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Abstract

Our earlier studies in tuberculosis (TB) patients indicate that in those where the process

evolves to a larger pulmonary involvement, the immune endocrine response may promote

an unfavorable environment. Chronic infectious diseases, and their persistent proinflamma-

tory response, may affect mucosal barriers integrity favoring the translocation of gastrointes-

tinal bacteria, leading to an increase of circulating lipopolysaccharides (LPS).

Consequently, we quantified LPS levels in TB patients, with different degrees of pulmonary

involvement, and controls (Co) and analyzed the possible relationship between LPS and

inflammatory mediators i.e., C reactive protein (CRP), interleukin 6 (IL-6) and Interferon-

gamma (IFN-γ), Erythrocyte Sedimentation Rate (ESR), steroid hormones (Cortisol and

Dehydroepiandrosterone, DHEA), and inflammatory transcripts from peripheral blood

mononuclear cells (IL-1β, IL-6, IFN-γ). LPS was assessed by the Limulus amoebocyte

lysate assay and the ELISA technique was used to quantify hormones and cytokines in the

plasma samples. Cytokine transcripts from PBMC were evaluated by qRT-PCR. Non-

parametric tests were used. LPS levels were increased in TB patients, as did levels of CRP,

IL-6, IFN-γ, cortisol and ESR. Severe patients had the highest amounts of circulating LPS;

with moderate and severe cases showing much higher levels of CRP, ESR, IL-6, IFN-γ and

cortisol/DHEA ratio, as an endocrine imbalance. Only in PBMC from severe cases was

mRNA for IL-1β increased. Correlation analysis showed that levels of LPS from severe

patients were positively associated with IL-6 and IFN-γ plasma concentrations and with IL-

1β transcripts, while IL-6 had a positive correlation with the cortisol/DHEA ratio. The higher

levels of circulating LPS during progressive TB may emerge as a contributing factor for the

persistence of the greater immune endocrine imbalance distinctive of advanced disease,

which might suggest a vicious cycle among LPS, inflammation and endocrine imbalance.
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Introduction

The bidirectional communication between the neuroendocrine and immune systems is a fact

that medicine has recognized for a long time as revealed by a diverse series of studies both in

humans and in experimental models. Many studies show that the products of the immune

response modify the functioning of the neuroendocrine system, while a no lesser number of

findings indicate, in turn, that hormones directly alter the activity of immune cells and there-

fore the course of diseases with inflammatory, autoimmune, or infectious background. This

cross relationship between the immune and neuroendocrine systems is partly due to the stim-

ulatory action of inflammatory cytokines on the hypothalamus-pituitary-adrenal (HPA) axis.

Briefly, cytokines such as IL-6, IL-1β, and TNF-α stimulate the production of corticotrophin-

releasing hormone in the hypothalamus with the subsequent release of adrenocorticotropin

from the pituitary gland which in turn promotes the secretion of steroid hormones at the adre-

nal cortex [1, 2]. Regrettably, the implications of such tradeoffs in the medical field remains

underappreciated. Our studies in the case of TB indicate that the immune-endocrine interrela-

tionships are certainly relevant in pathophysiological terms [3, 4].

Tuberculosis, caused by Mycobacterium tuberculosis, essentially affects the lung, where it

can produce from a few tissue lesions to a stage of intense inflammation with large parenchy-

mal destruction. This variation in the degree of organic involvement seems to be related to the

cellular immune response towards mycobacteria, which can mediate both protection and

pathology. The essential elements participating in this response involve macrophages and T

cells. The former phagocytose mycobacteria, promoting the production of different cytokines

and antigen presentation to CD4+ T cells, which in turn synthesize Th1 type mediators, like

IFN-γ and IL-2, capable of enhancing the bacteriostatic-bactericidal action of macrophages

and promoting the proliferation of responding lymphocytes, respectively [5, 6]. While these

responses are involved in the protective anti-mycobacterial immunity, in some instances Th1

immunity can also result in unbalanced pulmonary inflammation [7].

Within the context of the immune endocrine interactions, we showed that TB patients had

reduced levels of dehydroepiandrosterone (DHEA), in presence of higher concentrations of

proinflammatory mediators and cortisol, even further in patients with progressive disease

along with a more unbalanced Cortisol/DHEA ratio [3, 4].

Studies from the immune and microbiological field suggest that exposure to stressful situa-

tions and the ensuing activation of the HPA axis, is likely to result in mucosal involvement

with the consequent alteration of the epithelial barrier, and an increased possibility of bacterial

translocation [8]. LPS plays an important role in the inflammatory response given its ability to

trigger the phlogistic reaction by interacting with receptors present in a wide variety of cells,

mainly the immune ones. In general, LPS activates the TLR4 mediated pathway leading to the

activation of NF-κB followed by the secretion of pro-inflammatory cytokines such as TNF-α,

IL-1β, and IL-6 [9, 10].

While studies in TB patients showed that they were more likely to present LPS in circula-

tion [11, 12] the question remains as to whether the phenomenon bears some relationship

with disease severity and the profile of immune-endocrine disturbances or the expression of

genes encoding for inflammatory compounds. Our former studies indicate an increase of pro

and anti-inflammatory cytokines according to disease progression, mirrored by an appreciable

increase in inflammatory mediators in patients with mild disease, to higher levels of these cyto-

kines among those with advanced disease [4]. As stated, differences according to disease sever-

ity also extend to the presence of adrenal steroids, wherein patients with advanced TB present

a more unbalanced cortisol/DHEA ratio at the expense of increased and decreased cortisol

and DHEA levels, respectively [13].
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From the foregoing, newly diagnosed TB patients with different degrees of lung involve-

ment were now assessed for the presence of LPS in circulation in addition to analyzing its rela-

tionship with mediators involved in the immune-endocrine response (proinflammatory

cytokines and adrenal steroids), and inflammatory transcripts from PBMC.

Materials and methods

Study groups

A total of 38 TB patients was selected from newly diagnosed adult patients (18 to 65 years old).

All patients had negative HIV serology, and the diagnosis of TB was based on clinical and

radiological criteria along with the identification of acid-fast bacilli in sputum. The degree of

involvement was classified, as in formerly studies [14], according to the extent and type of

radiological lesion in: mild, patients with a single lung lobe involved without visible cavities;

moderate, patients with unilateral involvement of 2 or more lobes and cavities, if present, not

exceeding a total diameter of 4 cm; advanced or severe, bilateral disease with massive involve-

ment and multiple cavities. Data were also collected concerning age and sex, as well as routine

laboratory blood values, a history of alcoholism, or smoking-related chronic obstructive pul-

monary disease. Exclusion criteria included, pregnancy, breastfeeding mothers, previous

endocrine disorders, as well as treatment with corticosteroids, other hormones, immunosup-

pressive drugs, or immunomodulators. Controls (Co, n = 39) consisted of volunteers similar

as to sex and age, and socioeconomic conditions with negative antecedents for contact with

TB patients, immunological diseases, or endocrine disorders. Participants were enrolled once

they had given their written informed consent to participate. All of them were previously

informed about the study purposes, which were conducted according to the principles of the

Declaration of Helsinki. The study was approved by the Ethics Review Committee from the

Faculty of Medical Sciences, University of National Rosario (Ethics application number: 3157/

2017).

Sample blood collection and plasma isolation

Blood samples from TB patients were obtained immediately before the initiation of anti-tuber-

culosis treatment. Samples were collected at 8 a.m. to avoid differences due to circadian varia-

tions. An aliquot from blood samples was used to quantify the following clinical laboratory

variables: complete blood count with platelet count, glycemia, hemoglobin A1C (HbA1C),

urea, creatinine, uric acid, total proteins, albumin, aspartate aminotransferase (AST), Alanine

Aminotransferase (ALT), alkaline phosphatase (ALP), serum cholinesterase, total cholesterol,

HDL cholesterol, LDL cholesterol, triglycerides, and erythrocyte sedimentation rate (ESR).

Plasma was obtained from fresh EDTA-treated blood. Samples were centrifuged at 2000 rpm

for 30 min and plasma was collected and stored at -20˚C.

Blood sample PBMC isolation

After plasma isolation, PBMC was obtained from the buffy coat using Ficoll-Paque Plus gradi-

ent (density 1.077, Amersham Biosciences, NJ, USA) according to the manufacturer’s recom-

mendations. The concentration and viability of PBMC were assessed using trypan blue

staining in the Neubauer camera. Only samples with viability greater than 98% were used.

Between 5 to 8 x 106 cells/ml of TRIzol (Invitrogen, Carlsbad, USA) were stored at -80˚C until

mRNA extraction.
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Assessment of cytokines, hormones, and CRP in plasma

The levels of IFN-γ (BD Pharmingen, detection limit-DL: 4.7 pg/ml), IL-6 (BD Pharmingen,

detection limit DL: 3.9 pg/ml) and hormones like cortisol (DRG Diagnostics, DL: 2.5 ng/ml)

and DHEA (DRG Diagnostics, DL: 0.129 ng/ml) were assayed by commercial enzyme-linked

immunosorbent assays according to the manufacturer’s recommendations.

C reactive protein (CRP) levels were measured by using a high sensitivity automatic ana-

lyzer by turbidimetric test (Wiener Lab, Rosario, Argentina, DL: 2.5 mg/l).

Assessment of plasma LPS

Plasma LPS levels were evaluated using the Hycult chromogenic endpoint LPS detection assay

(Limulus amoebocyte lysate assay, Hycult Biotech, Uden, The Netherlands) according to the

manufacturer’s instructions. The kit has a minimum detection limit of 0.04 EU/ml.

RNA isolation, cDNA synthesis and qPCR

Total RNA was isolated from PBMC, obtained as described in section 2.3, using TRI reagent

(Genbiotech) according to the manufacturer’s instructions. cDNA was synthesized from 2 μg

of total RNA by extension of oligo-dT primers with M-MuLV reverse transcriptase (Thermo

Fisher). qPCR was performed with the StepOnePlus (96 well) Real-Time PCR Systems

(Applied Biosystems) using 3 μl of cDNA dilution, 0,4 μM of each primer and 3 μl of 5x HOT

FIREPol1 EvaGreen qPCR Mix Plus (ROX) (Solis BioDyne), the final volume of 15 μl. Ther-

mal cycling conditions were as follows: 10 min at 95˚C followed by 40 PCR cycles of denatur-

ing at 95˚C for 7s, 25s for annealing at 60˚C and 30s for elongation at 72˚C. Fluorescence

readings were performed during 10s at 80˚C before each elongation step. To normalize the

expression of every gene, the transcript of peptidylprolyl isomerase A (PPIA) was used as an

endogenous control on each mononuclear cell sample [15]. Serially diluted cDNA samples

were used as relative external standards curve in each run. This allows performing “The Rela-

tive Standard Curve Method” for the relative quantification of gene expression, as performed

formerly [16]. Similarity and homogeneity of PCR products from samples were confirmed by

automated melting curve analysis (StepOne Software, Applied Biosystems). The primers used

are described in Table 1. Data were expressed as an arbitrary unit (AU): fold change of the rela-

tive expression levels of the gene of interest normalized by the relative expression levels of ref-

erence gen PPIA.

Table 1. List of primer sequences used for qPCR analysis in this study.

Gene Primer sequence Product size (bp)

PPIA Gene ID:5478 F: 5’-GCATACGGGTCCTGGCATCTTG-3’ 101

R: 5’-TGCCATCCAACCACTCAGTCTTG-3’

IFN-γ Gene ID: 3458 F: 5’-AACGAGATGACTTCGAAAAGCTG-3’ 158

R: 5’-TCTTCGACCTCGAAACAGCA-3’

IL-6 Gene ID: 3569 F: 5’-ACTGGTCTTTTGGAGTTTGAGGT-3’ 191

R: 5’-GTTGGGTCAGGGGTGGTTATTG -3’

IL-1β Gene ID: 3553 F: 5’-TCTGTACCTGTCCTGCGTGTTG -3’ 157

R: 5’-GGGGAACTGGGCAGACTCAA -3’

F: Forward primer. R: reverse primer. PPIA: peptidylprolyl isomerase A; IFN-γ: interferon-gamma; IL-6: interleukin-6; IL-1β: interleukin-1beta

https://doi.org/10.1371/journal.pone.0257214.t001

PLOS ONE Circulating LPS in progressive tuberculosis

PLOS ONE | https://doi.org/10.1371/journal.pone.0257214 September 10, 2021 4 / 12

https://doi.org/10.1371/journal.pone.0257214.t001
https://doi.org/10.1371/journal.pone.0257214


Statistical analysis

Comparisons among groups were performed by non-parametric methods, like the Kruskal

Wallis analysis followed by a post-hoc test when applicable, for the multiple comparison

approach. Correlations between cytokine, CRP, and LPS levels were analyzed by Spearman’s

rank test. Categorical variables were compared by the chi-square test or Fisher´s exact test.

Data were regarded as statistically significant whenever p<0.05.

Results

Characteristics of study participants

The main features of the sampled individuals are shown in Table 1. No major differences were

seen regarding age, sex distribution and alcohol consumption. However, a significantly

decreased body mass index was found in patients with TB compared to Co (p<0.0001). The

same was true when comparing according to disease severity (Table 2). The number of smok-

ers was more prevalent in TB patients (p<0.01).

When analyzing the results of the laboratory biochemistry, TB patients had significantly

augmented neutrophils, and platelet counts along with decreased hemoglobin and lymphocyte

values (Table 3), particularly the ones with moderate and severe disease. Only, in the group of

severe patients, a lower number of erythrocytes was found when compared to the control

group.

Compared to Co, TB patients revealed no significant differences in relation to the serum

levels of glucose, uric acid, aspartate aminotransferase, alanine aminotransferase, and triglycer-

ides although they exhibited increased amounts of HBA1c (Table 4). TB patients preferably

the moderate ones had decreased urea, albumin, and HDL cholesterol concentration (Table 4).

Also, a decline in albumin and serum cholinesterase was found in mild TB patients. Patients

with advanced disease showed lower levels of creatinine, albumin, serum cholinesterase, total

cholesterol, HDL and LDL cholesterol, and increased levels of alkaline phosphatase with

respect to Co (Table 4).

Comparison of LPS plasma levels, revealed that TB patients had higher amounts than Co

(p<0.05), particularly in cases with severe disease (Fig 1A, p<0.01). It was clear that TB

patients also showed elevated levels of CRP (Fig 1B, p<0.0001) and ESR (Fig 1C, p<0.0001), if

compared to Co. Further comparisons indicated that the higher the amount of lung involve-

ment the greater the PCR (p<0.005), and ESR values (p<0.0001).

Table 2. Characteristics of control subjects and TB patients.

Co (n = 39) TB (n = 38) Mild (n = 6) Moderate (n = 19) Severe (n = 13)

Age (years) 32 (24–49) 34 (24–49) 38 (26–59) 32 (22–58) 34 (24–44)

BMI (kg/m2) 26.4 (24.5–29.4) 20.0 (18.6–21.3)� 19.7 (19.0–22.6)� 20.8 (19.4–24.4)� 19.5 (18.3–20.0)�

SEX (F/M) 12/27 12/26 3/3 5/12 4/11

BCG (%) 100 89.2 83.3 87.5 93.3

Current smoker (Yes/No) 7/29 19/19# 2/4 8/11 9/4#

Alcohol consumption (Yes/no) 7/29 12/26 3/3 4/15 5/8

Quantitative values are presented as median (interquartile range). Quantitative comparisons were performed by non-parametric methods, like the Kruskal Wallis

analysis followed by a post-hoc test when applicable, for the multiple comparison approach.

� Represents statistically significant differences from Co (p<0.0001).

# Different from Co (Fisher’s exact test) p<0.01.

ns: not significant

https://doi.org/10.1371/journal.pone.0257214.t002
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In the same direction, the whole group of TB patients displayed augmented concentrations

of IL-6 and IFN-γ (p<0.0001 and p = 0.0003, vs Co), as did moderate and severe cases

(p<0.003 in both cases, Table 5). As depicted in the same Table, TB patients presented mod-

estly increased levels of cortisol (p = 0.03) particularly the moderate ones (p = 0.01), whereas

DHEA levels appeared quite lowered (p = 0.008, overall TB group) at the expense of severe TB

cases (p = 0.0001 vs. Co). Such alterations resulted in an increased Cortisol/DHEA ratio in TB

patients, statistically significant when compared with the one seen in Co (Mild, p = 0.006,

Table 3. Differential blood count.

Parameters [Reference value] Co (n = 39) TB (n = 38) Mild (n = 6) Moderate (n = 19) Severe (n = 13)

WBC (103/μl) [4–9] 6.1 (5.3–7.2) 8.7 (7.5–11.1)� 8.7 (6.2–13.7) 8.5 (7.5–9.5)� 11.0 (7.8–12.0)�

RBC (M/μl) [3.7–5.5] 4.7 (4.5–5.1) 4.6 (4.1–5.1) 4.3 (4.0–5.0) 4.9 (4.3–5.2) 4.3 (4.0–4.7)�

HGB (g/dL) [11–16] 14.2 (13.3–14.8) 12.4 (11.1–13.5)� 13.0 (11.5–13.3) 12.9 (11.4–14.1)� 12.0 (10.4–12.5)�

Neutrophil (103/μl) [2–6] 3.2 (2.7–4.0) 5.8 (4.4–7.8)� 5.1 (3.9–9.8)� 5.4 (4.1–6.2)� 7.6 (6.1–8.6)�

Lymphocyte (103/μl) [1–3] 2.0 (1.7–2.5) 1.6 (1.2–2.2)� 1.7 (1.2–2.5) 1.6 (1.3–2.2)� 1.4 (0.9–1.6)�

Monocyte (103/μl) [0–1] 0.5 (0.4–0.6) 0.8 (0.6–1.0)� 0.8 (0.5–1.7) 0.7 (0.5–0.9)� 1.0 (0.6–1.4)�

Eosinophil (103/μl) [0–0.4] 0.13 (0.09–0.19) 0.16 (0.10–0.21) 0.15 (0.12–0.18) 0.15 (0.10–0.20) 0.16 (0.05–0.23)

Basophil (103/μl) [0–0.09] 0.03 (0.02–0.05) 0.03 (0.02–0.05) 0.05 (0.02–0.06) 0.05 (0.03–0.05) 0.02 (0.01–0.04)

Platelets (103/μl) [150–400] 229 (198–278) 431 (317–512)� 415 (253–641)� 447 (334–498)� 370 (307–537)�

Data are expressed as median (Interquartile range).

Quantitative comparisons were performed by non-parametric methods, like the Kruskal Wallis analysis followed by a post-hoc test when applicable, for the multiple

comparison approach.

� Represents statistically significant differences from Co (p<0.05).

Co: controls; TB: pulmonary tuberculosis; WBC: White blood cells. RBC: Red blood cells; HGB: Hemoglobin

https://doi.org/10.1371/journal.pone.0257214.t003

Table 4. Blood biochemical parameters.

Co (n = 39) TB (n = 38) Mild (n = 6) Moderate (n = 19) Severe (n = 13)

Glycemia (mg/dl) [70–100] 89 (82–93) 86 (82–95) 88 (80–97) 86 (83–93) 87 (81–96)

Hemoglobin A1c (%) [4.8–5.9] 5.2 (4.7–5.6) 5.5 (5.1–5.8)� 4.9 (4.6–5.7) 5.7 (5.4–5.8)� 5.6 (5.1–6.2)

Urea (mg/dl) [10–50] 30 (26–36) 22 (19–30)� 24 (14–34) 21 (20–28)� 23 (18–32)

Creatinine (mg/dl) [0.5–0.9] 0.8 (0.7–0.9) 0.7 (0.6–0.8)� 0.6 (0.6–0.9) 0.7 (0.6–0.9) 0.7 (0.6–0.9)�

Uric Acid (mg/dl) [2.4–5.7] 4.8 (3.9–5.6) 5.0 (3.8–8.3) 7.7 (4.0–9.2) 6.3 (3.8–9.3) 4.5 (3.6–4.9)

Total Protein (g/dL) [6.6–8.7] 7.4 (7.1–7.6) 7.9 (7.4–8.3)� 7.8 (7.4–8.1) 8.0 (7.7–8.3)� 7.8 (6.9–8.4)

Albumin (g/dl) [3.4–4.8] 4.5 (4.3–4.7) 3.9 (3.5–4.2)� 3.7 (3.6–4.0)� 4.0 (3.8–4.3)� 3.3 (3.1–3.9)�

AST (UI/I) [10–38] 19 (16–22) 16 (13–24) 17 (13–33) 15 (13–22) 18 (15–26)

ALT (UI/I) [10–41] 18 (12–23) 18 (12–24) 13 (4–15) 19 (12–26) 23 (14–26)

ALP (U/I) [35–104] 67 (53–76) 92 (83–109)� 87 (77–103) 85 (80–99)� 109 (93–198)�

Serum cholinesterase (UI/I) [6400–15500] 9157 (7911–10393) 6130 (5361–7202)� 5748 (5647–6663)� 6669 (5921–7452)� 4698 (3379–6568)�

Total Cholesterol (mg/dl) [50–200] 179 (152–193) 144 (121–177)� 181 (107–245) 145 (133–180) 124 (112–151)�

HDL Cholesterol (mg/dl) [40–100] 51 (45–61) 36 (25–44)� 43 (32–58) 35 (31–44)� 26 (18–39)�

LDL Cholesterol (mg/dl) [4–100] 107 (91–123) 88 (72–108)� 110 (66–142) 83 (72–108) 85 (73–98)�

Triglycerides (mg/dl) [50–150] 91 (61–99) 79 (69–102) 80 (70–124) 86 (69–97) 72 (66–103)

Data are expressed as median (Interquartile range). Quantitative comparisons were performed by non-parametric methods, like the Kruskal Wallis analysis followed by

a posthoc test when applicable, for the multiple comparison approach.

� Represents statistically significant differences from Co (p<0.05). Co: controls; TB: pulmonary tuberculosis; AST: Aspartate Aminotransferase, ALT: Alanine

Aminotransferase, ALP: alkaline phosphatase, HDL: high-density lipoproteins and LDL: Low-density lipoprotein.

https://doi.org/10.1371/journal.pone.0257214.t004
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Moderate, p = 0.0001, Severe, p = 0.004). When analyzing the gene expression for proinflam-

matory cytokines, severe patients had increased IL-1β mRNA levels (Table 5) with no

between-group differences as to IL-6 and IFN-γ transcripts.

Pairwise correlation analysis among TB patients revealed a positive or negative association

between LPS with IL-6 and IFN-γ, or between LPS and DHEA, respectively (Table 6). In the

case of Co, LPS was positively correlated with the Cortisol/DHEA ratio (r = 0.44, p<0.01).

Among severe cases, LPS concentrations were positively associated with IL-6 and IFN-γ
plasma levels as well as with PBMCs IL-1β transcripts.

Discussion

LPS is a constituent from the membrane of Gram-negative bacteria with potent immune-acti-

vating effects via the recognition by TLR-4 on immune cells leading to the production of

proinflammatory mediators including CRP, and proinflammatory cytokines [17]. Diseases of

chronic nature are accompanied by a persistent state of low-grade inflammation. This may

help to explain the hematological and clinical biochemistry findings in TB patients, along with

their increased amounts of HBA1c likely compatible with some degree of insulin resistance

known to occur in TB [18]. Added to it, chronic inflammation is known to result in some

alteration of the mucosal barriers and commensal bacteria that line the gastrointestinal tract

Fig 1. Plasma levels of Lipopolysaccharides (LPS) (A), C-reactive protein (CRP) (B) along with erythrocyte sedimentation rate (ESR) (C) in Co and TB

patients. Box plots show median values, 25–75 percentiles from data in each group with maximum and minimum values. Statistically significant at �p<0.05,
�� p<0.01, ���p<0.001, ����p<0.0001.

https://doi.org/10.1371/journal.pone.0257214.g001
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favoring the translocation of bacteria to circulation and the ensuing presence of circulating

LPS in modest concentrations (1–100 pg/ml). As such, LPS can be found in circulation in situ-

ations affecting the integrity of the intestinal mucosa, and hence promoting the translocation

of microorganisms [17, 19].

In the present work we provide evidence demonstrating that plasma LPS levels were

increased in TB patients, as did levels of inflammatory mediators (CRP, IL-6, IFN-γ) and the

ESR. Further analysis according to TB severity, revealed that severe patients had the highest

amounts of circulating LPS; with moderate and severe cases showing much higher levels of

CRP, ESR, IL-6, and IFN-γ. Besides the involvement in the antimycobacterial response, these

compounds are also related to the extent of pulmonary disease [20, 21], for which their

increased presence during advanced disease may be more compatible with an inflammatory

role, as is the case of increased IL-1β transcripts. Within the context, that the degree of

Table 5. Proinflammatory cytokines, adrenal hormones plasma levels and Cortisol/DHEA ratio together with mRNA levels for proinflammatory cytokines of

PBMC from controls (Co), and patients with pulmonary tuberculosis (TB) with different degree of pulmonary involvement (mild, moderate and severe).

Co TB Mild Moderate Severe

IL-6 [pg/ml]§ 9.0 (6.4–10.6) 31.4 (20.9–42.4)� 18.2 (6.2–40.6) 25.7 (22.6–37.4)� 37.4 (21.7–63.5)�

IFN-γ [pg/ml]§ 7.1 (5.1–14.0) 14.6 (9.0–23.8)� 11.9 (5.5–15.7) 13.7 (8.8–23.5)� 22.8 (14–34.6)�

IL-6 mRNA AU 0.28 (0.18–0.52) 0.28 (0.15–0.46) 0.18 (0.12–0.96) 0.30 (0.14–0.43) 0.29 (0.17–0.50)

IFN-γ mRNA AU 2.5 (1.1–3.2) 2.03 (1.20–3.27) 1.81 (1.35–2.24) 2.16 (1.55–3.56) 1.76 (0.65–3.82)

IL-1β mRNA AU 0.04 (0.01–0.11) 0.07 (0.02–0.36) 0.02 (0.01–0.03) 0.07 (0.02–0.24) 0.23 (0.04–0.58)�

Cortisol [ng/ml]�� 195 (108–251) 213 (187–273)� 193 (174–218) 238 (208–304)�� 189 (183–231)

DHEA [ng/ml]��� 6.3 (3.8–8.4) 3.3 (2.4–6.2)� 4.1 (2.6–6.7) 4.6 (2.7–6.5) 2.4 (1.4–4.3)�

Cortisol/ DHEA# 26 (19–40) 55 (39–80)� 58 (40–81) 52 (36–77)� 66 (45–148)�

IL-6: interleukin-6; IFN-γ: interferon-gamma; IL-1β: interleukin-1beta; DHEA: Dehydroepiandrosterone; AU: Arbitrary Unit (fold change of the relative expression

levels of the gene of interest normalized by the relative expression levels of reference gen PPIA).

Quantitative comparisons were performed by non-parametric methods, like the Kruskal Wallis analysis followed by a posthoc test when applicable, for the multiple

comparison approach.
§Controls significantly lower than the whole group of TB patients (IL-6: p<0.0001, and IFN-γ: p = 0.0003), as well as moderate and severe cases (p<0.003, for in both

cytokines).

�Significantly different from Co (p<0.0001).

��Controls significantly lower than the whole group of TB patients (p = 0.03) and moderate cases (p = 0.01).

���Controls significantly higher than the whole group of TB patients (p = 0.008) and severe cases (p = 0.0001).
# Controls significantly lower than the whole group of TB patients (p<0.0001), mild (p = 0.006), moderate (p = 0.0001), and severe cases (p = 0.004).

https://doi.org/10.1371/journal.pone.0257214.t005

Table 6. Correlation analysis of hormone, cytokine and LPS plasma levels in the overall group of TB patients and those with severe disease.

Pairwise correlations TB overall group (n = 38) Severe TB cases (n = 13)

r coefficient p-value r coefficient p-value

LPS vs. IL-6 ns 0.59 0.03

LPS vs. IFN-γ ns 0.80 0.01

LPS vs. IL-1β transcripts ns 0.65 0.03

LPS vs. DHEA -0.41 0.02 ns

CRP vs. Cortisol/DHEA 0.37 0.03 ns

IL-6 vs. Cortisol/DHEA ns 0.64 0.03

ns: not significant

LPS: Lipopolysaccharides; IL-6: interleukin-6; IFN-γ: interferon-gamma; IL-1β: interleukin-1beta; CRP: C-reactive protein.

https://doi.org/10.1371/journal.pone.0257214.t006
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microbial translocation measured by the assessment of systemic levels of LPS is related to the

extent of intestinal permeability [22, 23], our study suggests an alteration at the mucosal level.

Individuals with tobacco exposure are more likely to present modestly increased levels of LPS

in circulation [24–26]. In the present series, the whole group of TB patients and particularly

the severe cases had a higher frequency of the smoking habit. The latter is not only associated

with an impaired intestinal barrier from the small bowel [27, 28] but also with cavitary lung

lesions and decreased IFN-γ response [29, 30].

The increased levels of LPS may add another element to the array of factors accounting for

the accompanying inflammation seen in TB patients, especially those with progressive disease.

This also extends to several neuro-immune endocrine alterations we have seen in them [13,

14, 31], like modest increases of cortisol and quite reduced amounts of DHEA, resulting in an

increased Cortisol/DHEA ratio. In addition to the fact that the moderate group of patients had

a greater number of cases, their higher cortisol levels may be indicating that the relative defi-

ciency of the HPA axis is less manifest in them. Unlike severe patients in whom cortisol levels

remain within the normal range in presence of increased circulating amounts of proinflamma-

tory compounds. Despite this, they present the highest cortisol/DHEA ratio. Beyond this

assumption, the unbalanced cortisol/DHEA relation was shown to be related to an inhibition

of in vitro cell-mediated immune responses, disease severity and inflammatory status [32].

Extending these findings, the present series of advanced patients had the highest cortisol/

DHEA positively associated with IL-6 levels, as well. Moreover, the negative relationship

between LPS and DHEA also provides another piece of evidence linking inflammation with

decreased presence of this androgen.

There is evidence that in situations of prolonged inflammation, the increased and persistent

production of IL-6 is likely to result in gut damage and the ensuing microbial translocation

[33]. In the same sense IFN-γ and TGF-β may also alter mucosal permeability [34], as it may

exert stressful situations [35] implying that these compounds may be also accounting for

mucosal alterations. Being this the case, a sort of kind of vicious circle may ensue; that is the

passage of LPS into the circulation which in turn increases the production of inflammatory

mediators, further stimulating cortisol production and the ensuing mucosal alteration favoring

the perpetuation of tissue damage. LPS is well-known for its stimulating effects on proinflam-

matory cytokine production [36, 37]; whereas CRP production is known to be increased upon

challenge with Gram-negative bacteria [38, 39] or purified LPS [40]. Supporting this view our

studies revealed a positive association between levels of LPS and IL-6 and IFN-γ, together with

the IL-1β expression in PBMC.

As seen in other diseases of chronic nature, cirrhosis [41], diabetes [42], cardiovascular dis-

orders [43], chronic infection and aging [44], two former studies also reported increased LPS

levels in serum from patients with pulmonary or extrapulmonary TB [11]. By categorizing

patients according to disease severity, we now extend this finding in the sense that such abnor-

mality is more likely to prevail in advanced disease in presence of a more unbalanced

immune-endocrine relationship.

Conclusions

This study reveals that TB patients, preferably those with advanced disease, are more likely to

present increased circulating amounts of LPS in coexistence with higher levels of proinflam-

matory mediators and cortisol/DHEA ratio, together with an increased expression of IL-1β in

PBMC, consistent with a sort of kind of perpetuating process. Raised systemic levels of LPS

may emerge as a contributing factor for the persistent immune-endocrine imbalance and

chronic inflammation which underlies the pathogenesis of progressive TB.
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