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In Brief
Using HIV-1 as a model virus, we
compared several published
analytical tools for spatial
proteomics to determine the
effect of viral expression. We
found that when using
differential centrifugation to
fractionate T cells, the accuracy
of classifiers was organelle
dependent with variable
sensitivity to viral gene
expression. Identification of
protein translocations by the
BANDLE pipeline showed the
highest agreement with known
HIV interactors and targets.
These findings lay a foundation
for future spatial proteomics
studies of viral infection and
expression.
Highlights
• T cells with inducible HIV-1 genomes are a scalable system for spatial proteomics.• HIV-1 expression minimally affected the consistency of protein classification.• SVM classified proteins more consistently than TAGM-MAP.• SVM and TAGM-MAP classifiers each have accuracy advantages for distinct organelles.• BANDLE pipeline showed highest agreement with known HIV host interactors and targets.
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RESEARCH
Comparative Analysis of T-Cell Spatial
Proteomics and the Influence of HIV Expression
Aaron L. Oom1,2,3,4,* , Charlotte A. Stoneham2,3,4, Mary K. Lewinski2,4,
Alicia Richards5,6,7,8,9 , Jacob M. Wozniak1,10,11, Km Shams-Ud-Doha5,
David J. Gonzalez9,11, Nevan J. Krogan6,7,8,9, and John Guatelli1,2,3,4
As systems biology approaches to virology have become
more tractable, highly studied viruses such as HIV can
now be analyzed in new unbiased ways, including spatial
proteomics. We employed here a differential centrifuga-
tion protocol to fractionate Jurkat T cells for proteomic
analysis by mass spectrometry; these cells contain
inducible HIV-1 genomes, enabling us to look for changes
in the spatial proteome induced by viral gene expression.
Using these proteomics data, we evaluated the merits of
several reported machine learning pipelines for classifi-
cation of the spatial proteome and identification of protein
translocations. From these analyses, we found that clas-
sifier performance in this system was organelle depen-
dent, with Bayesian t-augmented Gaussian mixture
modeling outperforming support vector machine learning
for mitochondrial and endoplasmic reticulum proteins but
underperforming on cytosolic, nuclear, and plasma
membrane proteins by QSep analysis. We also observed a
generally higher performance for protein translocation
identification using a Bayesian model, Bayesian analysis
of differential localization experiments, on row-normalized
data. Comparative Bayesian analysis of differential local-
ization experiment analysis of cells induced to express the
WT viral genome versus cells induced to express a
genome unable to express the accessory protein Nef
identified known Nef-dependent interactors such as T-cell
receptor signaling components and coatomer complex.
Finally, we found that support vector machine classifica-
tion showed higher consistency and was less sensitive to
HIV-dependent noise. These findings illustrate important
considerations for studies of the spatial proteome
following viral infection or viral gene expression and pro-
vide a reference for future studies of HIV-gene-dropout
viruses.
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Spatial proteomics is a methodologically diverse and rapidly
growing field within mass spectrometry (MS) that aims to
understand the subcellular localization of the human proteome
(1–7). While initial efforts focused on establishing techniques
and reference maps for various cell lines, recent work by
Cristea et al. (7) expanded the field to understand the whole-
cell effects of viral infection using human cytomegalovirus
(HCMV) as a prototype. This work led to novel findings on the
importance of peroxisomes in herpesvirus infectivity (8),
exemplifying the power of these methods for uncovering new
viral biology. However, as this was a first in its class study,
how different methodologies might impact the results of viral
studies using spatial proteomics is unclear. Using the well-
characterized HIV-1 as a model virus system, we aimed to
compare the output of several published spatial proteomic
analysis pipelines (9–12) as a survey of established methods.
To model HIV expression, we used a Jurkat T-cell line that

harbors a doxycycline-regulated HIV-1 genome. These cells
were previously developed by our group to generate nearly
homogenous HIV-positive cell populations for MS analysis
(13). As an additional biological comparator, we examined
both WT virus and a virus lacking the accessory gene nef
(ΔNef). Nef is a small (27 kDa) myristoylated membrane–
associated accessory protein expressed early during the
viral replication cycle (14, 15). Nef increases viral growth rate
and infectivity (16), and it dysregulates the trafficking of
cellular membrane proteins such as CD4, class I major his-
tocompatibility complex, and proteins involved in T-cell acti-
vation such as CD28 (17) and p56-Lck (18). Some of these
activities enable the virus to evade immune detection (19, 20).
Here, we use inducible Jurkat T-cell lines containing either WT
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or ΔNef HIV-1NL4-3 provirus and compare the spatial proteome
of uninduced cells to cells postinduction with doxycycline. To
fractionate the cells, we used a modified version of the Dy-
namic Organellar Mapping (DOM) protocol (5, 6) with addi-
tional centrifugation steps (4) to enhance organellar resolution
and then analyzed the fractions by MS using tandem mass tag
(TMT) multiplexing.
Following the generation and processing of MS data, two

broad steps are required for spatial proteomics: classification
and translocation event determination. For classifying detec-
ted proteins into cellular organelles, we compared two
methods from pRoloc, an R software package developed by
the Lilley laboratory (12). The first was support vector machine
(SVM) classification, which outputs a label for each protein
and an algorithm-specific confidence score that can be used
to threshold assignments (1). The second was a Bayesian
approach called t-augmented Gaussian mixture modeling with
maximum a posteriori estimates (TAGM-MAP), which outputs
a label for each protein and an actual probability of assign-
ment (11). TAGM-MAP is one of two TAGM methods: TAGM
with Markov-chain Monte Carlo is an alternative that yields full
posterior probability distributions as opposed to the point
estimates of localization probability yielded by TAGM-MAP
(21). To gauge the quality of these classifications, we
compared the two methods using the QSep metric developed
by Lilley et al. (22), which quantifies the separation, or reso-
lution, of the organelles in question. We in addition cross-
referenced our organellar assignments to existing organellar
proteome databases (23–26).
After classification, data were analyzed for translocating

proteins following HIV expression. We compared three
different methods for determining protein translocations:
label-based movement, translocation analysis of spatial pro-
teomics (TRANSPIRE) (9), and Bayesian analysis of differential
localization experiments (BANDLE) (10). Label-based move-
ment relies strictly on identifying proteins that are consistently
classified in one organelle prior to a cellular perturbation and
then consistently classified in another organelle following the
perturbation; this method was employed by Cristea et al. (7) in
their HCMV study. TRANSPIRE is a refined methodology from
the Cristea laboratory that relies on generating synthetic
translocations from proteins of known localization and uses
Gaussian process analysis to determine the likelihood of
proteins of unknown localization behaving in a manner
consistent with anticipated translocations following a cellular
perturbation (9). Finally, BANDLE is another method devel-
oped by Lilley et al. (10) that takes replicated data, both with
and without a perturbation, and uses Bayesian analysis to
yield a ranked list of possible translocations with their asso-
ciated likelihood of occurrence. We compared the trans-
location events from these various methods by
crossreferencing events with a previous study of the HIV
interactome (27) as well as the more broad National Institutes
of Health (NIH) HIV-1 Human Interaction Database (28).
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From these comparisons, we found that the performance of
different classifiers is organelle dependent and shows varied
effects from HIV expression. As determined by agreement with
previously published organellar proteomes, classification with
TAGM-MAP showed increased accuracy in mitochondrial and
endoplasmic reticulum (ER)–classified proteins, whereas SVM
outperformed TAGM-MAP with nuclear, cytosolic, and plasma
membrane–classified proteins. We also observed generally
higher performance for protein translocation using BANDLE
on row-normalized data (i.e., normalization used for SVM
classification) when compared with the HIV interactomes.
BANDLE analysis of WT and ΔNef data identified known Nef
interactors involved in T-cell activation and the coatomer
complex. The need to combine similarly behaving organelles
for TRANSPIRE analysis hampered the performance of that
method. Finally, we found that SVM classification showed
higher consistency and was less sensitive to HIV-dependent
noise. These findings illustrate the complexities in choosing
a computational method for spatial proteomics study and
serve as a foundation for additional studies.
EXPERIMENTAL PROCEDURES

Experimental Design and Statistical Rationale

All fractionation experiments with mass spectrometric analysis were
performed in technical triplicate for each condition (uninduced and
induced), with two biological replicates for WT and ΔNef NL4-3 Jurkat
cells. This yielded a total of six uninduced and six induced technical
replicates for each virus type. Biological replicates were prepared on
separate days and analyzed by MS on separate days. Western blotting
and flow cytometry were performed on each technical replicate. An-
alyses for QSep used Welch's t test to determine statistical
significance.

Cell Culture

The doxycycline-inducible NL4-3 HIV-1 and NL4-3 ΔNef Jurkat cell
lines were previously described (13, 29). The replication-incompetent
genome used was based on pNL4-3 but lacked most of the 5′ U3
region, encoded a self-inactivation deletion in the 3′ long terminal
repeat, and contained the V3 region from the R5-tropic 51-9 virus (30)
to prevent the cell–cell fusion of the Jurkat T cells used herein, which
do not express chemokine receptor 5 (CCR5). Inducible cells were
cultured in RPMI1640 media supplemented with penicillin/strepto-
mycin and 10% Tet-free fetal bovine serum, as well as puromycin
(1 μg/ml) and G418 (200 μg/ml) to maintain persistence of the tetra-
cycline transactivator and the inducible genome. Cells were passaged
every 2 days to keep concentrations between 3.5 × 105 and 1 × 106

cells/ml. Cells were maintained at 37◦C, 5% CO2, and 95% humidity.

Doxycycline Induction and Fractionation

On the day before fractionation, 2.016 × 109 cells were plated at 6 ×
105 cells/ml in T75 flasks at a total volume of 40 ml/flask. Half of these
cells were induced to express HIV-1/HIV-1ΔNef with doxycycline
(1 μg/ml) for 18 h, whereas the other half remained uninduced.
Following induction, cells of each condition, that is, uninduced and
induced, were split into three technical replicates and then centrifuged
at 500g for 5 min at 4◦C. Each technical replicate was pooled into a
single 50 ml tube using ice-cold 1× PBS and then counted by he-
mocytometer. From each technical replicate, 3 × 108 cells were
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fractionated. Two aliquots of cells were taken from each technical
replicate for whole-cell Western blots and testing induction by flow
cytometry.

The fractionation protocol used here is derived from the Dynamic
Organellar Maps method (5) with additional centrifugation steps (4)
and TMT-based MS analysis rather than stable isotope labeling by/
with amino acids in cell culture (6). Cells for fractionation were
centrifuged at 500g for 5 min at 4◦C, then resuspended in ice-cold
PBS, and incubated for 5 min on ice. Cells were again centrifuged
at 500g for 5 min at 4◦C, then resuspended in ice-cold hypotonic lysis
buffer (25 mM Tris–HCl [pH 7.5], 50 mM sucrose, 0.5 mM MgCl2, and
0.2 mM EGTA in water), and incubated for 5 min on ice. Using a 7 ml
Dounce homogenizer, cells were homogenized with 20 full strokes of
the tight pestle. Cell homogenates were then immediately transferred
to a 13 ml (14 × 89 mm) ultracentrifuge tube with sufficient ice-cold
hypertonic sucrose buffer (1.25 M sucrose, 25 mM Tris–HCl [pH
7.5], 0.5 mM MgCl2, and 0.2 mM EGTA in water) to restore 250 mM
sucrose concentration. All replicates were then centrifuged at 1000g
for 10 min at 4◦C in a Beckman Coulter ultracentrifuge (SW-41 Ti
rotor), balancing each tube with balance buffer (250 mM sucrose,
25 mM Tris–HCl [pH 7.5], 0.5 mM MgCl2, and 0.2 mM EGTA in water).
Supernatants were transferred to a fresh ultracentrifuge tube,
balanced with balance buffer, and then fractionated using the
following differential centrifugation protocol: 3000g for 10 min, 5400g
for 15 min, 12,200g for 20 min, 24,000g for 20 min, 78,400g for 30 min,
110,000g for 35 min, and 195,500g for 40 min. All centrifugation steps
were performed at 4◦C with pellets from each spin being resuspended
in SDS buffer (2.5% SDS and 50 mM Tris–HCl [pH 8.0] in water).
Fractions were then heated for 10 min at 72◦C. Protein content of each
fraction was quantified in triplicate using a bicinchoninic acid protein
assay (Thermo Fisher Scientific).

Confirmatory Western Blots and p24 Flow Cytometry

Prior to mass spectrometric analysis of fractions, induction and
fractionation were evaluated by flow cytometry and Western blotting.
For p24 flow cytometry, an aliquot of 2 × 106 cells from each technical
replicate was pelleted at 500g for 5 min at 4◦C and then resuspended in
ice-cold fluorescence-assisted cell sorting buffer (2% fetal bovine
serum and 0.1%sodium azide in 1×PBS). The cells were again pelleted
at 500g for 5min at 4◦C, then resuspended inCytofix/Cytoperm reagent
(BD Biosciences), and incubated on ice for 30 min Following fixation/
permeabilization, cell suspensions were diluted with wash buffer and
pelleted at 500g for 5min at 4◦C.Cellswere resuspended in p24primary
antibody solution (1:100 dilution of p24-FITC antibody clone KC57
[BeckmanCoulter] diluted in perm/washbuffer) and incubated on ice for
30 min in darkness. Ice-cold fluorescence-assisted cell sorting buffer
was added to each sample, and cells were pelleted at 500g for 5 min at
4◦C. The intracellular p24 was analyzed using an Accuri C6 flow cy-
tometer (BD Biosciences). Uninduced cells had an average p24+ pop-
ulation of 0.27% (SD = 0.20) and live cell population of 85.78% (SD =
3.37). Induced cells had an average p24+ population of 94.85% (SD =
1.23) and live cell population of 79.25% (SD = 4.35).

An aliquot of 1 × 107 cells from each technical replicate was lysed in
SDS buffer and probe sonicated on ice until no longer viscous. 3000g
fractions were also probe sonicated. The samples were mixed with 4×
loading buffer (200 mM Tris–HCl [pH 6.8], 8% SDS, 40% glycerol,
200 mM Tris(2-carboxyethyl)phosphine-HCl, and 0.04% bromophenol
blue in water), and proteins were then separated on 10% SDS-PAGE
gels at a constant 70 V. Proteins were transferred to polyvinylidene
difluoride membranes for 1 h using the Trans-Blot turbo (Bio-Rad)
systemusing standard conditions. Themembraneswere blocked in 5%
milk in 1×PBS+0.1%Tween-20 for 30min at room temperatureprior to
incubation with primary antibodies diluted in 1% milk and 0.05% so-
dium azide in 1×PBS + 0.1%Tween-20: sheep anti-Nef (gift fromCelsa
Spina; diluted 1:3000), mouse anti-p24 (Millipore; diluted 1:500),
Chessie8 (mouse anti-gp41; NIH AIDS Research and Reference Re-
agent program (31); diluted 1:10,000), rabbit anti-Vpu (NIH AIDS
Research and Reference Reagent programARP-969; contributed by Dr
Klaus Strebel; diluted 1:1000), and mouse anti-GAPDH (GeneTex;
diluted 1:5000). The blots were washed and probed with either horse-
radish peroxidase (HRP)–conjugated goat antimouse, HRP-goat anti-
rabbit, or HRP-rabbit antisheep secondary (Bio-Rad) diluted 1:3000,
incubating for 1 h at room temperature on a shaker. Apparentmolecular
mass was estimated with PageRuler protein standard (Thermo Fisher
Scientific). Blots were imaged using Western Clarity detection reagent
(Bio-Rad) before detection on a Bio-Rad Chemi Doc imaging system
with Bio-Rad Image Lab, version 5.1 software.

Sample Digestion for MS

Disulfide bonds were reduced with 5 mM Tris(2-carboxyethyl)
phosphine-HCl at 30◦C for 60 min, and cysteines were subsequently
alkylated (carbamidomethylated) with 15 mM iodoacetamide in the
dark at room temperature for 30 min. Proteins were then precipitated
with nine volumes of methanol, pelleted, and resuspended in 1 M urea
and 50 mM ammonium bicarbonate. Following precipitation, protein
concentration was determined using a bicinchoninic acid protein
assay. A total of 0.2 mg of protein was subjected to overnight
digestion with 8.0 μg of mass spec grade Trypsin/Lys-C mix (Prom-
ega). Following digestion, samples were acidified with formic acid (FA),
and subsequently, 150 μg peptides were desalted using AssayMap
C18 cartridges mounted on an Agilent AssayMap BRAVO liquid
handling system. C18 cartridges were first conditioned with 100%
acetonitrile (ACN), followed by 0.1% FA. The samples were then
loaded onto the conditioned C18 cartridge, washed with 0.1% FA, and
eluted with 60% MeCN and 0.1% FA. Finally, the organic solvent was
removed in a SpeedVac concentrator prior to LC–MS/MS analysis.

TMT Labeling

Peptide concentrationwas determined using aNanodrop, and a total
of 15 μg of peptide was then used for TMT labeling, each replicate
serving as amultiplex. Briefly, driedpeptide samplewas resuspended in
200 mM Hepes (pH 8) and incubated for 1 h at room temperature with
one of the TMT10-plex reagents (Thermo Fisher Scientific) solubilized in
100% anhydrous ACN. Reactions were quenched using a 5% hydrox-
ylamine solution at 1 to 2 μl per 20 μl TMT reagent. The multiplexed
samples were then pooled and dried in a SpeedVac. The labeled pep-
tides were resuspended in 0.1% FA. After sonication for 1 min, the
sample was desalted manually using SepPak; the column was first
conditionedwith 100%ACN, followedby0.1%FA.Samplewas loaded,
then washed with 0.1% FA, and eluted in a new vial with 60% ACN and
0.1% FA. Finally, the organic solvent was removed using a SpeedVac
concentrator prior to fractionation.

High pH Reverse-Phase Fractionation

Dried samples were reconstituted in 20 mM ammonium formate (pH
~10) and fractionated using a Waters ACQUITY CSH C18 1.7 μm
2.1 × 150 mm column mounted on a MClass Ultra Performance Liquid
Chromatography system (Waters Corp) at a flow rate of 40 μl/min with
buffer A (20 mM ammonium formate [pH 10]) and buffer B (100%
ACN). Absorbance values at 215 and 280 nm were measured on a
Waters UV–Vis spectrophotometer, using a flowcell with a 10 mm path
length. Peptides were separated by a linear gradient from 5% B to
25% B in 62.5 min followed by a linear increase to 60% B in 4.5 min
and 70% in 3 min and maintained for 7 min before increasing to 5% in
1 min. Twenty-four fractions were collected and pooled in a
noncontiguous manner into 12 total fractions. Pooled fractions were
dried to completeness in a SpeedVac concentrator.
Mol Cell Proteomics (2022) 21(3) 100194 3
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LC–MS3 Analysis

Dried samples were reconstituted with 0.1% FA and analyzed by
LC–MS/MS on an Orbitrap Fusion Lumos mass spectrometer (Thermo
Fisher Scientific) equipped with an Easy nLC 1200 ultra-high pressure
liquid chromatography system interfaced via a Nanospray Flex
nanoelectrospray source (Thermo Fisher Scientific). Samples were
injected on a C18 reverse phase column (25 cm × 75 μm packed with
Waters BEH 1.7 μm particles) and separated over a 120-min linear
gradient of 2 to 28% solvent B at a flow rate of 300 nl/min. The mass
spectrometer was operated in positive data-dependent acquisition
mode.

Parameter settings were set as follows: Fourier transform (FT) MS1
resolution (120,000) with automatic gain control (AGC) target of 1e6,
injection time (IT) MS2 isolation window (0.4 m/z), IT MS2 maximum IT
(120 ms), IT MS2 AGC (2E4), IT MS2 collision-induced dissociation
energy (35%), synchronous precursor selection ion count (up to 10),
FT MS3 isolation window (0.4m/z), FT MS3 maximum IT (150 ms), and
FT MS3 resolution (50,000) with AGC target of 1e5. A TOP10 method
was used where each FT MS1 scan was used to select up to 10
precursors for interrogation by collision-induced dissociation MS2
with readout in the ion trap. Each MS2 was used to select precursors
(synchronous precursor selection ions) for the MS3 scan, which
measured reporter ion abundance.

Subset analyzed using an MS2 method, with an MS1 Orbitrap
resolution of 120,000, MS1 scan range of 350 to 1400 m/z, MS1 AGC
of 1e6, and an MS1 maximum IT of 100 ms. Cycle time was set to 3 s.
Quadrupole isolation window was set to 1.6. MS2 spectra were
analyzed by higher-energy collision-induced dissociation at a collision
energy of 35 and an Orbitrap resolution of 50,000. Maximum IT was
set to 86 ms, with an MS2 AGC target of 1.5e5.

MS Spectra Identification

Raw files were analyzed using Proteome Discoverer, version 2.3
(Thermo Fisher Scientific). MS/MS spectra were searched against a
concatenated database containing UniProt human and HIV-1 proteins
(downloaded February 3, 2020) and reverse decoy sequences using
the Sequest algorithm (32); the database contained 20,367 total en-
tries. Mass tolerance was specified at 50 ppm for precursor ions and
0.6 Da for MS/MS fragments. Static modifications of TMT 10-plex tags
on lysine and peptide n-termini (+229.162932 Da) and carbamido-
methylation of cysteines (+57.02146 Da) and variable oxidation of
methionine (+15.99492 Da) were specified in the search parameters.
Data were filtered to a 1% false discovery rate at the peptide and
protein levels through Percolator (33) using the target-decoy strategy
(34). TMT reporter ion intensities were extracted from MS3 spectra
within Proteome Discoverer to perform quantitative analysis.

Computational Analysis

Matching biological replicates were combined (i.e., WT biological
replicate 1 and 2) and then analyzed using the various pipelines
described. The Homo sapiens (“hsap”) marker set from pRoloc was
used in all cases. For classification and translocation event identifi-
cation, only the proteins commonly detected across matched bio-
logical replicates were analyzed to allow for consistency in comparing
methods on the same dataset.

The pRoloc implementation of SVM (12) was performed on
row-normalized datasets, whereas the pRoloc implementation of
TAGM-MAP (11) required principal component analysis (PCA) trans-
formation and no row normalization with the first four principal com-
ponents carried forward. The PCA transformation was used because
of floating point arithmetic errors that arose because of highly corre-
lated features. Default parameters for algorithms were used excepting
the following:
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SVM hyperparameter classification: 10 times 10-fold
crossvalidation

SVM classification threshold: median algorithm score for each
organelle

TAGM-MAP model training: 200 iterations
BANDLE: six chains
TRANSPIRE was run on averaged row-normalized datasets, that is,

technical replicates were row normalized and then values for each
feature were averaged for each protein across matched technical
replicates. Organelles were combined into five groups: (1) Golgi
apparatus/plasma membrane/ER/peroxisomes/lysosomes, (2)
cytosol/actin cytoskeleton/proteasome, (3) nucleus, (4) mitochondria,
and (5) 40S/60S ribosome. The number of inducing points and the
kernel function were chosen from amongst the suggested values in
the TRANSPIRE documentation. For these datasets, 75 inducing
points and the squared exponential kernel performed best and were
used in the analysis.

The average distribution of proteins across organelles was calcu-
lated by determining the average organellar distribution for a single
technical replicate and then averaging the values of matched technical
replicates. Marker profiles were generated by averaging the behavior
of markers for a given organelle within a technical replicate and then
averaging those values across technical replicates for each organelle.
Organellar QSep scores were calculated by averaging the individual
QSep scores between two organelles across all matched technical
replicates and then plotting the distribution of those averages.

Comparisons to the Human Protein Atlas (HPA) were completed by
combining several HPA subcellular localization annotations to align
with the organelles used by pRoloc:

1. Nuclear membrane, nucleoli fibrillar center, nucleoli rim, nucleoli,
kinetochore, mitotic chromosome, nuclear bodies, nuclear
speckles, and nucleoplasm: Nucleus

2. Actin filaments and focal adhesion sites: Actin cytoskeleton
3. Plasma membrane and cell junctions: Plasma membrane
Remaining designations within the HPA beyond the aforementioned

and those in common with pRoloc's “hsap” markers were not
considered. The 40S ribosome, 60S ribosome, and proteasome
classes from the SVM and TAGM-MAP classified data were collapsed
into the cytosol label.

Thresholds for expected number of protein translocations were
determined by dividing the size of the Jӓger HIV interactome (27), 453
proteins, or the NIH HIV interactome (28), 4628 proteins, by the pre-
dicted human proteome size of 19,773 proteins (35). Gene Ontology
analysis was conducted using the STRING database (36).
RESULTS

Doxycycline-Inducible HIV-1NL4-3 Jurkat T Cells are a
Scalable and Uniform System for Subcellular Fractionation

and Proteomic Studies

The WT HIV-1-inducible cells used here were previously
generated and used for whole-cell quantitative proteomics
and phosphoproteomics (13). To avoid the formation of syn-
cytia, which could alter the subcellular fractionation and
subsequent spatial proteomic data, the inducible HIV-1NL4-3
genomes were modified with a CCR5-tropic Env protein to
avoid cell–cell fusion between the CCR5-negative Jurkat cells.
Because of the high induction rates of HIV-1 expression and
the scalability of this culture system, we reasoned that it would
be amenable to subcellular fractionation by differential
centrifugation with subsequent MS analysis (Fig. 1A). To



A

B C

kDa: :H.P.I.
gp160
p55

Nef

Vpu

GAPDH

L L L0 4 8 12 16 18

0 4 8 12 1618

0 4 8 12 16 18

Wild-Type ΔNef

55 -
180 -

25 -

15 -

35 - Pe
rc

en
ta

ge
 p

24
+ 

C
el

ls
100

90
80
70
60
50
40
30
20
10

0

Wild-Type
ΔNef

0 hours 18 hours
+ Doxycycline

Doxycycline-inducible HIV in Jurkat Cells

Fractionation: Dounce homogenization
 in hypotonic buffer followed by 

differential centrifugation

1 3 5.4 12.2 24 78.4 110 195.5
(RCF x 103)3 x technical replicates

3 x 108 cells/replicate
2 x biological replicates

3 x technical replicates
3 x 108 cells/replicate

2 x biological replicates

1 3 5.4 12.2 24 78.4 110 195.5
(RCF x 103)

UnA-C
WT/ΔNef 1

UnA-C
WT/ΔNef 2

IndA-C
WT/ΔNef 1

IndA-C
WT/ΔNef 2

LC-MS3 with offline HPLC fractionation of 
all TMT-10 multiplexes into 12 pooled 

fractions each

:H.P.I.

D E
Uninduced Fractions Induced Fractions

%
 T

ot
al

 p
ro

te
in

0

1

2

3

0

1

2

3

3 5.4 12
.2 24 78

.4 11
0

19
5.5 3 5.4 12

.2 24 78
.4 11

0
19

5.5

Fraction (RCFx103) Fraction (RCFx103)

Wild-Type ΔNef

Fraction (RCFx103)
Fraction (RCFx103)

3 5.412
.2 2478

.4 11
0
19

5.5

gp160

gp41
p55
Vpu
Nef

gp160

gp41
p55
Vpu

180 -
100 -

70 -
55 -
40 -
55 -
15 -

25 -

kDa:
180 -
100 -

70 -
55 -
40 -
55 -

15 -

kDa:

3 5.412
.2 2478

.4 11
0
19

5.5

FIG. 1. Inducible HIV-1 Jurkat cell lines yield a near pure population of HIV-expressing cells suitable for fractionation by differential
centrifugation. A, equal numbers of doxycycline-inducible WT and ΔNef HIV Jurkat cells were induced or left uninduced for 18 h and then
fractionated by Dounce homogenization in a hypotonic lysis buffer. Cell homogenates were put through a differential centrifugation protocol,
discarding the nuclear pellet (1000g) and lysing remaining pellets in 2.5% SDS buffer. Fractions were labeled for TMT-10 multiplexing and further
offline HPLC fractionation. All multiplexes were run for 3 h on LC–MS3. B, Western blot showing induction of HIV p55, gp160, gp41, Nef, and Vpu
with a GAPDH loading control. Cells were induced for 0, 4, 8, 12, 16, and 18 h, lysed, and then a portion of these cell lysates was run on 10%
SDS-PAGE gels. C, flow cytometry analysis of remaining sample from B. HIV-1 expression peaked at ~95% of cells p24+ by 18 h. D, average
percentage of total cellular protein detected in each fraction by BCA protein assay. Bars represent the mean value for a given fraction based on
the average from each biological replicate. Error bars are one standard deviation. All BCA assays were performed in technical triplicate on 10-
fold dilutions for each biological replicate. E, Western blots for cell fractions of inducible WT HIV Jurkat cells (left) and ΔNef HIV Jurkat cells
(right), 18 h postinduction. Blots shown are representative of both biological replicates. BCA, bicinchoninic acid; TMT, tandem mass tag.
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determine the optimal time point for analysis following in-
duction of HIV-1 expression, cells were treated with doxycy-
cline for 0, 4, 8, 12, 16, and 18 h, and the expression of HIV-1
proteins was detected by Western blotting and flow cytometry
(Fig. 1, B and C). WT cells began to express detectable Nef by
4 h postinduction, and both WT and ΔNef cells expressed p55
Gag precursor (the precursor protein for virion structural pro-
teins) by 8 h and gp160 (the envelope glycoprotein precursor)
by 12 h. By 18 h, viral proteins were robustly expressed; about
90 to 95% of both WT and ΔNef cells were positive by flow
cytometry for p24 capsid (a proteolytic product of p55).
Subcellular fractionation was performed 18 h postinduction;

the cells were mechanically ruptured with a Dounce homog-
enizer in hypotonic solution and then subjected to a differ-
ential centrifugation protocol before preparation for
quantitative and multiplexed MS analysis. Uninduced and
induced cells were handled in technical triplicate for each
biological replicate (n = 2). We used a modified version of the
DOM protocol (5, 6) with additional fractions generated at
110,000g and 195,500g to increase the resolution of the
classification analysis; a similar method of expanded differ-
ential centrifugation fractionation was previously described by
Lilley et al. (37). As a quality control before MS, protein yields
were quantified for each fraction (Fig. 1D). The postnuclear
fractions accounted for only ~10 to 15% of total cellular
protein, presumably because nuclear proteins and soluble
cytoplasmic proteins that failed to pellet at 195,500g were
discarded, leaving primarily membranous organelles or
organellar fragments and large cytoplasmic complex proteins
in the fractions analyzed. We also observed decreasing pro-
tein yields across the fractions, with an increase in the 78,400g
fraction, consistent with the original DOM study using HeLa
cells (5). In further support of differential fractionation, varied
abundances of viral proteins across the fractions in cells
expressing either the WT or ΔNef genomes were observed by
Western blotting (Fig. 1E). Following confirmation of differen-
tial fractionation, we analyzed all fractions by LC–MS3 with
TMT-10 multiplexing (Fig. 1A).
To determine the consistency of the MS analysis, we used

unsupervised hierarchical clustering by Spearman correlation
coefficient for the individual fractions. We found that for both
the WT and ΔNef data, the fractions clustered by g-force
rather than biological replicate (supplemental Figs. S1 and S2),
suggesting consistent quantification values. Because the WT
and ΔNef Jurkat cell lines represent individual clones for each,
we also compared the uninduced fractions of the WT and
ΔNef data to each other. This comparison showed that frac-
tions still clustered by g-force rather than HIV genome
(supplemental Fig. S3).

SVM Yields Greater QSep Scores Than TAGM-MAP Even
With Stringent Thresholds of Classification for TAGM-MAP
To classify the fractionation data and identify translocating

proteins, we employed a variety of previously published
6 Mol Cell Proteomics (2022) 21(3) 100194
methods (Fig. 2A). As several resources detail known HIV
interactors (27, 28), we primarily focused on comparing clas-
sification and translocation identification methods using our
WT data. In subsequent analyses, we examined the ΔNef data
to determine the power of various methods in identifying Nef-
specific effects.
Proteins were classified using either the pRoloc imple-

mentation of SVM or TAGM-MAP. As the differential centri-
fugation protocol employed here is a modified version of the
DOM method, which generates only five fractions (5), we first
examined whether our two additional fractions improved
organellar resolution. The DOM method classifies proteins
with SVM, so we compared the resolution of organelles with
the QSep analysis (22) using the first five fractions for SVM
classification, then the first six fractions, and finally all seven
fractions (Fig. 2B). Notably, while QSep scores are often used
to evaluate the distribution of marker proteins, here, we
analyzed complete organellar clusters including both markers
and newly classified proteins. As well-chosen marker proteins
will tend toward the center of an organellar cluster, our use of
QSep scores here offers only a partial picture of organellar
resolution, with this depiction becoming murkier particularly
toward the boundaries of each organelle. Taking this into
consideration, we found that while the addition of the
110,000g spin alone had no significant effect on organellar
resolution as compared with the original method, the subse-
quent addition of the 195,500g spin yielded a significant in-
crease from a mean QSep score of 3.74 to 4.05 (median
scores 2.97 and 3.50, respectively). In light of this, all sub-
sequent analyses on the SVM data were performed on the full
seven fractions. For these analyses, a simple median SVM
score threshold was used for each organelle to determine
which proteins remained classified or were designated un-
known; this is explored further in the Discussion section.
To determine if an alternate method for classification would

perform better than SVM, we also tested the pRoloc imple-
mentation of TAGM-MAP. TAGM-MAP has three primary
outputs: an organellar localization, a probability that the given
protein is located in that organelle, and a probability that a
protein belongs to an outlier compartment. For our purposes,
we focused on the localization and organellar probability,
leaving the outlier probability aside. These localization prob-
abilities allowed us to test the effect of different probability
thresholds on QSep scores of TAGM-MAP. Using a 50%
threshold, that is, converting all proteins with a probability of
localization lower than 50% to an “unknown” designation,
showed no significant effect, whereas both 75% and 90%
thresholds showed significant gains over no thresholding
(Fig. 2C). A 90% threshold showed no significant increase in
QSep scores over the 75% threshold, so subsequent analyses
employed the 75% threshold for TAGM-MAP classification. Of
importance, we observed that the QSep scores from SVM
classification were on average higher than those from TAGM-
MAP even when comparing TAGM-MAP's highest condition



FIG. 2. Analysis of fractionation data reveals increased organellar resolution from added fractions and thresholding TAGM-MAP data.
A, diagram of the computational methods used here. For SVM classification, the raw data of individual technical replicates were row normalized.
For TAGM-MAP classification, the raw data of individual technical replicates were PCA transformed, with the first four principal components
(PC1–4) carried forward for analysis. Both SVM and TAGM-MAP classified data were fed into BANDLE or label-based movement analysis.
Finally, for analysis with TRANSPIRE, individual technical replicates were row normalized and then averaged together. B, boxplot of QSep scores
for SVM analysis of WT uninduced samples using the original five fractions described by Itzhak et al. (5), adding a 110,000g fraction (six
fractions), or adding both a 110,000g and a 195,500g fraction (seven fractions). C, boxplot of QSep scores for TAGM-MAP analysis of WT
uninduced samples comparing using no threshold for remaining classified, a 50% chance of classification, a 75% chance of classification, or a
90% chance of classification. Statistical significance is calculated using a two-sided independent Student's t test with Welch's correction for
unequal variance. Boxplots show median, not mean, line. BANDLE, Bayesian analysis of differential localization experiments; PCA, principal
component analysis; SVM, support vector machine; TAGM-MAP, t-augmented Gaussian mixture modeling withmaximum a posteriori estimates;
TRANSPIRE, translocation analysis of spatial proteomics.
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(90% probability threshold, average score of 3.55) to SVM's
lowest condition (five fractions, average score of 3.74).
Notably, the probabilities of TAGM are better calibrated than
the algorithm scores generated by SVM; the original TAGM
publication shows a better correlation of classifier confidence
with classifier accuracy for TAGM than SVM (21).
Mol Cell Proteomics (2022) 21(3) 100194 7
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SVM Classifies Proteins More Consistently Than
TAGM-MAP

We next wanted to understand how the SVM and TAGM-
MAP methods compared for consistency of classification
across WT replicates (Fig. 3, A and B). Using the median
SVM score for each organelle to threshold SVM classifica-
tions, and the 75% organellar classification probability
threshold for TAGM-MAP, both SVM (Fig. 3A) and TAGM-
MAP (Fig. 3B) showed a low percentage (~10–15%) of pro-
teins that were classified identically in six of six technical
replicates for either WT uninduced or induced. However,
allowing for a majority of replicates, that is, four of six, gave
~70 to 75% of proteins as classified consistently by SVM
(Fig. 3A). This compared to ~50 to 55% of proteins classified
to a similar consistency by TAGM-MAP (Fig. 3B). HIV
expression modestly decreased the consistency of both
SVM and TAGM-MAP (~5% difference), suggesting an in-
crease in experimental noise from HIV expression. In addi-
tion, we found that SVM had a greater proportion of
classified proteins that were consistently designated un-
known as compared with TAGM-MAP for uninduced
A

C

B

FIG. 3. Classification with SVM shows greater consistency than TA
most frequent organellar classification was identified along with its freque
chart shows consistency of classification for WT uninduced replicates,
classification by TAGM-MAP. C, average distribution of proteins across
common proteins found across all WT replicates (4765 proteins). SVM,
modeling with maximum a posteriori estimates.
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replicates (54 versus 35%), but this was not the case for
induced replicates (56 versus 68%).
Looking at the average distribution of proteins across or-

ganelles, we found that SVM yielded a higher percentage of
proteins that reverted to an unknown designation (Fig. 3C,
44% of proteins); this may partly explain the higher QSep
scores generally seen for SVM compared with TAGM-MAP
(Fig. 2). However, this percentage is stable between WT
uninduced and induced replicates, whereas the lower per-
centage of unknown proteins (32% for uninduced and 41% for
induced) for TAGM-MAP is more sensitive to HIV expression.
This could explain the increase in consistently unknown pro-
teins in the induced condition for TAGM-MAP relative to SVM.
Similar trends were seen within the ΔNef data (supplemental
Fig. S4). Marker behavior for WT (supplemental Fig. S5) and
ΔNef (supplemental Fig. S6) is also similar, which likely ex-
plains the consistent trends. These data show a greater
consistency for SVM classification, but with a relatively high
proportion of proteins being designated unknown; the data in
addition suggest that SVM is less susceptible to noise intro-
duced by HIV expression.
GM-MAP classification. A, proteins were classified by SVM, and the
ncy, that is, number of technical replicates classified as such. Left pie
and right pie chart shows WT induced replicates. B, same as (A), but
organelles for each indicated condition. All charts consider the same
support vector machine; TAGM-MAP, t-augmented Gaussian mixture
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Agreement Between SVM and TAGM-MAP Classification Is
Organelle Dependent and is Variably Affected by HIV

Expression
To determine the concordance of SVM and TAGM-MAP for

classification, we examined all proteins that were classified
consistently in at least four of six WT replicates for both SVM
and TAGM-MAP. We found more such proteins for the unin-
duced replicates (Fig. 4A), 1863 proteins, as compared with
A

B

FIG. 4. Concordance of SVM and TAGM-MAP classifications depe
proteins that were consistently classified (proteins classified consistent
uninduced condition. Annotations indicate number of proteins in a given
machine; TAGM-MAP, t-augmented Gaussian mixture modeling with ma
the induced replicates (Fig. 4B) with 1448 proteins. This dif-
ference may be attributable to the decrease in classification
consistency caused by HIV expression for both SVM and
TAGM-MAP, which would be accentuated by any increased
susceptibility of TAGM-MAP to HIV-dependent noise. Of
these consistently classified proteins, HIV expression mini-
mally affected classifier agreement; 65% agreed between
SVM and TAGM-MAP for WT uninduced and 69% agreed
nds on organelle and expression of HIV. A, heat map of common
ly in at least four of six replicates) by both SVM and TAGM-MAP for
scenario. B, same as (A) for induced condition. SVM, support vector
ximum a posteriori estimates.
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between SVM and TAGM-MAP for induced replicates (see
diagonal of heat maps). However, HIV expression increased
the proportion of proteins that were consistently designated
unknown by both SVM and TAGM-MAP: in uninduced cells,
40% of proteins agreed upon by the two methods were
designated unknown (Fig. 4A), whereas 71% of agreed upon
proteins were designated unknown from induced cells
(Fig. 4B). This shift seems primarily driven by the increase in
unknown designations for TAGM-MAP following HIV expres-
sion: in uninduced replicates, 52% of proteins designated
unknown by SVM agreed with TAGM-MAP, but in induced
replicates, 81% of these proteins agreed with TAGM-MAP.
Matching trends were seen in ΔNef data (supplemental
Fig. S7). Taken together, these data suggest that while HIV
expression has little effect on the proportion of consistently
classified proteins that are agreed upon by the two classifiers,
the proportion of these proteins that are designated unknown
is increased, and the overall number of consistently classified
proteins is decreased.
We found that proteins from the cytosol, ER, and mito-

chondria were the most frequent among consistently classi-
fied proteins. These three organelles also showed the best
agreement between SVM and TAGM-MAP for uninduced
replicates (Fig. 4A and supplemental Fig. S4A). However, HIV
expression decreased the proportion of cytosolic proteins and
ER proteins in agreement between SVM and TAGM-MAP:
73% of all proteins classified as cytosolic and 85% of all
proteins classified as ER agreed for WT uninduced replicates,
but only 31% of cytosolic proteins and 67% of ER proteins
agreed for induced replicates. This decrease was smaller for
mitochondrial proteins: 62% for uninduced and 58% for
induced. Similar trends for cytosolic and mitochondrial pro-
teins were seen in ΔNef data, but ER proteins showed little
change (supplemental Fig. S7). These data show an organelle-
dependent trend in classifier agreement that is variably
affected by HIV expression.

TAGM-MAP Classification Yields Higher Agreement Than
SVM Classification With Reported ER and Mitochondria
Proteomes but Lower Agreement in Other Organelles

To gauge the quality of our classifications, we compared
those proteins that were consistently classified, that is, four of
six replicates, for WT uninduced to several published spatial
proteomes: MitoCarta2.0 database (23), a study of the mito-
chondrial matrix proteome (24), and a review of lysosome
proteomic studies (25) (Fig. 5A). Examining those proteins
from each study that were detected in our datasets, we found
that TAGM-MAP consistently outperformed SVM for mito-
chondria but performed less well for lysosomes. We also
compared only those proteins that received an organellar
classification, that is, we excluded consensus unknown des-
ignations, to see if a focus on only proteins that remained
classified would change the performance of SVM (orange
bars) or TAGM-MAP (dark orange bars). SVM was more
10 Mol Cell Proteomics (2022) 21(3) 100194
responsive to the exclusion of unknown proteins compared
with TAGM-MAP, which is likely because of the lower pro-
portion of unknown proteins in the TAGM-MAP uninduced
condition.
We did a similar analysis for additional organelles by

comparing to the HPA (26). To obtain a baseline to our anal-
ysis, we focused on those proteins considered by the HPA to
be localized to a single organelle with high confidence
(enhanced rating). Of those proteins, we then plotted the
percentage that was similarly classified by SVM or TAGM-
MAP (Fig. 5B). Again, we found that TAGM-MAP out-
performed SVM for mitochondrial proteins, and we saw a
similar trend for ER proteins, albeit to a lesser degree.
Conversely, SVM outperformed TAGM-MAP in the Golgi
apparatus, nucleus, peroxisomes, and plasma membrane,
although only two proteins were considered for the peroxi-
some. Similar to our aforementioned observations, the
exclusion of unknown proteins yielded a larger increase in
percentage agreement for SVM (orange bars versus blue bars)
than TAGM-MAP (dark orange bars versus green bars); this
exclusion also increased the performance in the cytosol for
SVM over TAGM-MAP. These data correspond well to those
of Figure 4A where 114 proteins designated as unknown by
SVM were classified as mitochondrial by TAGM-MAP. Similar
trends were found within ΔNef data (supplemental Fig. S8).
Taken together, this suggests that at least in this cell system
and using these fractionation methods, TAGM-MAP is better
suited for spatial proteomic studies focused on the mito-
chondria and ER, whereas SVM is better suited for studies of
the Golgi, nucleus, and plasma membrane. This finding was
surprising as we observed higher average QSep scores for the
mitochondria and ER in WT replicates using SVM as
compared with TAGM-MAP (supplemental Fig. S9), with less
of a difference in ΔNef replicates (supplemental Fig. S10),
which suggests an imperfect correlation between QSep
scores and general accuracy for certain organelles.

BANDLE Analysis of Row-Normalized WT Replicates
Yielded the Best Agreement of HIV-Dependent

Translocations With Known HIV Interactomes; Partial
Overlap With ΔNEF Translocation Events

Following our analysis of classifiers, we examined various
pipelines for identifying protein translocations: (1) we inputted
our row-normalized (used for SVM) or PCA-normalized (used
for TAGM-MAP) data into BANDLE (10), (2) we inputted SVM
or TAGM-MAP classified data into a basic label-based anal-
ysis (7), and (3) we inputted unclassified data into TRANSPIRE
(9) (Fig. 2A). We refer to the BANDLE analysis of row-
normalized data as SVM BANDLE or SVM-based BANDLE
and the BANDLE analysis of PCA-normalized data as TAGM-
MAP BANDLE or TAGM-MAP-based BANDLE to emphasize
the normalization technique used for each. For TRANSPIRE,
we combined the organelles into five groups: (1) Golgi appa-
ratus/plasma membrane/ER/peroxisomes/lysosomes, (2)
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FIG. 5. Validation of protein classification reveals higher performance for ER and mitochondria using TAGM-MAP, but better per-
formance for Golgi apparatus, nucleus, and plasma membrane using SVM. A, percentage of detected proteins from MitoCarta2.0 database
(23), Rhee et al. (24) mitochondrial matrix study, or Lubke lysosome proteome (25) that were consistently classified (proteins classified
consistently in at least four of six replicates) in line with the respective reference. Numbers above bars indicate the total number of proteins from
that reference that were detected and classified for a given method. B, proteins classified by SVM or TAGM-MAP were crossreferenced against
the HPA, and any protein considered to be singularly localized with an enhanced rating was kept. The percentage of these proteins that were
consistently classified by SVM or TAGM-MAP into the HPA-designated organelle is shown. Numbers above bars indicate the number of HPA
proteins considered for each organelle. For conditions with unknown proteins excluded, those proteins that were consistently classified as
unknown were removed from the analysis. ER, endoplasmic reticulum; HPA, Human Protein Atlas; SVM, support vector machine; TAGM-MAP,
t-augmented Gaussian mixture modeling with maximum a posteriori estimates.
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cytosol/actin cytoskeleton/proteasome, (3) nucleus, (4) mito-
chondria, and (5) 40S/60S ribosome. This is in line with the
authors' recommendation to combine similarly behaving or-
ganelles to increase translocation confidence (9), although in
our case, we lose the ability to identify proteins moving be-
tween the membranous organelles most likely to be affected
by Nef, that is, secretory organelles. To compare the perfor-
mance of these five methods, we crossreferenced their
translocation events against an HIV interactome derived from
affinity purification-MS (AP-MS) (27) as well as the NIH HIV
interactome (28). The AP-MS study is more stringent since it
includes only those proteins that directly complex with HIV
proteins, whereas the NIH HIV interactome includes proteins
that are affected by HIV even in the absence of evidence for a
direct interaction. We found that the percentage of events
from each method that were in the interactomes was
consistently above the threshold expected by chance (Fig. 6A,
dashed line). Comparing the methods, the top 50 events from
the SVM-based BANDLE analysis performed best for both
interactomes with 20% and 84% of events in the study by
Jӓger et al. (direct interactome by AP-MS) and NIH HIV
interactome (functional as well as direct interactors), respec-
tively. We conducted a similar translocation event analysis on
our ΔNef-inducible line and found that SVM-based BANDLE
was still the highest performer for the NIH HIV interactome but
was only third best for the AP-MS interactome (supplemental
Fig. S11).
The top 250 events from SVM-based BANDLE for WT and

ΔNef were compared to see if the method could identify Nef-
dependent translocations (Fig. 6B); events that were detected
by MS in only WT or ΔNef replicates were removed to avoid
detection bias. Of those events found only for WT, we
observed several known Nef targets and cofactors: ZAP70
(38), Lck (18, 39), signal transducer and activator of tran-
scription 1 (40), and coatomer complex I (coat protein complex
I) (41, 42). Five separate proteins in the coat protein complex I
appear together as well as three proteins from the T-cell
signaling pathway, suggesting high coverage of perturbed
Mol Cell Proteomics (2022) 21(3) 100194 11
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FIG. 6. Detection of protein translocations by SVM-based BANDLE analysis shows the highest rate of identifying known HIV inter-
actors. A, the percentage of translocation events from each method that are in the Jӓger HIV interactome (27) (left bars) or the NIH HIV
interactome (28) (right bars) is shown. Dashed lines indicate the percentage of events that would be expected by chance based on the proportion
of the human proteome represented in each interactome. B, Venn diagram of top 250 events from SVM-based BANDLE for WT and ΔNef
replicates. Three of the events from the ΔNef analysis were not detected by MS in WT replicates and were thus removed from consideration.
BANDLE, Bayesian analysis of differential localization experiments; NIH, National Institutes of Health; SVM, support vector machine.
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complexes. For commonly shared translocation events, pro-
teins involved in cytoskeletal organization were enriched.
Disruption of the cytoskeleton following infection with HIV has
been attributed to Nef among other viral proteins, but the
enriched proteins here lacked known targets of Nef but
instead included Rho-associated kinase 1, an interactor of HIV
Tat, and filamin-A, an interactor of HIV Gag (43). We were
surprised to see two components of the AP2 adaptor com-
plex, known interactors of Nef (44), and HLA class B, a known
target of Nef (45, 46), in the ΔNef-only translocations. The
SVM classification for these select proteins and STRING
12 Mol Cell Proteomics (2022) 21(3) 100194
diagrams of the full protein sets are shown in supplemental
Figs. S12–S15. Notably, the SVM classifications rarely pro-
vided definitive organellar translocations for the events iden-
tified by BANDLE (supplemental Fig. S12). In some cases, this
was due to the majority of replicates becoming unclassified in
the induced condition. An interesting exception is filamin-A:
although a translocation event in both WT and ΔNef cells
occurs by BANDLE (Fig. 6B). By SVM classification, filamin-A
moves from the actin cytoskeleton to the cytosol in cells
expressing WT but not ΔNef (supplemental Fig. S12K). While
the basis for such analytic discrepancies is unclear, taken
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together, these data suggest potential value in identifying
novel HIV cofactors, targets, and interactors via BANDLE
analysis of spatial proteomics data.
DISCUSSION

We have detailed here a comparison of computational
methods within the field of spatial proteomics as an example
andguide for researchers hoping touse thesemethods tobetter
understand viral infection and replication. Extensive work in the
field, particularly by the Lilley (2, 11, 22, 37, 47), Cristea (7–9),
and Borner groups (4, 6, 48), along with their collaborators, of-
fers a variety of established choices for fractionation, classifi-
cation, and translocation identification methods. To build off of
the work of the Cristea group with HCMV, we chose to examine
HIV-1 as a model virus because of the existing wealth of
knowledge on HIV-dependent protein interactions and trans-
locations. We found in our T-cell line model and using differ-
ential centrifugation for cell fractionation that the optimal
computational method for classification is organelle depen-
dent: TAGM-MAP offered an advantage for mitochondrial and
ER proteins, whereas SVM performed better for the Golgi
apparatus, nucleus, and plasma membrane. For identifying
translocations, BANDLE gave the highest agreement with
known HIV biology (i.e., published interactome data), particu-
larly when coupled with row-normalized data.
The model of inducible HIV in Jurkat T cells used here has

advantages and disadvantages. One advantage is that the
system provides a highly homogenous population of HIV-
expressing cells suitable for mass spectrometric analysis
(13). A homogenous population is particularly important in
spatial proteomic studies as mixed populations of cells might
yield erroneous classifications of proteins because of mixtures
of different states (47). Another advantage is scalability. These
experiments required just over 3 × 108 cells for each technical
replicate or over 1 × 109 cells for a single biological replicate,
to be induced. In our initial attempts with fewer cells, centri-
fugation at higher relative centrifugal force (110,000g and
195,500g) yielded insufficient protein mass for quality control
and MS (data not shown). This highlights an advantage of
using this T-cell line compared with using primary CD4+ T
cells (49), which in principle would be more relevant but would
require at least 2 × 109 cells and extraordinary viral inocula to
achieve a high-multiplicity and synchronized infection. A
disadvantage of using this T-cell system is that the cyto-
plasmic volume of the cell is relatively small. We required an
order of magnitude in more cells for each technical replicate
here than was used in the DOM studies of Itzhak et al., who
used HeLa cells with larger cytoplasm.
In addition to these technical considerations for modeling

viral infection/expression, the choice of fractionation method
has practical and computational implications. The use of dif-
ferential centrifugation here and by Itzhak et al. (2) requires the
downstream analysis of fewer fractions than gradient
fractionation methods and is far less time intensive, resource
intensive, and labor intensive. On the other hand, gradient
fractionation methods seem to show increased resolution of
protein classification (22). In an attempt to increase the
organellar resolution of the DOM method, we used additional
high-speed centrifugation steps to those described in the
DOMmethod of Itzhak et al. and found a significant increase in
overall organellar resolution using seven fractions as
compared with the original five (Fig. 2). Previous work by the
Lilley group comparing differential centrifugation and gradient-
based methods for fractionation revealed comparable down-
stream results for the two methods using U-2 OS cells with
differential centrifugation having a slight advantage in
resolving the cytosol and proteasome (37), but whether this
trend would hold in different cell types after viral infection or
gene expression is unclear. Generalizable rules for spatial
proteomics might require comparisons of various fractionation
and computational methods in multiple systems, or perhaps
more likely, the specific experimental system, and questions
asked might be best addressed by a specific method. For
example, to investigate translocations caused by HIV-1 Nef,
better separation of membranous organelles (supplemental
Figs. S5 and S6) might have yielded more Nef-specific
translocations.
Our findings on classification consistency and accuracy

might influence the choice of classifier, at least for this model
system. We found that SVM yielded higher consistency in
classification than TAGM-MAP, although both suffered similar
losses in consistency following HIV expression. In cases
where infection or viral expression is expected to introduce
greater noise in the data, as seems to be the case here, SVM
may be the better option as it yielded a higher starting point for
consistency. If lower tolerance to noise is acceptable, TAGM-
MAP offers an advantageous alternative for both the mito-
chondria and ER. TAGM-MAP also suffered less loss of
protein classification to unknown designations for uninduced
replicates, perhaps due in part to the threshold used here for
retaining SVM classification. While we used a basic median
SVM algorithm score threshold for each organelle (2) to allow
for raw comparisons of classifiers to existing spatial pro-
teomes, this might have been overly stringent for certain or-
ganelles, which would explain the higher number of unknown
designated proteins for SVM. An alternative method would be
to introduce an organelle-dependent threshold that would cap
false positives by comparing classifier outputs to Gene
Ontology analysis and published spatial proteomes; this
method was employed previously by the Lilley group (1, 37).
We further note the fact that while SVM showed generally
higher QSep scores for the mitochondria and ER, it still
underperformed compared with TAGM-MAP for these or-
ganelles. This suggested to us that organellar resolution as
measured by QSep might be an imperfect measure of clas-
sification accuracy for a given organelle, a hypothesis that will
need further examination.
Mol Cell Proteomics (2022) 21(3) 100194 13
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Finally, the choice of translocation identification method
requires consideration of several factors, the first of which is
the experimental design. Part of BANDLE's power comes from
its ability to factor multiple replicates of a condition into
translocation event determination. Indeed, we saw a generally
higher predictive power for BANDLE compared with other
methods. The ranked list of output is also useful in cases
where resources are limited and only a few proteins can be
pursued. TRANSPIRE seemed to have poorer performance
compared with other methods, but this might reflect our need
to combine similarly fractionated organelle groups to reduce
computational demand and increase resolution. In cases
where individual organellar resolution is greater, TRANSPIRE
might yield higher quality translocation events. Notably, both
BANDLE and TRANSPIRE require intensive computational
resources, with TRANSPIRE requiring supercomputer access
for larger more complex datasets; the analyses performed
here were done using two to three nodes with 200 Gb of RAM
each and could be completed in the course of a day. In cases
where computational power is limited, label-based methods
would be suitable. Indeed, this method was employed by the
Cristea group for their HCMV study with success (7).
A challenge not addressed here is how to handle changes in

whole-organellar behavior within spatial proteomics, such as
might be induced by viruses. Indeed, we observed such a
change within our data: peroxisomal marker proteins shifted in
their fractionation behavior (peak abundance occurring at a
higher g-force) when WT HIV was induced, becoming very
similar in their behavior to marker proteins of the ER
(supplemental Fig. S5). This effect was not observed for ΔNef
(supplemental Fig. S6). A previous discussion of this issue by
the Lilley group (10) highlighted the various possible causes of
whole-organellar changes—for example, differences in organ-
elle protein content, lipid composition, or morphology—and
their effect on the movement-reproducibility method of trans-
location identification, but these effects will vary depending on
the choice of translocation identification method (5).
With these considerations in mind, our findings underscore

that studies of spatial proteomics require careful consideration
of the question at hand to inform the choice of methodology.
Our work and that of others highlights the potential differences
in organellar resolution that can result from the choice of
fractionation and analytical methods. Interest in a particular
organelle and in specific types of translocations will factor into
the choice of methods. Our findings offer a reference point for
studies of viral infection by spatial proteomics, for general
studies of the spatial proteome, and for the study of additional
gene dropout mutants of HIV-1.
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