforms [14–16]. The pluripotent stem cell properties
of OCT-4 are because of OCT-4A isoform localized in the
nuclei as a transcription factor, whereas Oct-4B isoform is
localized in the cytoplasm and has no known biological
function [17, 18]. We recently reported nuclear OCT-4A
positive VSELs in adult human and mice testis [19, 20].
These cells possibly undergo asymmetric cell division to give
rise to slightly bigger Adark spermatogonial stem cells (SSCs),
which have cytoplasmic OCT-4B. OCT-4 expression is lost
as the testicular germ cells undergo further differentiation
and meiosis. Similar stem cell biology also exists in the adult
mammalian ovary, which will be explained in the subsequent
sections. Unlike testis, OCT-4 continues to be expressed in
growing follicles, since it is a maternally inherited gene but
this will not be elaborated further as it is beyond the scope of
this paper.

2. Stem Cells in Ovaries

Mitotically active germ cells expressing mouse VASA
homolog (MVH) and synaptonemal complex protein 3
(SCP3) were reported in the adult mouse ovarian surface
epithelium (OSE) by Johnson et al. [7]. Niikura et al.
[21] reported that aged mouse ovaries possess premeiotic
germ cells that differentiate into oocytes on transfer into a
young ovarian environment. Recently Zou and coworkers
used MVH and FRAGILIS-based sorting method to isolate
female germ line stem cells (FGSCs) from mouse ovaries
[22, 23]. The MVH-sorted FGSCs of about 10–12 μm were
cultured for more than 15 months and on transplantation in
busulfan-treated mice resulted in live-births demonstrating
postnatal oogenesis. Pacchiarotti et al. [24] have demon-
strated the presence of FGSCs in postnatal mouse ovary using
transgenic mice that express green fluorescent protein (GFP)
under the control of Oct-4 promoter. They reported three
different types of GFP-OCT-4 positive cells based on size—
small (10–15 μm) sized cells in the ovarian surface epithe-
lium, medium (20–30 μm) and big (50–60 μm) oocytes in
the follicles. Ploidy analysis based on flow cytometry showed
that 70% of these cells were tetraploid oocytes and 30% were
diploid stem cells. Gong et al. [25] derived two pluripotent
colony-forming cell lines from adult ovarian stromal cells,
which also formed embryoid bodies and teratomas. They

concluded that embryonic-like stem cells exist in either the
ovarian stroma or the stromal cells, get reprogrammed in
vitro to embryonic-like state. They have also reported that
a small subgroup of the dissociated cells from adult ovary
(unlike spleen and small intestine) is immunoreactive for
both OCT-4 and NANOG (pluripotent marker). Reverse
transcription-PCR (RT-PCR) results also demonstrate the
presence of transcripts for both Oct-4 and Nanog in adult
ovarian tissue.

Studies on human ovarian stem cells are relatively few
in number because of scarcity of the ovarian tissue for
research. Bukovsky et al. [26] were the first to show that
scraped surface epithelium of postmenopausal human ovary
develops into oocyte-like structures of about 180 μm in the
presence of a medium with phenol red (estrogenic stimuli).
Virant-Klun and her group [27–29] identified putative stem
cells in ovarian sections and also in scraped ovarian surface
epithelium (OSE) of postmenopausal women and those
with premature ovarian failure. These stem cells express
pluripotent transcripts Oct-4, Sox2, and Nanog, expressed
cell surface antigen SSEA4, and differentiated into oocyte-
like structures and parthenotes in vitro. We have recently
shown the presence of VSELs in ovaries which can be
easily isolated by gentle scraping of OSE in adult rabbit,
sheep, monkey, and perimenopausal women. These stem
cells spontaneously differentiate into oocyte-like structures
and parthenotes in vitro [30] in agreement with published
literature [28, 29, 31]. Besides VSELs with nuclear OCT-4, we
have also shown slightly larger cells with cytoplasmic OCT-
4, termed ovarian germ stem cells (OGSCs) similar to the
terminology used by Pacchiarotti’s group. Similar to testis,
VSELs with nuclear OCT-4A are relatively less in numbers
in ovary as compared to the progenitors (OGSCs) with
cytoplasmic OCT-4B. Similarly, two distinct populations of
stem cells were also detected in adult mouse ovaries by
immunolocalization and quantitative PCR (Q-PCR) analysis
(Figure 1). Nuclear Oct-4A transcripts are less abundant as
compared to total Oct-4 transcripts that include both A and
B isoforms. Thus probably a similar pluripotent stem cell
network exists in the gonads of both sexes in mice as well
as humans.

The VSELs are probably the PGCs persisting into adult-
hood as suggested by others as well [32, 33]. Ratajczak and
his group were the first to report presence of VSELs in adult
body tissues and have made significant contribution in the
field, which was recently compiled [33]. It is believed that a
common VSEL stem cell population exists in various body
tissues, and depending on its immediate microenvironment,
they differentiate into that particular lineage [11]. VSELs are
highly mobile in nature, and whenever there is any damage
or disease in any part of the body, they get mobilized into
circulation from the bone marrow [34–37].

At this juncture, it becomes crucial to comprehend and
consolidate the various published studies so that a strong and
clear concept emerges. Table 1 is a list of various publications
on ovarian stem cells and our attempt to explain the results
in the context of VSELs biology. As evident, there is a
general agreement in the location of ovarian stem cells in the
OSE.
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Figure 1: VSELs and OGSCs in adult mammalian ovary. (a) Immunolocalization of OCT-4, a stem cell marker on mouse ovarian cell smear
using polyclonal antibody raised against C-terminal domain of OCT-4 (magnification 20x). Two distinct populations of stem cells were
observed nuclear OCT-4 positive VSELs (arrow) and cytoplasmic OCT-4 positive OGSCs (asterisk). Inset is representative of the two stem
cell populations by confocal microscopy using propidium iodide (PI) as a counterstain (magnification 63x with 5x optical zoom). VSEL
has yellow stained nuclei as a result of co-localization of FITC labeled OCT-4 and PI whereas OGSC has distinct PI-stained red nuclei and
cytoplasmic OCT-4. (b) Relative expression of Oct-4 and Oct-4A (transcript specific for pluripotent state) mRNA levels in normal mouse
ovary by Q-PCR analysis. The levels of Oct-4A transcript in comparison to total Oct-4 were significantly lower suggesting that the VSELs
positive for Oct-4A are less abundant compared to OGSCs. (c) H & E staining of human perimenopausal ovary surface epithelium smear
showing the presence of RBCs, very small VSELs (arrow), and slightly bigger OGSCs (asterisk; present either as isolated cells or as clusters
termed “germ cell nests” in developing ovary) (magnification 40x). Note the high nucleo-cytoplasmic ratio in stem cells with intense nuclear
Hematoxylin staining.

3. Proposed Model for Oogenesis and Follicular
Assembly in Adult Mammalian Ovary

Ovary harbors two distinct populations of stem cells, namely,
VSELs and OGSCs (Figure 1). VSELs are quiescent stem
cells whereas OGSCs are the progenitor stem cells, which
proliferate, form germ cell nests, and differentiate into
oocytes that get surrounded by somatic cells and assemble
into primordial follicles. This model comprising two distinct
stem cell populations in the gonads is in agreement with the
concept put forth by Li and Clevers [38] in various adult
body tissues like bone marrow, hair, and gut epithelium.
Like the Adark SSCs in the testis, OGSCs in the ovaries also
have a relatively dark nucleus after Hematoxylin and Eosin
(H & E) staining. This possibly reflects simple stem cell
biology in vivo wherein the open euchromatin of pluripotent
VSELs possibly gets compacted, appears dark, and undergoes
remodeling and reprogramming for differentiation into
a particular lineage. During “nuclear reprogramming” a
dramatic change in facultative heterochromatin occurs [39].
Cells with pluripotent properties, that is, the nuclear Oct-
4A positive cells, probably have abundant transcription
permissive euchromatin, which becomes compacted due to
stable association of histones with the chromatin in Adark

SSCs in testis and OGSCs in ovary, similar to that reported
during ES cell differentiation [40]. Thus, because of intense
“nuclear reprogramming” the early progenitor cells, namely,
OGSCs and Adark SSCs appear dark.

During three-week culture of the scraped OSE cells, the
stem cells give rise to oocyte-like structures whereas the
epithelial cells undergo epithelial-mesenchymal transition
(EMT) to give rise to somatic granulosa-like cells [30].

The granulosa-like cells surround the developing oocyte
resulting in follicular assembly in vitro. The differentiating
oocyte undergoes meiosis and exhibits various germ cell
markers, formation of Balbiani body-like structures, and
characteristic cytoplasmic streaming in vitro (unpublished
data). Similar views have been recently put forth by other
groups as well [41, 42]. Bukovsky and group have proposed
that possibly this EMT in vivo occurs in the tunica albuginea
region of the ovary and may be involved in primordial
follicle assembly. Figure 2 is a diagrammatic representation
of the proposed model for postnatal oogenesis and follicular
assembly from ovarian stem cells.

4. Stem Cells, Somatic Niche, and Menopause

Menopause implies exhausted ovarian follicle reserve and
may be age related or induced prematurely by gonadotoxic
insults including oncotherapy in the case of cancer survivors.
But several groups have shown the presence of stem cells
in the OSE of postmenopausal ovary [27–30] and in aged
mouse ovary [21]. Why are these stem cells unable to
differentiate and replenish the follicular pool? Why does
menopause occur? The emerging literature supports the
concept that it is most likely a compromised somatic niche
(a cellular and molecular microenvironment that regulates
stem cell function) that is unable to support stem cell
differentiation [41, 43, 44] that causes menopause. Niikura
et al. [21] demonstrated that stem cells exist in aged ovary,
which is otherwise devoid of any oocytes. To demonstrate
that the stem cells still retain the differentiation potential,
they performed ovarian transplantation studies. Grafting
of aged ovarian tissue of Oct4-GFP transgenic mice onto
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Figure 2: Proposed model for postnatal oogenesis in adult mammalian ovary. Pluripotent stem cells with nuclear OCT-4 (VSELs) being
located in the ovary surface epithelium (OSE). These cells undergo asymmetric cell division and give rise to cells with cytoplasmic OCT-4
(OGSCs, which intensely stain with Haematoxylin). The OGSCs undergo further proliferation, meiosis, and differentiation to assemble into
primordial follicles in the OSE. The granulosa cells are formed by the epithelial cells that undergo epithelial mesenchymal transition [30]. As
the follicles grow and further mature, they shift into the ovarian medulla. Confocal images represent VSEL and OGSC isolated by scraping
the surface epithelium of perimenopausal human ovary [30].

wild type young mouse ovary resulted in follicles contain-
ing GFP positive oocytes. In contrast, exposure of young
ovarian tissue to aged environment resulted in reduced
number of immature follicles. They proposed that failure
of oocyte replenishment in the aged ovary was probably
due to impairment of the somatic microenvironment rather
than depletion/aging of the stem cells. In a similar study
performed previously in male mice, SSC transplantation in
irradiated testis was only able to support colonization and
not differentiation. This has lead to a similar conclusion that
the compromised somatic niche does not support stem cell
differentiation [45].

We studied the presence of VSELs and OGSCs in chemo-
sterilized mouse ovaries. We have observed that the quiescent
VSELs persist and are resistant to therapy whereas the
rapidly dividing OGSCs and mature follicles are lost resulting
in premature ovarian failure (unpublished results). Similar
resistance of VSELs has recently been demonstrated in mouse
bone marrow after whole body irradiation [46].

It becomes pertinent to refer to two published studies
here. Firstly Lee et al. [47] could rescue chemotherapy-
induced premature ovarian failure in a mouse model by
bone marrow (BM) transplantation. They were however
intrigued by the fact that all the pregnancies were of
recipient origin and not of donor BM. Their results can be
explained, if we consider that the autologous VSELs that
survived chemotherapy (because of their quiescent nature)
underwent differentiation, folliculogenesis, and pregnancy in
response to some signal provided by the transplanted BM.
Secondly Fu et al. [48] transplanted bone-marrow-derived
mesenchymal stem cells (MSCs) in ovaries of chemotherapy-
induced ovarian damage and reported improved ovarian
function. They showed that the MSCs secreted cytokines
and inhibited chemotherapy-induced apoptosis of granulosa
cells. They concluded that transplanted MSCs play an impor-
tant role in ovarian microenvironment and protect ovary
from chemotherapy-induced damage through secretion of
cytoprotective proteins.
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5. Clinical Evidence for Spontaneous
Restoration of Fertility

The current available options offered to female cancer
patients for fertility preservation include gonadal shielding,
cryopreservation of egg/embryo, and/or ovarian cortical
tissue prior to oncotherapy. The eggs or embryos are utilized
to achieve parenthood by standard assisted reproductive
techniques when required whereas the cryopreserved ovarian
tissue fragments are transplanted at either orthotopic or
heterotopic site to serve as a source of gametes [49]. To
date thirteen pregnancies have been reported after orthotopic
transplantation of ovarian cortical tissue on the surface
of the atrophied ovary [50]. Interestingly, after heterotopic
transplantation of cryopreserved ovarian cortical tissue or
after allogeneic bone marrow transplantation, spontaneous
recovery of intact, atrophied, and menopausal ovary has been
reported resulting in spontaneous pregnancies [51–55]. Sim-
ilarly a study has shown that bone marrow transplantation
(BMT) in aged mice also helps sustain ovarian function [56].

Fertility restoration in these cases could be because of
(i) restoration of lost germ stem cells or (ii) improved
functionality of compromised niche in the atrophied ovary
that is now able to support oogenesis and follicular assembly.
Veitia et al. [57] provided evidence that spontaneous fertility
after oncotherapy or allogeneic bone marrow transplantation
was not because of donor bone-marrow-derived germline
stem cells, as microsatellite analysis showed that the baby
was of recipient origin. Thus it is becoming clear that
the BMT or transplanted tissue somehow provides the
necessary endocrine/paracrine signals to the compromised
niche (rather than being a source of oocytes) and helps in
restoration of ovarian function. The stem cell connection
with spontaneous restoration of fertility has already been
suggested by Oktay [58].

Research efforts must be intensified to identify the actual
factors that are essential to restore functionality of the
gonadal niche. Similar regenerative signals exist in young and
aged male blood [59] which can also rejuvenate follicular
dynamics in an aged ovary. Sönmezer et al. [60] have thrown
open a discussion that low levels of androgens may have a
role in the regenerative effect reported by Niikura et al. [59].
To support their view they gave the example of polycystic
ovarian syndrome, where mildly increased androgens may
be responsible for higher than average number of follicles
observed and delayed menopause. Whether it is a reflection
of increased stem cell activity needs to be demonstrated!
Secondly treatment with dehydroepiandrosterone (a mild
androgen) has been shown to improve ovarian response to
fertility drugs [60].

6. Conclusion

This paper consolidates the published literature and dis-
cusses it in the context of the existence of two distinct
stem cell populations in the ovary in an effort to bring
more clarity in the field of adult mammalian oogenesis.
It also discusses the possibility of restoring fertility by
reconstructing the ovarian somatic niche. If true, various

epigenetic and genetic concerns associated with long-term
culture and differentiation of embryonic stem cells to make
“synthetic gametes” or in vitro culture of OSE to generate
autologous oocytes or maturation of primordial follicles in
vitro may be overcome. This approach will open up new
and novel, non-invasive avenues for fertility restoration, offer
new means to treat female infertility, and delay menopause.
Moreover, even patients who were deprived of fertility
preservation options prior to oncotherapy stand to benefit
by advances in this field.

Abbreviations

BM: Bone marrow
BMT: Bone marrow transplantation
EMT: Epithelial mesenchymal transition
ES: Embryonic stem cells
FGSCs: Female germline stem cells
GFP: Green fluorescent protein
H & E: Hematoxylin & eosin staining
LRCs: Label retaining cells
MSC: Mesenchymal stem cells
MVH: Mouse VASA homolog
Oct-4: Octamer binding protein 4
OGSC: Ovarian germ stem cells
OSE: Ovarian surface epithelium
PB: Peripheral blood
PGC: Primordial germ cells
Q-PCR: Quantitative polymerase chain reaction
RT-PCR: Reverse transcription polymerase chain

reaction
SSCs: Spermatogonial stem cells
VSELs: Very small embryonic-like stem cells.

Key Messages

(i) Two distinct populations of stem cells exist in mam-
malian gonads including nuclear OCT-4 positive
very small embryonic like stem cells (VSELs) and
progenitor stem cells with cytoplasmic OCT-4 that is,
Adark spermatogonial stem cells (SSCs) in testis and
ovarian germ stem cells (OGSCs) in ovary.

(ii) VSELs are relatively quiescent in nature and pos-
sibly undergo asymmetric cell division to give rise
to progenitor stem cells which divide rapidly and
maintain tissue homeostasis. The progenitor stem
cells further differentiate and undergo meiosis to give
rise to haploid gametes.

(iii) Oncotherapy being nonspecific by nature targets all
rapidly dividing tissues in the body in addition to
tumor cells. It destroys the progenitor stem cells in
the gonads and also the haploid gametes, resulting
in azoospermia in men and premature ovarian
failure and menopause in women. Since the somatic
microenvironment is compromised, it is unable to
support differentiation of the persisting VSELs into
functional gametes.
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(iv) The existing challenge is to restore the somatic niche,
thereby facilitating the differentiation of resident/
persisting VSELs to form functional gametes leading
to fertility restoration. Preliminary clinical evidence
of spontaneous pregnancies after heterotopic trans-
plantation of ovarian cortical tissue or allogeneic
bone marrow transplantation lends support to this
concept.
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