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Introduction
Tissue factor (TF) is a transmembrane glycoprotein and
the major cellular trigger of blood coagulation. Assembly
of a complex between TF and factor VII (FVII) initiates
fibrin formation. Besides its role in blood coagulation, TF is
also important for the vascular development regulating
embryonic angiogenesis and supporting proliferative and
invasive capacities of cells [1-4]. Expression of TF on the
cell surface and its appearance as a soluble molecule are
characteristic features of acute and chronic inflammation

in conditions such as sepsis, atherosclerosis, Crohn’s
desease, systemic lupus erythematosus, and rejection
reactions [5–9].

The role of TF in the inflammatory process is a matter of
discussion. A variety of inflammatory stimuli, including
mitogens, bacterial cell products, components of the com-
plement system and cytokines, are known to promote the
expression of TF on the surface of endothelial cells and
monocytes [10]. T cells regulate TF expression: upregula-
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tion is achieved by Th1 cytokines, while Th2-derived
cytokines are mostly inhibitory [11]. TF, in turn, may partic-
ipate in cellular interactions promoting leukocyte adhesion
and transendothelial migration [12,13].

In the present study we investigated the capacity of TF to
induce inflammation by injecting human recombinant TF
(rTF) into joint cavities of healthy mice. Histomorphological
investigation of the injected joints showed a remarkable
cellular infiltration of synovia and occasionally cartilage
destruction, indicating that TF possesses strong proin-
flammatory properties. Expression of TF on monocytes
and synovial cells may be crucial for potentiating the initial
stages of inflammation in joints.

Materials and methods
Mice and reagents
BALB/c and NMRI mice were purchased from ALAB
(Stockholm, Sweden). Severe combined immunodeficient
(SCID) mice and their congenic strain CB17 were pur-
chased from M&B (Bomholtvej, Denmark). All mice were
housed in the animal facility of the Department of Rheuma-
tology, University of Göteborg. Female mice 6–8 weeks of
age were used in all the experiments.

Recombinant tissue factor
This version of rTF contains the extracellular domain of
human TF, amino acid residues 1–219 [14], which retains
the ability to bind to FVII and FVIIa and to enhance enzy-
matic activity of FVIIa. rTF preparation was dissolved in
Hepes buffered saline (Hepes 30 mM, NaCl 100 mM,
0.02% Na-azide; pH 7.5) and kept in aliquots at –70°C
until use. Two preparations of TF were used that con-
tained 3.7 µg/ml and 32 ng/ml of lipopolysaccharide
(LPS), respectively. No significant difference in the results
obtained with these two preparations was observed and
the results were thus pooled.

Injection protocol and cell depletion procedure
NMRI strain mice were used in the experiments unless
stated otherwise. Induction of arthritis was performed by
injection of rTF in a volume of 20 µl intra-articularly into the
right knee joint. Control experiments were performed by
injecting an equivalent amount of LPS preparation in
Hepes buffered saline into the contralateral knee joint.

Neutrophil depletion was performed by intraperitoneal
injection of the monoclonal antibody RB6-8C5 (hybridoma
was kindly provided by Dr R Coffman, DNAX Research
Institute, Palo Alto, CA, USA) two hours before the rTF
injection, as described previously [15]. The IgG rat anti-
ovalbumin monoclonal antibody (kindly provided by Dr E
Telemo, Department of Clinical Immunology, University of
Göteborg, Sweden) was injected into the control group.
Monocyte depletion was induced by subcutaneous injec-
tion of etoposide (Bristol-Myers Squibb, Bromma,

Sweden; 12.5 mg/kg body weight, in a volume of 100 µl
[16]) on three consecutive days before and three consec-
utive days after injection of rTF. The impact of lymphocytes
was studied by injecting rTF into SCID mice lacking B and
T lymphocytes and their congenic strain, CB17.

Systemic defibrination
This was achieved by using mini-osmotic pumps (model
2002, Alza Corp, Palo Alto, CA, USA) filled with buffered
solution containing 200 U/ml ancrod (Sigma Chemical, St
Louis, MO, USA) implanted subcutaneously three days
before the injection of rTF [17].

Histopathological and immunohistological examination
of joints
Histological examination of joints was done after paraffin
embedding, cutting, and staining with hematoxylin and
eosin. All the slides were coded and evaluated blindly. The
specimens were evaluated with respect to occurrence of
synovial hypertrophy, inflammatory cells in synovial sublin-
ing compartment, pannus formation and cartilage and/or
subchondral bone destruction. Intensity of synovial inflam-
mation (arthritis index) was graded arbitrarily from 0 to 3.

For immunohistochemical examination, the knee joints
were removed and demineralized as described [18]. Serial
cryosections of 6 µm thickness were stained with rat
monoclonal antibodies directed against mouse CD11b
(Mac-1; M 1/70) or CD4 (GK1.5) (both antibodies from
PharMingen, San Diego, CA, USA), then incubated with
biotinylated secondary antibodies (DAKO A/S, Gosulp,
Denmark) and avidin–biotin–peroxidase complexes (ABC).
All sections were counterstained with Mayer’s hema-
toxylin.

Splenocyte stimulation
Murine splenocyte suspension (cell density 2 × 106/ml) in
Iscove’s medium supplemented with 10% fetal calf serum
(FCS), 2 nM L-glutamine, mercaptoethanol and 50 µg/ml
gentamicin was stimulated with rTF at a final concentration
of 0.1–10 µg/ml. At defined time points, supernatants were
collected for determination of cytokine and chemokine
levels.

Lymphocyte proliferation
Proliferation was determined by the incorporation of [3H]-
thymidine (specific activity, 42 Ci/mmol; Amersham
International, Buckinghamshire, UK) into splenocyte sus-
pension (cell density 4 × 105/ml), stimulated for 72 hours
with either rTF or LPS at a final concentration of
0.1–10 µg/ml. The results were expressed as a stimulation
index (counts per minute, mean ± standard deviation).

IL-6 determination
The level of interleukin (IL)-6 in the rTF-stimulated super-
natants was determined by a bioassay measuring the



Arthritis Research    Vol 4 No 3 Bokarewa et al.

effect of test samples on the growth of the IL-6-dependent
cell line B13.29 [19]. The results were analyzed by incor-
poration of [3H]-thymidine after 72 hours stimulation and
compared to results with the standard dilutions of recom-
binant mouse IL-6 (Genzyme, Cambridge, MA, USA).

RANTES and MIP-1αα determination
The levels of macrophage inflammatory protein (MIP)-1α
and RANTES (regulated on activation normal T-cell
expressed and secreted) were measured by an enzyme-
linked immunosorbent assay using Quantikine M kits (R&D
Systems, Minneapolis, MN, USA) and expressed in pg/ml.

Statistical analysis
The differences in the incidence and the severity of arthri-
tis in the groups were analyzed by the Fisher’s test and
Mann–Whitney U test, respectively.

Results
rTF induces arthritis
The ability of rTF to induce arthritis was evaluated by injec-
tion of rTF in the doses 0.2, 2.0, and 20 µg (0.004, 0.04,
and 0.4 nmol) into the knee joint of NMRI mice. Four days
after the inoculation, morphological signs of arthritis (syn-
ovial tissue hypertrophy, and inflammatory cell infiltrates)
were found in 33%, 56% and 83% of joints, respectively.
Control mice injected with the amount of LPS equivalent to
its concentration in the rTF preparation exhibited arthritis
only in 28% of cases (13/15 versus 4/14; P < 0.01). The
arthritis index of the rTF-induced arthritis was significantly

higher in joints injected with 20 µg of rTF than in the con-
trols (1.73 versus 0.23; P < 0.01). Moreover, 6/13 joints
injected with 20 µg of rTF developed extrasynovial features
of arthritis (pannus formation, n = 2; cartilage destruction,
n = 3 and periarticular bone destruction, n = 1) compared
to only one in the control group. In all further experiments
the dose of 20 µg of TF per knee was used.

Dynamics of rTF-induced arthritis were assessed morpho-
logically on days 4, 14 and 60 after the rTF injection. The
highest frequency of arthritis and severity of inflammation
was observed on day 4 after injection and it diminished
significantly by days 14 and 60 (13/15 versus 2/8 and
2/6, P < 0.05; Fig. 1a,b). Notably, erosion and/or pannus
formation were always found in cases of long lasting arthri-
tis but in none of the controls.

Sensitivity to rTF varied between the healthy mouse
strains. Four days after the injection of rTF (20 µg/knee)
into NMRI (n = 15), CB17 (n = 8) and BALB/c mice
(n = 8), morphological signs of arthritis were registered in
80%, 75% and 50% of knee joints, respectively. These
results indicate that susceptibility to inflammatory potential
of rTF is dependent on genetic background of the host.

Participation of various immune cells in the rTF-induced
inflammation
Immunochemical staining of joint sections revealed dense
infiltrates consisting of Mac-1+ mononuclear cells in the
synovial tissue. In contrast, all the sections were negative

Figure 1

Measurements of arthritis in murine knee joints. (a) Arthritis index and (b) incidence of arthritis after intra-articular injection of TF (20 µg/joint) as
evaluated by histological examination. Arthritis index was assessed as described in the Materials and methods section. Asterisks indicate significant
differences of the means between the mice receiving TF and the controls.
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for staining with CD4-specific antibodies. This allowed us
to conclude that the inflammatory infiltrate observed after
the injection of rTF consisted predominantly of macro-
phages accompanied by few if any neutrophils (Fig. 2).

To evaluate the role of different immune cells in the
development of rTF-induced inflammation, cell depletion
procedures were performed. Mice pretreated with lysing
antineutrophil antibodies showed no reduction in the fre-
quency or intensity of arthritis compared to controls that
received antiovalbumin antibodies (5/8 versus 7/8,
respectively). Mice injected with etoposide, and thereby
deprived of monocyte/macrophage cell population,
demonstrated a tendency to a reduction in frequency but
not the severity of arthritis (6/8 versus 4/7; not significant;
Fig. 3). Intra-articular injection of rTF into SCID mice defi-
cient for T- and B-lymphocytes revealed no difference in

the frequency of arthritis compared to congenic CB17
mice strain (11/15 versus 12/15, not significant). The
results of experiments indicated that isolated depletion of
neither monocyte nor lymphocyte cell populations was
enough to abolish the induction of rTF-induced arthritis. To
test if a combined lymphocyte and monocyte cell deple-
tion was efficient in prevention of rTF-induced cell infiltra-
tion, SCID mice treated with etoposide were
intra-articularly injected with rTF. Only one of seven mice
in this group developed arthritis in response to injection of
rTF, demonstrating that interaction between macrophages
and lymphocytes is essential for cellular infiltration of syn-
ovium following rTF injection (Fig. 3).

Systemic depletion of fibrinogen with ancrod prior to rTF
injection did not reduce the incidence of rTF-induced
arthritis in 6/8 NMRI mice.

In vitro cell stimulation with rTF
Effects of rTF on lymphoid cells were investigated by incu-
bating mouse splenocytes with rTF (0.1 µg/ml, 1 µg/ml,
5 µg/ml, or 10 µg/ml). Investigation of supernatants after
48 hours of stimulation for the level of IL-6, RANTES, and
MIP-1α demonstrated a dose-dependent increase in the
level of chemokines. The increase was pronounced for
MIP-1α (73 ± 33 pg/ml in non-stimulated cells versus
139 ± 32 pg/ml after stimulation with 5 µg/ml of rTF; n = 3)
but was only marginal for RANTES (256 ± 46 pg/ml versus
365 ± 32 pg/ml; n = 3). In contrast, neither change in the
level of IL-6 nor proliferation of lymphocytes was observed.

Discussion
Inflammation and thrombosis are linked in many clinical con-
ditions. It is presumed that proinflammatory mediators
potentiate activation of blood coagulation and serine pro-
teases of the coagulation system, especially the terminal
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Figure 2

Morphological changes in the joint after injection of TF. (a)
Histopathology of an arthritic knee joint four days after injection of TF
(20 µg/joint). Infiltration of mononuclear cells in synovial tissue is
apparent. Original magnification ×20. (b) Immunohistochemical
staining of an arthritic knee joint, showing cells expressing Mac-1.
Original magnification ×40. JC, joint cavity; C, cartilage; SH, synovial
hyperplasy; P, pannus; Er, bone erosion; ST, synovial tissue. Arrows
indicate inflammatory cells in synovia, pannus formation and cartilage
destruction.

Figure 3

Lymphocytes and monocytes are mandatory for the development of
TF-induced arthritis. Incidence of arthritis was assessed in mice
depleted of various immune cells. Significant differences of incidence
of arthritis between the groups are indicated.
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enzyme thrombin, known for proinflammatory and mito-
genic/chemotactic effects both in circulation and locally in
synovial tissue [20–22]. An indication of the importance of
TF in the inflammatory process was obtained in the animal
model of sepsis, in which TF-dependent procoagulant activ-
ity correlated with the level of tumor necrosis factor-α [23].
In addition, modulation of TF-dependent coagulation by
administration of either TF-pathway inhibitor or anti-TF anti-
bodies decreased circulating levels of IL-6 and IL-8 [24,25],
and diminished proliferation and perivascular cell infiltration
[26,27]. This study shows that the TF molecule possesses
strong proinflammatory properties, causing arthritis. Histo-
logical analysis revealed that TF-induced synovitis could be
attributed mostly to infiltrating macrophages. Mononuclear
cell influx into synovia is an early finding in the majority of
asymptomatic subjects, preceding clinically overt arthritis in
RA [28,29]. Furthermore, synovial macrophage infiltration is
a characteristic feature of both autoimmune and bacterial
arthritis [30,31] and is a determinant of joint erosions
[32,33]. Our observation, in combination with an increased
TF-dependent procoagulant activity in blood and synovial
fluid of patients with RA, implies participation of TF in trig-
gering the initial steps of inflammation during RA and/or in
rendering the inflammation chronic.

Composition of inflammatory infiltrate and cell depletion
studies showed that TF exerts its proinflammatory proper-
ties in a cell-specific manner targeting the macrophage/
monocyte population. This is not surprising taking into
consideration that macrophages/monocytes are the only
cells in the blood circulation compartment which express
TF on their surface [8,34]. Moreover, we demonstrated
that an interaction between monocytes and lymphocytes
was a prerequisite of the TF-induced arthritis. Activated T
cells were able to induce TF production by stimulating
monocytes through CD40 ligand [35,36]. This mechanism
may contribute to a positive feedback essential for mainte-
nance of TF-induced inflammation. Interestingly, neu-
trophils, other principal inflammatory cells, were not
sensitive to TF stimulation – these cells were neither found
in synovial tissues nor affected arthritis frequency in the
depletion experiments.

Mononuclear cells composing the inflammatory infiltrate in
synovia were mostly Mac-1+ CD4– cells. Abundant
expression of Mac-1 molecule on the monocyte surface
indicates a principal role of β2-integrins in cell activation
following exposure to TF. Two methods of such activation
may be considered. TF may attract Mac-1+ cells indirectly
by increasing formation of coagulation proteins known as
Mac-1 ligands, e.g. Factor X and fibrinogen. However, the
high incidence of TF-induced arthritis in defibrinated mice
favors a direct stimulatory effect of TF on sensitive cells.
Treatment of macrophages with TF in vitro has been
shown to increase the expression of β2-chain-containing
adhesion molecules [37] and supports the idea of direct

TF-induced Mac-1 expression. Lack of CD4+ cells respon-
sible for peptide presentation through MHC class II mole-
cules shows that this mechanism is not compulsory for
TF-induced synovial infiltration, in contrast to experimental
glomerulonephritis where simultaneous expression of TF
and MHC class II molecules was observed and efficiently
blocked by anti-TF antibodies [38,39].

The way in which TF interacts with macrophages is not
clear. Exposure of spleen cell cultures to TF did not
induce the release of proinflammatory cytokines. These
results favor the suggestion that TF acts directly on inflam-
matory cells and not by a cytokine-mediated mechanism.
TF-mediated release of chemoattractant molecules, which
recruit inflammatory cells from the circulation or surround-
ing tissues, is an alternative possibility. We found that in
vitro splenocyte stimulation with TF was associated with
selective release of the monocyte chemoattractant mole-
cule MIP-1α. This observation may explain the dominance
of mononuclear cells in the synovial inflammatory infiltrates
of the joints injected with TF.

Altogether our observations suggest that TF may play an
active role during arthritis by direct and/or indirect stimula-
tion of influx of monocytes into the synovial tissue.
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