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Extreme differences between human germline and
tumor mutation densities are driven by ancestral
human-specific deviations
José María Heredia-Genestar 1, Tomàs Marquès-Bonet 1,2,3,4, David Juan 1✉ & Arcadi Navarro 1,2,3,5✉

Mutations do not accumulate uniformly across the genome. Human germline and tumor

mutation density correlate poorly, and each is associated with different genomic features.

Here, we use non-human great ape (NHGA) germlines to determine human germline- and

tumor-specific deviations from an ancestral-like great ape genome-wide mutational land-

scape. Strikingly, we find that the distribution of mutation densities in tumors presents a

stronger correlation with NHGA than with human germlines. This effect is driven by human-

specific differences in the distribution of mutations at non-CpG sites. We propose that

ancestral human demographic events, together with the human-specific mutation slowdown,

disrupted the human genome-wide distribution of mutation densities. Tumors partially

recover this distribution by accumulating preneoplastic-like somatic mutations. Our results

highlight the potential utility of using NHGA population data, rather than human controls, to

establish the expected mutational background of healthy somatic cells.
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Mutation density, at different scales, has been shown to
correlate with different genomic features, such as
regional GC-content or recombination rate1–5. In can-

cer, mutation density shows a different behavior than in human
germline and has been linked to chromatin states6, with higher
mutation accumulation in closed chromatin. It has been sug-
gested that the tumor mutation density distribution is mediated
by the different replication timing of euchromatin and hetero-
chromatin regions. Closed-chromatin, late-replicating regions
have poorer accessibility or recruitment of the mismatch repair
machinery, decreasing the efficiency of DNA damage repair in
them7,8. The correlation between tumor mutation density and
chromatin state is tissue-dependent, allowing the identification of
the tissue-of-origin of metastatic tumor samples9,10. Recent stu-
dies have detected mutation patterns in human healthy somatic
tissues resembling those seen in tumors of that same tissue11,12.
These patterns suggest the presence of inherent differences
between the mutation landscapes of the human germline and
soma.

At a smaller scale, sequence context is a good predictor of the
mutation rate13, even beyond hypermutable CpG sites14–17.
Sequence context has been widely used in cancer analyses to
detect signatures of mutation associated with mutagens such as
UV-light, tobacco smoke, or APOBEC activity18,19. These effects
have also been detected in healthy somatic tissues11,12. Interest-
ingly, it has been shown that the human mutation spectrum can
be recapitulated by a combination of two signatures: SBS1,
associated with CpG>T transitions and SBS5, associated with a
slight increase in many non-CpG mutations20,21. These two sig-
natures are detected in virtually all cancer samples19. The sig-
natures’ mutation load is correlated with age of diagnosis and
their prevalence in most tumors suggests that many of the cancer
mutations occur in preneoplastic stages19,21.

De novo mutations are also affected by sequence context20,22,23.
The rates of some particular mutation types have changed recently
across ancestries24–27, and seem to have been under selection in
the human lineage24. Sequence context studies have shown dif-
ferences in the relative proportion of certain mutation types
between great ape species26. Furthermore, studies of de novo
mutations in great ape samples revealed a slowdown of the overall
mutation rate in humans relative to chimpanzees and gorillas28.

These previous works suggest that the mutation density land-
scape in the human germline has been influenced by specific
phenomena and that part of the mutations accumulating in
tumors might be driven by the same processes that occur in
healthy cells. However, little is known about the forces driving
mutation accumulation in the human germline and their impact
on the pronounced differences in mutation densities between
tumors and the human germline. Here, we use NHGA population
data to understand the origin of these differences by analyzing
their evolution through the human lineage. We analyzed muta-
tion distribution (at the 1Mbp scale) in human and NHGAs (our
closest relatives), and compared them with the distribution of
somatic mutations in tumors. This evolutionary analysis allows us
to study the conservation status of mutation density, as well as to
detect species-specific mutation hotspots and coldspots, thus
shedding light on the processes governing differential mutagen-
esis across the genome.

We observe that the mutation distribution in NHGAs and in
tumors present striking similitudes. The differences with human
mutation distribution are driven by changes in human’s past
demography affecting the distribution of CpG>T transitions and
mutations at non-CpG sites. We do not detect any mutational
process driving the NHGA-tumor similitudes, suggesting that
these similitudes are driven by the normal accumulation of
mutations in healthy human cells.

Results
Mutation density distribution. We compared the mutation
density distribution in human (1KGP29, SGDP50 (ref. 30)), non-
human great apes (NHGA: chimpanzee31,32, gorilla31,33), and
human cancer34 data sets. We focused on high-quality orthologous
regions shared between human, chimpanzee and gorilla genomes,
measuring the number of variants per 1Mbp independently of the
frequency of each variant (see Methods, Supplementary Note 1).

In agreement with previous reports1,3,4,6, we observe a variable
distribution of the mutation density across the genome in all data
sets (Fig. 1a) and a weak correlation of mutation densities
of the human germline and tumors1,6 (Table 1). Strikingly, the
NHGA–tumor correlations are much stronger than the
human–tumor correlation and are similar to the human–NHGA
germline correlations (Table 1 and Supplementary Tables 1, 2).

We compared the distribution of mutation density between
pairs of data sets (Supplementary Fig. 1). Interestingly, we
observed that mutation density in tumors is higher in windows
where NHGAs have higher mutation density than humans
(Fig. 1b, c). To control for differences in the shapes of
distributions, we ranked each set of windows according to their
mutation density (Fig. 1d, e). These ranked distributions show a
clear pattern: tumor mutation densities are higher in windows
with higher ranks in NHGAs than in human (two-sided
Mann–Whitney U test p value human–chimpanzee= 3.7e−216;
human–gorilla= 2.8e−161). This human-NHGA-tumor diago-
nal behavior is exclusive to human-NHGA comparisons, as it
cannot be observed when comparing chimpanzee to gorilla
(p value chimpanzee–gorilla= 0.28) (Supplementary Fig. 1), and
can be replicated under different conditions, in orangutan, and
when using other human data sets (Supplementary Notes 2, 3,
Supplementary Tables 3–12, and Supplementary Fig. 1).

Subspecies’ diversity. One possible explanation for this obser-
vation is the higher genetic diversity of chimpanzees and gorillas
relative to human populations. We explored this by analyzing
individual NHGA subspecies with varying levels of diversity.
High-diversity NHGA subspecies have stronger correlations with
both human and tumor than the low-diversity subspecies (Sup-
plementary Note 3, Supplementary Table 5). In fact, high-
diversity subspecies present NHGA-tumor correlations as strong
as when analyzing the whole species. This suggests that genetic
diversity is one of the drivers of the NHGA-tumor correlations.
Furthermore, the diagonal pattern is only characteristic of com-
parisons between the germlines of humans and high-diversity
NHGA subspecies. A comparison of high and low-diversity
chimpanzee and gorilla subspecies showed a clear horizontal split
(Supplementary Fig. 2). Mutation density in tumors co-localizes
with the most diverse NHGA subspecies, regardless of the
mutation density in the least diverse. However, the diagonal
pattern could never be reconstructed by comparing two NHGA
subspecies. In other words; while a lack of diversity distorts the
distribution of the genome-wide mutation densities, the diagonal
pattern is caused by effects intrinsic to the human lineage.

Consistent with this idea, we observed a weak intermediate
pattern when comparing NHGA to three archaic hominid
genomes (Supplementary Note 3, Supplementary Fig. 1, Supple-
mentary Table 13). Although the effects of small sample sizes and
of ancient DNA damage should not be disregarded, these results
suggest that at least part of the differentiation process in the
distribution of mutation densities was already established before
the human–Neanderthal split.

Chromatin state and genomic features. Previous studies have
shown that tumor mutation distribution is associated with the
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tumor’s tissue-of-origin chromatin conformation9. When analyz-
ing individual tumor types separately, we detect the human-
NHGA-tumor differential pattern across all tumor types.
Although the mutation density of tumors across different tissues is
highly correlated, some high-sample size tumors (skin melanoma
and breast adenocarcinoma) present slightly lower correlations
(two-sided Mann–Whitney U test p value skin melanoma=
1.8e−118; breast adenocarcinoma= 5e−86) (Supplementary
Note 3, Supplementary Tables 14, 15).

Interestingly, correlations between a variety of genomic features
and tumor mutation density are consistently more similar to the
correlations with NHGAs than with humans (Fig. 2a). Mutation
densities in NHGAs have, like in humans, strong correlations with
sequence conservation and recombination rate (Supplementary

Note 4, Supplementary Fig. 3). However, and strikingly, NHGAs
show strong positive correlations with epigenomic features
associated with closed chromatin (derived from lymphoblastoid cell
lines), just as tumors do, but humans do not (Fig. 2a, Supplementary
Table 16). We also observe consistent associations with human
chromatin states35 (Fig. 2b, c). GC-content, CpG-content, and
H3K36me1 (specifically recruited in the gene bodies of genes
regulated by CpG islands)36 show a clear positive correlation with
human but negative with NHGAs and tumors, suggesting that they
might be contributing to the diagonal pattern (Figs. 2d, e, 3a, b).

CpG sites. Intrigued by the connection of several CpG-related
features with the human-NHGA-tumor diagonal pattern that
implies a stronger correlation between mutation densities in
tumors and NHGAs than with the human germline (Fig. 3a, b),
we analyzed separately CpG>T transitions and mutations at non-
CpG sites. CpG>T transitions present very strong correlations
between all germline data sets and very poor correlations with
tumor, driven by their strong association with CpG-content
(Fig. 3c, d). The relationship between CpG-content and mutation
density at non-CpG sites in NHGAs is more similar to tumors
than to the human germline. Moreover, the correlations of non-
CpG mutation densities between human, NHGA, and tumors are
similar to those observed using all sites (Fig. 3e, f, Supplementary
Tables 17–20). The correlation of genomic features with CpG>T
transitions are similar between germline data sets, while the
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Fig. 1 Distribution of mutation density across data sets. a Distribution of the standardized mutation density in 1Mbp windows in human, NHGA, and
tumor data sets. Color denotes data set. The numbers next to the legend are the fold-enrichment between the 95th and 5th quantiles. b Distribution of the
standardized mutation density in humans, chimpanzee, and tumor. Each point represents a 1Mbp window. The x axis represents the human mutation
density, the y axis the chimpanzee mutation density, and the point color, the tumor mutation density. The black line corresponds to the diagonal where the
mutation density is equal in human and chimpanzee. c Same as (b) but comparing human and gorilla. d Distribution of the ranked mutation density in
humans, chimpanzee, and tumor. Each point represents a 1 Mbp window. The x and y axis represent the ranking in mutation density in human and
chimpanzee, respectively. Color represents the ranked mutation density in the tumor data set. The solid black line corresponds to the diagonal where the
ranked mutation density is equal in human and chimpanzee. The dashed lines represent a 25% difference in ranking in both species. e Same as (d),
comparing human and gorilla.

Table 1 Correlation between distributions of mutation density.

1KGP Chimpanzee Gorilla

Chimpanzee 0.65 – –
Gorilla 0.53 0.84 –
Tumor 0.16 0.55 0.58

Pairwise Pearson’s correlation R of the standardized mutation density of 5040 1Mbp windows
between data sets.
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correlations of non-CpG sites are weaker in humans than in
NHGA and tumors (Supplementary Note 5, Supplementary
Fig. 2). Consequently, while tumor-specific differences in corre-
lations of mutation densities with genomic features are associated
with CpG>T mutations, human germline-specific differences are
related to the different behavior of human non-CpG mutations.

Despite the overall mutation slowdown previously described in
human28,37, all data sets present similar proportions of recurrent
CpG>T transitions, discarding a possible effect of CpG>T
saturation on these human-exclusive differences (Supplementary
Note 5, Supplementary Tables 21 and 22). Interestingly, we
observed that even a small number of de novo mutations38 can
recover much higher correlations with all germline data sets for
CpG>T than for non-CpG mutation densities (Supplementary
Table 23). This observation suggests that CpG>T mutations
require much less diversity than non-CpG mutations to recover
its genome-wide distribution, probably due to their strong
dependence of the skewed genome-wide distribution of CpG-
content. In contrast, the distribution of human non-CpG de novo
mutations replicates the general trend of all germline data sets
showing intermediate but higher correlation with NHGAs than
with tumors (Supplementary Note 5, Supplementary Table 23),
however, the small size of this data set makes difficult to discern
whether their correlation with tumors is lower than expected
for NHGAs.

When comparing the distribution of non-CpG mutations in
human, NHGA, and tumors, we detect a horizontal pattern
(Supplementary Fig. 3) similar to those observed in comparisons
of high- and low-diversity subspecies. This suggests that the
effects of loss of diversity in a given species can be detected mostly
in non-CpG sites but not in CpG>T mutations. In fact, within-

species correlation of CpG>T transitions and mutations at non-
CpG sites is weaker in humans than in NHGAs and in tumors
(Supplementary Fig. 3, Supplementary Table 24). Therefore, the
combination of human-specific dynamics in both, non-CpG and
CpG>T mutations, causes the diagonal pattern observed when
comparing all SNVs.

Mutational signatures. Studies of cancer mutations have asso-
ciated certain mutational signatures with the action of specific
mutagens or cellular processes18. We benefited from these asso-
ciations to explore the contribution of different mutation
mechanisms to the observed differences in mutation densities by
analyzing the trinucleotide context of SNV in all germline
data sets.

At the whole-genome level, the triplet mutation spectra of
human, chimpanzee, and gorilla are very similar (Supplementary
Fig. 4, Supplementary Table 25), although different from tumors.
It has been shown that the human mutation spectrum can be
recapitulated by a combination of the cancer signatures SBS1 and
SBS5 (refs. 20,21). We were able to replicate this association in
NHGA and in another primate species (Vervet monkey)
(Supplementary Note 6, Supplementary Tables 26 and 27).
Previous studies have shown that both, germline and somatic,
mutation spectra of mice differ from the human mutation
spectra39. Our results show that mutation spectra and their
specific association with signatures SBS1 and SBS5 are conserved
across the primate lineage.

A subset of trinucleotides show significant species-specific
enrichments (Chi-Squared test p value < 10−5). We detected no
association between these trinucleotides and known mutation
mechanisms (Fig. 4a, see Methods, Supplementary Note 6,
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Supplementary Fig. 4, Supplementary Table 28). However, linear
regression models show a positive and significant (p value < 10−4)
effect of the triplet’s GC-content and its fold-enrichment in the
human–chimpanzee comparison (Supplementary Fig. 4).

Although no specific known mutational mechanism could be
detected having a whole-genome effect in the mutation spectrum,
other processes might have an effect on the mutation distribution.
To test this, we analyzed the differential distribution of
trinucleotide mutations in 1Mbp windows across the genome in
humans, NHGA, and tumors. Only trinucleotides with similar
enrichment between species (non-CpG, mainly C>G and T>C)
show differences in their distribution across the genome between
human, NHGA, and tumor (trinucleotide-difference test p value <
10−5, see Methods, Supplementary Note 6, Fig. 4a).

We further analyzed this trinucleotide distribution across the
genome in individual tumor types. We compared the association
of the number of mutations caused by each cancer signature19 in
each individual tumor type to the human-NHGA-tumor pattern
(Supplementary Data 1). Signatures SBS5 and SBS40 show a
significant association (signature-difference test p value < 10−4,
see Methods) of the pattern with the tumor’s signature mutation
load (Fig. 4b). Both SBS5 and SBS40 are flat signatures whose
mutation load is associated with the age of diagnosis of the

sample and with preneoplastic mutations in tumors19,40. This
suggests that the strong correlation between NHGA and tumor
mutation densities is driven by the same mechanisms in healthy
human cells and in the great ape lineage, while the genome-wide
distribution of mutations has been altered in the human germline.

Discussion
We analyzed the mutation density distribution at the 1Mbp scale
in the human and NHGA germlines, as well as in human tumors.
We observed a moderate similitude between human and NHGA
germlines, and surprisingly a higher resemblance between human
tumors with the germlines of NHGAs than with those of humans.

These discrepancies in mutation density in the human and
NHGA germlines are differently associated with genomic and
epigenomic features. In fact, human germlines show a lower
correlation than NHGA germlines and tumors with most of these
features, suggesting that they present a distorted mutational dis-
tribution. Regions more densely mutated in humans than in
NHGAs tend to be GC-rich, exon-rich, promoter and enhancer-
rich, open chromatin and early replicating. Particularly, CpG-
related features show a positive correlation with human and a
negative correlation with NHGA and tumor mutation densities.
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The possible functional implications in human evolution require
further study.

These observations are driven by the different dynamics of
mutation density at CpG>T transitions (very similar in all
germlines and very different in tumors) and at non-CpG sites
(more similar in NHGAs and human tumors than in the human
germline). This effect is exclusive of the human germline and,
thus, must have been caused by human-specific conditions.

We observed that human and other primates present a very
similar global triplet mutation spectrum. We detected an
enrichment of certain trinucleotide mutations in humans and
NHGAs consistent with previous results (non-CpG, GC-rich
mutations are enriched in humans)26. The enriched trinucleotides
are not associated with mutation signatures with known causes,
nor do they contribute significantly to the higher similitude of
human tumors to NHGA germlines. This suggests the absence of
strong mechanistic changes biasing the accumulation of muta-
tions in any of the studied germlines.

As previously described for human20,21, we observed that
mutation rates of three non-human primates are explained by
mutation signatures SBS1 (mostly CpG>T transitions) and SBS5
(associated with normal accumulation of mutation in healthy
somatic and germline cells)18,20,21,41. Moreover, the lower
human-tumor than NHGA-tumor mutation distribution corre-
lation is driven by the accumulation of mutations associated with
signatures SBS5 and SBS40 (similar to SBS5 and recently dis-
covered)19. These results suggest that the poor human-tumor
correlation is caused by the fact that human (but not NHGAs)
germline (and de novo mutations) do not currently reflect the
expected mutation densities of healthy (and preneoplastic-like)
human somatic cells.

We observed that the moderate human-NHGA and the low
human-tumor correlations of mutation densities at non-CpG
sites could be caused by losses in population diversity (as
observed in low-diversity NHGA subspecies). We propose that
successive bottlenecks during human evolution removed a sub-
stantial part of nucleotide variation that still remains to be

recovered as a whole. In contrast, the hypermutability of CpG
sites and its concentration in specific regions caused CpG>T
transitions to have already recovered diversity levels similar to
those of high-diversity NHGAs. However, low-diversity NHGA
subspecies show lower CpG>T and higher non-CpG degrees of
recovery of their mutation densities than the human germline.
This suggests that some human-specific phenomena are influ-
encing the different behavior of human mutational landscapes.
We pose that this human-specific behavior can be the result of the
combination of at least two very different contributions.

First, the recent human-exclusive population expansions31,42

are expected to cause an increase of clock-like CpG>T mutations
in the population37,43, leaving signatures akin to positive selec-
tion, as it has been described in Native Americans25. The results
presented in our study suggest that these signatures of apparent
positive selection may not be population exclusive and might be
pervasive through human evolution, especially in CpG-rich
exons. Moreover, the highly skewed genome-wide distribution
of CpG-content can contribute to the easy recuperation of
mutation densities of the fast mutating CpG>T transitions (as
observed in a reduced data set of de novo mutations)38. The
decoupling of the CpG>T/non-CpG mutation rates within the
same region is stronger in humans than in NHGAs and tumors
and could imply that these population expansions introduce
additional distortions on the non-CpG densities associated to
specific biases inherited from previously contracted populations.
We cannot disregard an additional contribution of human-
specific shifts in CpG>T transitions mutation rates, although they
have been suggested to be similar across all great apes37.

Second, the recent slowdown in mutation rates reported in
humans28,37 seems to have affected differently CpG>T and non-
CpG sites. A relative deceleration of non-CpG mutations could
also contribute to the lesser capability of non-CpG mutations to
recover their expected genome-wide distribution. In addition, it
could contribute to the CpG>T/non-CpG differentiation, which is
observed more strongly in the human germline. Interestingly, our
analyses with a data set of de novo mutations38 show an increase
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in the contribution of CpG>T mutations compared with all the
other data sets. This suggests that the recent slowdown in humans
might have been less pronounced in CpG>T mutations. However,
the small size of the de novo data sets makes it difficult to
interpret the relation of their genome-wide distributions with the
other data sets. Further studies of de novo mutations in both
humans and NHGAs are needed to elucidate possible differences
in the evolution of mutation rates. We propose that the combi-
nation of population bottlenecks and expansions, together with
the specific nature of the different mutation types, drives the
differences observed in the distributions of human mutation
densities. Future additional work will be necessary to establish the
relevance of these and other phenomena in the observed human-
specific behavior of the genome-wide distribution of mutation
densities.

Our results imply that accumulated mutations in human
populations are a poor proxy of the expected mutational back-
ground in healthy somatic cells. In fact, contrary to the common
assumption that extreme differences in the mutational landscape
of human germline and tumors are due to the abnormal behavior
of tumors, our results show that they are driven by human-
specific particularities in the accumulation of mutations in the
germline. In fact, accumulated mutations in NHGAs (at least at
non-CpG sites) happen to be more informative about the normal
occurrence of mutations in healthy somatic cells than those
accumulated by humans.

Our results do not affect the well-established association
between the mutation’s observed population frequencies and their
relative functional impact44. However, they suggest that higher
precision in the definition of damaging mutations could be
achieved by incorporating data from less biased populations.
Interestingly, a recent work exploring missense mutations in
population data from NHGAs for the prediction of the impact of
human mutations has already given a first major step in that
direction45.

These results have also paramount implications for the
understanding of tumors as often normally mutating primate cell
populations. This implies that the definition of positively selected
shifts in regional mutational burdens could be much refined by
correcting mutation expectations by making use of primate
populations or even of tumoral cell populations. Moreover, dis-
entangling the contribution of normal mutation processes in
tumors (either if they correspond to preneoplastic cells or not)
opens the door to establishing them as models to understand
somatic mutations in healthy cells, with particular interest in the
experimental research of aging and somatic mosaicism.

Methods
Data sets used. For the human data sets we used the release variant calling of 2504
humans from the 1000 Genomes Project29 (1KGP), our own calling of 50 addi-
tional human samples from the Simons Genome Diversity Panel30 (SGDP50), and
de novo mutations from 1548 trios38 that were mapped to the human reference
hg19 using the liftOver tool46. We used our own mapping and calling of 69
chimpanzees and bonobos (59 chimpanzees and 10 bonobos, referred to as
chimpanzees in short)31,32 and 43 gorillas31,33. We used the release variant calling
of three archaic samples: Altai and Vindija 33.19 Neanderthals47,48, and Deni-
sova49. Finally, for the tumor data set, we used the release variant calling of 2583
human tumors from the Pan-Cancer Analysis of Whole Genomes Consortium34.

Definition of high-quality orthologous regions. We mapped and called chim-
panzee and bonobo, gorilla, and human (SGDP50) samples to the human reference
hg19 using BWA MEM50 and GATK51 following the best practices protocols52,53.
In addition, we removed variants with ≥20% missings, any variant (SNV or InDel)
within 5 bp of an InDel (suggesting potential misalignments), and variants where
heterozygous samples represented more than 80% of the calls (suggesting potential
mismappings or duplicated regions).

To avoid mismappings to the human reference and erroneous estimates of
mutation density in the NHGA samples (too low density caused by lack of
mapping reads or deletions or too high density caused by collapsed duplications)54

we filtered out any region of the human reference genome hg19 failing one of the
following criteria: poor mappability of the human reference split into 35 bp k-mers,
poor callability in ≥25% of the chimpanzee or gorilla samples, or, matching a
known Copy Number Variable region in NHGA samples55 (Supplementary
Note 1). 2052Mbp of autosomal sequence passed this filtering (76.54% of the non-
N base pairs in the human reference autosomes). We divided the autosomes into
1 Mbp overlapping (500 kb) windows and kept all windows where ≥50% of its bases
passed our filtering. This left 5040 1Mbp windows to analyze (Supplementary
Fig. 1, Supplementary Table 3).

These filters were applied to all data sets used, including both our callings and
external data sets used as released. All SNV counts, trinucleotide counts, and
genomic features measurements through this study used only regions passing this
filtering. For the analysis of archaic samples, we combined this filtering with the
intersection of the callability mask of all three archaic samples. This specific
filtering was applied to all data sets when compared with the archaic samples.

Mutation density. We used BASH scripts to measure mutation density of each
window in each data set by counting either the number of non-fixed segregating sites
(in the human, chimpanzee, and gorilla data sets) or the number of somatic mutations
(in the tumor and human de novo data sets, accounting repeated mutations as
independent mutational events). We divided this count of single nucleotide variants
(SNV) by the fraction of the window passing our filtering. This results in a measure of
mutations per megabase pair (Mbp) of sequence for each window. We standardized
the resulting distribution within each data set deeming it as the mutation density. We
ranked all windows within a data set by their distribution of mutation density to
control for the different shapes of the data sets distributions.

Correlations between distributions. All correlations used in this analysis are
Pearson’s correlation coefficient (using the R function cor.test) between the stan-
dardized mutation densities (unranked) of the two data sets unless otherwise
specified. Partial correlations, when used, were calculated using the pcor function
from the ppcor R package.

Significance of the diagonal split. To measure the significance of the diagonal
split pattern observed when comparing the human and NHGA data sets, we
divided all windows into two groups depending on if the ranked mutation density
is higher in human than NHGAs or vice-versa. We calculated the two-sided
Mann–Whitney U test on the variable of interest (usually, the tumor mutation
density) on both groups using the R function wilcox.test.

Genomic features. The genomic features used were filtered using the same
mappability, callability, and copy-number filters used for the mutation density
data. The features used were either the overlap of the feature’s genomic coordinates
with the fraction of the 1Mbp window passing our filtering (e.g., GC-content,
CpG-content) or the average value or intensity of the feature in the passing fraction
of the window (e.g., histone marks), depending on the original data (Supplemen-
tary Table 16).

Trinucleotides. We classified each SNV into the 96 possible combinations of
trinucleotides (12 different mutation types, by 16 combinations of the adjacent
nucleotides, divided by two when folding them). We determined the adjacent
reference sequence of each SNV using the getfasta option of bedtools56. We filtered
out any variant where the liftOver tool46 could not map them to the chimpanzee
panTro5 or the gorilla gorGor5 reference genomes, or the trinucleotide sequence
differed in one of the three reference genomes (accounting for strand). This filter
was applied to all windows and we used for our analysis only windows where ≥50%
of it passed both the original high-quality orthologous regions and this three-
reference filter, leaving 4920 windows to use. We applied additional filters
requiring the trinucleotide to be species exclusive and to not overlap variants in
other species, the borders of our orthologous regions filter, multinucleotide var-
iants, InDels within the same species, or InDels with frequency ≥50% in another
species. This resulted in a high-confidence set of species-exclusive trinucleotides
where the ancestral and derived alleles could be reliably inferred. This filtering
affected more CpG>T than non-CpG sites, due to the recurrent nature of CpG>T
transitions (Supplementary Note 6, Supplementary Table 25).

Mutation spectra. We calculated each species’ mutation spectra as the fraction of
all trinucleotides in a data set belonging to one of the 96 trinucleotides. We cal-
culated correlations between data sets using Pearson’s correlation (cor.test function
in R). We measured the correlation of the mutation spectrum of each species and
the combined effect of cancer mutation signatures SBS1 and SBS5 (refs. 19,40) by
the formula: 0.1 × SBS1+ 0.9 × SBS5, as CpG>T transitions are the main compo-
nents of signature SBS1 and they represent ~10% of the trinucleotides in both the
human and NHGA data sets.

Whole-genome enrichment of trinucleotides. We calculated the enrichment of
trinucleotides and its significance in each germline data set pair (human–chimpanzee,
human–gorilla, and chimpanzee–gorilla). We calculated the enrichment of
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trinucleotide T between species A and B by dividing fraction of T in species A/fraction
of T in species B. We calculated a chi-squared test using a contingency table with the
trinucleotide count in species A, in species B and the count of the rest of trinucleotides
in species A, and in species B. As the counts of trinucleotides are not independent of
each other, we sorted all trinucleotides from most to least significant, and rerun the
test by decreasing significance order, while removing the previously used trinucleo-
tides from the count of total trinucleotides26.

CpG>T transitions are highly affected by the sample size of the data sets. We
ran all the tests using both 1KGP and SGDP50 as the human data set. We detected
incoherences on the significance and direction of the results in two CpG>T
trinucleotides. We report the results using 1KGP where tests using both 1KGP and
SGDP50 are coherent in both significance and direction of the enrichment.

The top 10% most enriched trinucleotides in each species pairwise comparison
were compared with cancer mutation signatures40 and reported when the
trinucleotide represented ≥5% of the mutations within a signature.

Trinucleotide-difference test. We developed a method to determine which tri-
nucleotides contribute significantly to the difference between NHGAs-tumors and
human-tumors mutation density correlations:

For each trinucleotide T and each pair of species (human–chimpanzee,
human–gorilla, and chimpanzee–gorilla), we subtract the ranked mutation density
of T in species A minus the ranking in tumor, and in species B minus tumor. We
calculate the two-sided Kolmogorov–Smirnov test (using the R function ks.test) of
the two resulting distributions. We use the p value of the ks test as the significance
of the test and the difference between the standard deviation of both distributions
(as both have a mean of 0) as the test’s effect size. The results when using 1KGP or
SGDP50 as the human data sets are concordant in the direction of the association,
but we discarded the SGDP50 results because the smaller number of SNVs (and of
each trinucleotide type) results in lower power when using SGDP50.

Association of GC-content in the trinucleotide sequence. We counted the
number of cytosine and guanine bases in each trinucleotide and built a linear
regression (using the R function glm). The GC-content of the triplet acted as a
predictor of the result of the test (the log10 fold-enrichment in the whole-genome
enrichment analysis or the difference between the standard deviation of both
distributions in the trinucleotide-difference test).

Signature-difference test. In order to determine the contribution of each
mutation signature to the difference between NHGAs-tumors and human-tumors
mutation density correlations, we rerun the trinucleotide-difference test using the
1KGP and chimpanzee data sets, while using the different individual tumor types
(Supplementary Data 1). For each trinucleotide, tumor type and mutation sig-
nature, we built a linear regression (using R’s glm function) where the mutation
load of that signature in that tumor type19 predicted the effect size in the
trinucleotide-difference test for that tumor type (Supplementary Note 6). For each
signature, we built a contingency table where all 96 trinucleotides where classified
by whether being significant or not (p value < 0.05) in the trinucleotide-difference
test and the significance of the mutation load in the linear regression model. We
ran a chi-squared test on that contingency table and obtained its significance.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All the analyses were performed using publicly available data obtained from their original
publications. Human data sets: 1000 Genomes Project (ftp://ftp.1000genomes.ebi.ac.uk/
vol1/ftp/release/20130502/), Simons Genome Diversity Project (EBI European
Nucleotide Archive accession numbers PRJEB9586 [https://www.ebi.ac.uk/ena/data/
view/PRJEB9586] and ERP010710 [https://www.ebi.ac.uk/ena/data/view/PRJEB9586]),
International Cancer Genome Consortium (https://dcc.icgc.org/releases/PCAWG/
germline_variations), and Human de novo mutations (European Variant Archive
accession number PRJEB15197 [https://www.ebi.ac.uk/ena/data/view/PRJEB15197]).
Non-human great ape data sets: the Great Apes Genome Project (Sequence Read Archive
(SRA) accession numbers PRJNA189439 [https://www.ncbi.nlm.nih.gov/bioproject/?
term=PRJNA189439] and SRP018689 [https://www.ncbi.nlm.nih.gov/sra/?
term=SRP018689]), European Nucleotide Archive (ENA) accession numbers
PRJEB15086 [https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJEB15086]
(Chimpanzee), PRJEB3220 [https://www.ebi.ac.uk/ena/data/view/PRJEB3220] (Gorilla),
and PRJEB19688 [https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJEB19688]
(Orangutan). Tumor data sets: the Pan-Cancer Analysis of Whole Genomes (https://dcc.
icgc.org/pcawg/). Archaic samples (http://cdna.eva.mpg.de/neandertal/Vindija/). The
remaining data are available within the Article, Supplementary Information or available
from the authors upon reasonable request.
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