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piRNAs and Aubergine cooperate with Wispy
poly(A) polymerase to stabilize mRNAs in the
germ plasm
Jérémy Dufourt1, Gwénaëlle Bontonou1, Aymeric Chartier1, Camille Jahan1, Anne-Cécile Meunier1,

Stéphanie Pierson1, Paul F. Harrison 2,3, Catherine Papin1, Traude H. Beilharz3 & Martine Simonelig 1

Piwi-interacting RNAs (piRNAs) and PIWI proteins play a crucial role in germ cells by

repressing transposable elements and regulating gene expression. In Drosophila, maternal

piRNAs are loaded into the embryo mostly bound to the PIWI protein Aubergine (Aub). Aub

targets maternal mRNAs through incomplete base-pairing with piRNAs and can induce their

destabilization in the somatic part of the embryo. Paradoxically, these Aub-dependent

unstable mRNAs encode germ cell determinants that are selectively stabilized in the germ

plasm. Here we show that piRNAs and Aub actively protect germ cell mRNAs in the germ

plasm. Aub directly interacts with the germline-specific poly(A) polymerase Wispy, thus

leading to mRNA polyadenylation and stabilization in the germ plasm. These results reveal a

role for piRNAs in mRNA stabilization and identify Aub as an interactor of Wispy for mRNA

polyadenylation. They further highlight the role of Aub and piRNAs in embryonic patterning

through two opposite functions.
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Germ granules are specific ribonucleoprotein granules
found in germ cells of all species. They contain mRNAs
that have essential functions in germ cell specification

and/or development1. In Drosophila, the germ plasm starts to
assemble during mid-oogenesis with the localization and trans-
lation, at the posterior pole of the oocyte, of oskar (osk) mRNA
that encodes the primary determinant of the germ plasm. Other
maternal mRNAs then localize to the germ plasm using different
mechanisms2. First, mRNA localization involves a diffusion and
anchoring mechanism taking place at late stages of oogenesis,
during nurse cell dumping, when nurse cells empty their content
into the oocyte3,4. This mechanism is very inefficient, resulting in
germ plasm localization of only 4% of maternal nanos (nos)
mRNA, which encodes a conserved major germline determi-
nant5,6. A second mechanism takes place in the early embryo to
complete mRNA localization, and involves mRNA decay and
selective stabilization in the germ plasm7. The molecular basis
underlying the link between mRNA decay and mRNA localiza-
tion to the germ plasm has remained elusive.

Components of the Piwi-interacting RNA (piRNA) pathway,
including Vasa and the PIWI protein Aubergine (Aub) are core
components of germ granules8, suggesting a potential link
between the piRNA pathway and mRNA regulation in germ
granules. piRNAs are a class of small 23–30 nucleotides (nt)
RNAs bound to specific Argonaute proteins, the PIWI proteins.
They are involved in the repression of transposable elements
(TEs) in the germline9,10. piRNAs loaded into the cytoplasmic
PIWI proteins Aub and Argonaute 3 (Ago3) target TE mRNA
sequences through complementarity and guide their cleavage by
the endonucleolytic activity of Aub and Ago3.

The more recent data have demonstrated the role of the piRNA
pathway in post-transcriptional gene regulation11–17. In Droso-
phila, piRNAs produced in the female germline are provided
maternally to the embryo, mostly loaded into Aub. Aub is present
both in the somatic part of the embryo and at higher levels in the
posterior germ plasm15. We previously showed that Aub targets
maternal mRNAs through incomplete base-pairing with piRNAs
and can induce their destabilization by either direct cleavage, or
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Fig. 1 Aub and Armi have a direct role in nos mRNA posterior localization. a Immunostaining of wild-type 0–2 h-embryos with anti-Osk and either anti-Aub
or anti-Armi. Posterior poles are shown. b Immuno-FISH of wild-type 0–2 h-embryos with anti-Aub and nos RNA probe. Quantification of colocalization
using the Manders coefficient is indicated. Scale bars: 10 μm in a, b. c Immunostaining with anti-Osk and in situ hybridization with nos RNA probe of 0–2 h-
wild-type, aub mutant or mnk aub double-mutant embryos. Scale bars: 30 μm. d, e Quantification of posterior localization of Osk and nos mRNA shown in c
for aub and mnk aub mutant embryos, and in (Supplementary Fig. 1b) for armi and mnk; armi mutant embryos; the legend is in e. For all figures, the number
of embryos (n) is indicated; the posterior pole is to the right
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Fig. 2 Role of Aub and piRNAs in germ cell mRNA localization to the germ plasm. a Immunostaining with anti-Osk of osk-bcd3′UTR (ob) embryos in wild-
type or aub mutant backgrounds. The DAPI staining background (blue) shows the bulk of the embryo. Scale bars: 30 μm. b In situ hybrydization of 0–2 h
ob/+ embryos either in wild-type or aub mutant backgrounds, with nos, pgc and gcl RNA probes. c Quantification of Osk and mRNA localization shown
in a, b, respectively. 0–30min-embryos were also quantified for nos mRNA. d Schematic representation of nos mRNA and base-pairing with piRNAs. Thin
boxes are 5′- and 3′-UTRs, lines are introns, and thick boxes are exons. Crosslink clusters from Aub-iCLIP are indicated in red. The sequence of the region
with the strongest crosslink sites is shown. Base-pairing with representative piRNAs from roo and 412 TEs is shown; the deletions overlaping the piRNA
target sites in the nos(ΔpirooΔpi412) transgene are boxed15. Aub-crosslinked nt are in red. e nos mRNA in situ hybrydization of 0–2 h-embryos from wild-
type and nos(ΔpirooΔpi412); nosBN females. The nosBN mutant does not produce nos mRNA in the embryo. f Quantification of nos mRNA posterior
localization as shown in e, for wild-type embryos, nosBN embryos bearing the wild-type genomic nos (gnosb) transgene, and nosBN embryos bearing the nos
(ΔpirooΔpi412) transgene from two independent stocks. ns: non-significant, ***p< 0.001, using χ2 test
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the recruitment of the CCR4-NOT deadenylation complex toge-
ther with the RNA-binding protein Smaug (Smg)11,15. Strikingly,
Aub-dependent unstable mRNAs that encode germ cell deter-
minants, undergo selective stabilization: these mRNAs are
degraded in the somatic part of the embryo, while they are sta-
bilized and translated in the germ plasm to participate in germ
cell development11. This raises the question of the role of piRNAs
and Aub in the stabilization of these germ cell mRNAs in the
germ plasm. Here we show, using nos mRNA as a paradigm, that
piRNAs and Aub play an active role in the protection of germ cell
mRNAs in the germ plasm.

Here we find that the germline-specific non-canonical poly(A)
polymerase Wispy (Wisp) is a direct interactor of Aub, which
colocalizes with Aub in the germ plasm. Furthermore using a
method for poly(A) tail sequencing, we uncover the role of Aub in
polyadenylation of a pool of germ cell mRNAs that have long
poly(A) tails. We conclude that Aub acts by directly recruiting
Wisp to germ cell mRNAs, leading to their polyadenylation and
stabilization in the germ plasm. These results reveal a role for
piRNAs in mRNA stabilization. They further identify a critical
role of Aub and piRNAs in embryonic patterning through two
opposite functions: somatic decay and germline stabilization of
germ cell mRNAs, thus revealing the molecular link between
these two processes.

Results
mRNA localization in germ plasm depends on Aub and piR-
NAs. We have previously shown that Aub directly binds nos
mRNA and is required for its deadenylation and decay in the
somatic part of the early embryo11,15. However, nos mRNA also
colocalizes with Aub protein in the germ plasm and primordial
germ cells, where it is stabilized18. This suggests a different
function of Aub in these regions. We used aub and armitage
(armi) mutants to address a potential active role of Aub and
piRNAs in nos mRNA localization in the germ plasm. Note that
“mRNA localization” is used throughout, independently of the
localization mechanism involved. Armi is another component of
the piRNA pathway that has a prominent role in piRNA pro-
duction19. We first validated the colocalization of Aub with nos
mRNA in the germ plasm (Fig. 1a, b). Mutants of the piRNA
pathway induce embryonic patterning defects through activation
of the Chk2 DNA damage checkpoint. Checkpoint activation
leads to defective localization of osk mRNA at the posterior pole
of the oocyte and a lack of Osk protein synthesis20,21. This defect
is partially rescued in double mutants for piRNA pathway com-
ponents and the Chk2 kinase (mnk mutant)20,21. Accordingly, we
found that most embryos produced by aubHN2/aubQC42 females
(referred to as aubHN2/aubQC42 embryos) and all embryos pro-
duced by armi1/armi72.1 females (armi1/armi72.1 embryos)
showed a lack or very weak localization of Osk protein at the
posterior pole (Fig. 1c–e, Supplementary Fig. 1b). This defective
germ plasm led to a very weak or an absence of nos mRNA
localization at the posterior pole in these mutant embryos.
Strikingly, a wild-type localization of Osk was rescued in 40 and
15% of mnk aub, and mnk; armi double-mutant embryos,
respectively. However, wild-type nosmRNA posterior localization
was not rescued (Fig. 1c–e, Supplementary Fig. 1a, b). This sug-
gested a direct role of Aub in the localization of nos mRNA in the
germ plasm. Armi did not localize to the posterior pole of the
embryo (Fig. 1a), thus precluding a direct interaction between
Armi and nos mRNA for nos localization at the posterior pole.
Instead, strongly reduced piRNA levels in armi mutants19 could
underlie the lack of nos mRNA posterior localization in these
mutants. Consistent with this, we previously showed that

unloaded Aub was unable to bind mRNAs and did not localize to
the germ plasm11.

To confirm a direct role of Aub in mRNA localization in the
germ plasm, we used the osk-bcd3′UTR (ob) transgene containing
the osk coding sequence followed by the bicoid (bcd) 3′UTR,
which allows Osk localization and germ plasm formation at the
anterior pole of the embryo22. Aub, as well as germ cell mRNAs
were recruited and colocalized to this anterior germ plasm
(Supplementary Fig. 2a)11. Although Osk localization to the
anterior pole was not affected in aub mutant embryos bearing the
ob transgene23 (Fig. 2a, c), nos mRNA anterior localization was
lost (48.5% of embryos) or very faint and diffuse (51.5% of
embryos) (Fig. 2b, c). A similar result was obtained for two other
germ plasm mRNAs that interact with Aub, polar granule
component (pgc) and germ cell-less (gcl) (Fig. 2b, c), which is
consistent with a direct role of Aub in the recruitment of germ
cell mRNAs in the germ plasm. Interestingly, anterior localization
of nos mRNA was not affected in aub−; ob/ + stage 10 oocytes,
showing that Aub was not required at this stage (Supplementary
Fig. 2b). The defects in nos mRNA localization were identical in
0–2 h- and 0–30 min-aub mutant embryos (Fig. 2c), indicating
that Aub requirement for nos localization started between late
oogenesis and early (0–30 min) embryogenesis.

Taken together, these results strongly suggest that Aub and
piRNAs play a direct role in the localization of germ cell mRNAs
in the germ plasm in late oocytes and/or early embryos.

mRNA localization in germ plasm requires targeting by piR-
NAs. Aub-iCLIP in embryos identified several reproducible sites
of interaction between Aub and nos mRNA11. The most promi-
nent crosslink sites were located in the distal region of nos 3′-
UTR (Fig. 2d), and deletion of two putative piRNA target sites
(from roo and 412 TEs) there led to defective nos mRNA dead-
enylation in the somatic part of the embryo15. We propose that
the same piRNA-guided Aub interactions with nos mRNA result
in deadenylation and decay in the soma, and localization in the
germ plasm. We, thus, analyzed the localization of nos mRNA
deleted for these two piRNA target sites. Posterior localization
was significantly reduced in 36 and 37% of embryos in two
independent nos(ΔpirooΔpi412); nosBN transgenic stocks, com-
pared to localization of nos mRNA from a wild-type genomic
transgene24 (Fig. 2e, f). This localization defect was not due to
reduced expression of the nos(ΔpirooΔpi412) transgene (Sup-
plementary Fig. 2c). The fact that nos localization defect was
weaker for nos(ΔpirooΔpi412) transgene than in aub mutant
embryos, was expected since several Aub-binding sites remained
unaffected in this transgene (Fig. 2d). Nonetheless, this reduced
localization following the removal of only two piRNA target sites
argues that Aub binding to at least a number of sites in mRNAs,
depends on sequence-specific targeting by piRNAs. These results
indicate that mRNA binding by Aub does not only rely on
random piRNA targeting along the entire length of mRNAs
through very low complementarity, as was proposed previously25.
Consistent with this, using Aub-iCLIP data sets11, we found
that the proportion of mRNAs potentially targeted by piRNAs
with high complementarity was significantly higher in Aub-
crosslinked than in non-crosslinked mRNAs (Supplementary
Fig. 2d). In addition, we found a strong overlap between Aub-
crosslinked mRNAs and mRNAs producing piRNAs upon tar-
geting by a highly complementary trigger piRNA26 (Supple-
mentary Fig. 2e).

These results are consistent with a role of piRNA sequence-
specific targeting for Aub interaction with mRNAs and their
localization to the posterior germ plasm.
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Aub methylation in both soma and germ plasm. The dual role
of Aub in mRNA decay in the soma and localization in the germ
plasm indicates a switch in Aub function between these two
regions of the embryo. Aub undergoes symmetric arginine
dimethylation by the protein arginine methyltransferase 5,

Capsuleen (Csul)27. Aub methylation is required for its interac-
tion with Tudor (Tud) and its localization to the germ plasm27,28.
We asked whether arginine dimethylation could participate in the
switch in Aub function. In this hypothesis, only the pool of Aub
localized in the germ plasm would be methylated, mRNA decay
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in the soma would involve unmethylated Aub. We analyzed both
Aub functions when arginine dimethylation was defective in csul
mutants. Posterior accumulation of both Aub and nos mRNA
were strongly affected in csul mutant embryos (Fig. 3a, Supple-
mentary Fig. 3a). We used poly(A) test (PAT) assays to record
nos mRNA deadenylation in the bulk of csul mutant embryos
during the first 4 h of embryogenesis. nos mRNA deadenylation
profile was affected in mutant embryos, with long poly(A) tails
still present at 3–4 h of development (Fig. 3b). This deadenylation
defect correlated with stabilized nos mRNA in csul mutant
embryos, both quantified by RT-qPCR and visualized in the soma
by in situ hybridization (Fig. 3c, d). Consistent with impaired
mRNA decay, a large proportion of csul mutant embryos did not
hatch (Supplementary Fig. 3b).

Tud protein is restricted to the germ plasm in the embryo and
is required for Aub posterior localization29. As expected, Aub and
nos mRNA posterior localization was strongly affected in tud
mutant embryos (Fig. 3e). In contrast, Aub-dependent somatic
nos mRNA deadenylation and decay were not reduced in tud
mutant embryos (Fig. 3f–h) and most of these embryos hatched
(Supplementary Fig. 3b). Using embryo immunostaining with
SYM11 antibody that specifically recognizes symmetric dimethy-
larginines, we confirmed the defect of arginine dimethylation in
csul mutant embryos (Supplementary Fig. 3c). In tud mutant
embryos, arginine dimethylation level was not reduced, but
arginine dimethylated proteins did not accumulate in the germ
plasm (Supplementary Fig. 3c).

These results indicate that both the somatic and germline pools
of Aub are methylated. They further show that Aub arginine
dimethylation is required for both Aub functions in mRNA decay
and localization in the germ plasm. Therefore, this post-
translational modification is not responsible for the switch in
Aub function between soma and germ plasm.

Aub recruits Wisp to stabilize mRNAs in the germ plasm. Wisp
is the germline-specific poly(A) polymerase involved in cyto-
plasmic polyadenylation of a large number of mRNAs during late
oogenesis and early embryogenesis30–34. Since Wisp is required
for stabilization and posterior localization of osk and nos mRNAs
in embryos30, we asked whether it could cooperate with Aub in
mRNA stabilization and localization in the germ plasm. Wisp
accumulated in the germ plasm in the oocyte where it strongly
colocalized with Aub (Fig. 4a, b). Wisp was present in the whole
embryo with higher accumulation in the germ plasm (Fig. 4b). It
substantially colocalized with Aub in this region, as well as in
primordial germ cells (Fig. 4b, Supplementary Fig. 4a). In addi-
tion, Wisp was recruited to the anterior germ plasm and colo-
calized with Aub in embryos expressing the ob transgene
(Supplementary Fig. 4b). Analysis of Wisp-Aub colocalization in
the germ plasm in csul and tudmutant oocytes showed that it was
maintained in these mutant backgrounds, indicating that Wisp
colocalization with Aub did not require Aub arginine dimethy-
lation (Supplementary Fig. 4c). Strikingly, the levels of Wisp in
the germ plasm correlated with the lower levels of posteriorly

localized Aub in these mutants, which is consitent with a role of
Aub in the recruitment of Wisp to the germ plasm (Supple-
mentary Fig. 4c). In contrast, the CCR4 deadenylase was depleted
and Smg foci were smaller in the germ plasm where Aub accu-
mulated (Fig. 4c).

We used co-immunoprecipitation in 0–2 h-embryos to show that
Wisp coprecipitated with Aub, independently of the presence of
RNA (Fig. 4d). The reverse experiment confirmed the coprecipita-
tion of Aub with Wisp, in the absence of RNA, in 0–2 h-embryos
(Fig. 4e). Moreover, this coprecipitation was maintained in 0–2 h-
csul and -tud mutant embryos (Fig. 4e), revealing that the Aub/
Wisp complex was independent of Aub arginine dimethylation, and
could form in the somatic part of the embryo, since the levels of
localized Aub were low in these mutant embryos.

Direct interactions between Aub and Wisp were analyzed using
GST pull-down experiments. Aub contains three domains specific
of Argonaute proteins (PAZ, MID and PIWI) (Fig. 4f). In vitro-
translated HA-tagged Aub(1–482), which contained the PAZ
domain, bound to recombinant GST-Wisp(1–713) and GST-
Wisp(702–1373), but not to GST-Wisp(11–547) or GST alone
(Fig. 4f). Wisp recombinant proteins that interacted with HA-
Aub(1–482) overlapped over the central region of Wisp; we thus
used GST-Wisp(636–746) to validate that the central region of
Wisp interacted with HA-Aub(1–482) (Fig. 4f). In contrast, HA-
Aub(476–866) that contained the MID and PIWI domains did
not bind to any of the GST-Wisp proteins (Fig. 4f). These results
reveal direct interactions between the central part of Wisp and the
N-terminal half of Aub.

We used PAT assays and mPAT, a method for digital PAT
assays multiplexed for high-throughput sequencing, to address a
role of Aub in poly(A) tail elongation of nos mRNA localized in
the germ plasm. Aub is required for deadenylation of the vast
majority of nos mRNA (96%) present in the somatic region of the
embryo15. Therefore, we used ob-expressing embryos to increase
the pool of nos mRNA localized in the germ plasm. PAT assays
from these embryos at 0–1 h and 1–2 h of development identified
two pools of nosmRNA with poly(A) tails of ~12–60 nt, and 80 to
130 nt, respectively (Fig. 5a). In the wild-type background, poly
(A) tail length of the pool with shorter poly(A) tails decreased in
size with time by deadenylation, as previously reported7. In aub
mutant embryos expressing ob, deadenylation of the pool with
shorter poly(A) tails was reduced, and the pool with longer poly
(A) tails completely disappeared (Fig. 5a). mPAT, which uses
Illumina MiSeq based sequencing to identify and quantify PAT
amplicons, confirmed these effects on both pools of nos mRNA in
aub mutant embryos (Fig. 5b). In addition, similar effects were
observed for pgc mRNA, but not for the control mRNA tim10,
which was not bound by Aub (Supplementary Fig. 5a, b). Because
nos mRNA deadenylation in the somatic region was not strongly
affected in tudmutant embryos, we sequenced nos poly(A) tails in
these embryos using mPAT, to address a role of posteriorly
localized Aub in nos mRNA polyadenylation in the germ plasm.
Strikingly, nos mRNA poy(A) tails longer than 80 nt were
specifically shortened in tud mutant embryos at both time points
(0–1 h and 1–2 h), consistent with the function of Aub in the

Fig. 3 Role of Csul methyltransferase and Tud for Aub functions in mRNA decay and localization. a, e Immunostaining with anti-Osk and anti-Aub, and nos
mRNA in situ hybrydization of 0–2 h-csul (a) and -tud (e) mutant embryos. Quantifications of posterior localization in embryos shown in a, e are indicated
(right panels). Scale bars: 30 μm. b, f PAT assays of nos mRNA in embryos at 1 h-intervals up to 4 h of development in wild type, csul (b) and tud (f)
mutants. sop was used as a control mRNA. c, g nos mRNA quantification using RT-qPCR in 2–3 h wild-type, csul (c) and tud (g) mutant embryos.
Normalization was with RpL32 mRNA. For each genotype, mRNA levels at 2–3 h were normalized to the levels at 0–1 h. Means are from three biological
replicates. The error bars represent SD. *p< 0.05 using the two-tailed Student’s t test. d, h nos mRNA in situ hybrydization of 2–4 h wild-type, csul (d) and
tud (h) mutant embryos. Box plots showing the quantification of nos mRNA stabilization in the somatic part of the embryo. The central horizontal bar
represents the median. ns: non-significant, ***p< 0.001, using the two-tailed Student’s t test
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germ plasm for nos polyadenylation (Fig. 5c). Similar effects were
recorded on pgc mRNA, but not the control tim10 mRNA,
sequenced using mPAT (Supplementary Fig. 5c).

Taken together, these results identify the role of Aub in the
germ plasm for the recruitment of Wisp to germ cell mRNAs and
their polyadenylation.

Discussion
A number of recent studies have reported the role of piRNAs in
cellular mRNA regulation, in addition to their role in repressing
transposable elements. mRNA regulation by piRNAs is required
for sex determination in Bombyx mori and embryonic patterning
in Drosophila11,14,15. Furthermore, piRNAs are also involved in
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the decay of a large number of mRNAs and long non-coding
RNAs during mouse sperm development13,16. mRNA base-
pairing with piRNAs leads to their decay either by cleavage
through the endonuclease activity of PIWI proteins, or by
deadenylation11–13,15–17. Cleavage of cellular transcripts upon
piRNA targeting produces sense piRNAs from these transcripts
by ping-pong and phasing, thus unambigously identifying
mRNAs subject to this regulation12,26.

Here we identify a mechanism of piRNA-dependent regulation
that results in mRNA stabilization. Aub interacts with several
hundred maternal mRNAs and induces their decay during the
maternal-to-zygotic transition in the embryo11. Importantly,
Aub-dependent destabilized mRNAs are locally stabilized in the
germ plasm and encode germ cell determinants. A link has been
described between maternal mRNA decay and posterior locali-
zation, in the embryo35. We propose that Aub binding to these
mRNAs and its dual role in somatic decay and stabilization in the
germ plasm might be the basis for this link (Fig. 5d). A role of
Aub in germ cell mRNA posterior localization has been hypo-
thezised based on Aub interaction with these mRNAs25, and Aub
has been reported to be a component of the nos mRNA locali-
zation complex36. Here we decipher the molecular mechanisms
underlying this Aub function.

We identify a key component of the switch in Aub function
between soma and germline. Aub directly interacts with the Wisp
poly(A) polymerase, thus allowing poly(A) tail elongation and
stabilization of germ cell mRNAs in the germ plasm. Osk is likely
a major actor of mRNP-complex remodeling in the germ plasm,
leading to Aub functional switch and Wisp activity (Fig. 5d). Osk
colocalizes with Aub and Tud in germ granules6. Osk also directly
interacts with Smg and prevents Smg interaction with nosmRNA,
thus precluding its deadenylation and decay in the germ
plasm7,37. Consistent with this, we show that in the germ plasm,
Smg granules undergo remodeling and CCR4 deadenylase is
depleted. The role of Aub and Wisp in polyadenylation points to
their function in mRNA localization through selective stabiliza-
tion in the germ plasm. However, a role of Aub and Wisp in the
localization mechanism involving posterior anchoring during late
oogenesis is also possible since Aub interacts with mRNAs in
ovaries25. In addition, defects in mRNA anchoring occur in wisp
mutants, suggesting a potential role of Wisp or mRNA poly(A) in
anchoring30.

The presence of Aub and Wisp in the same complex in tud
mutant embryos, in which Aub localization in the germ plasm is
very low, suggests the possible interaction of both proteins in the
somatic region. Thus, Wisp might be present in a complex con-
taining Aub, Smg and CCR4-NOT in the soma; however, its
activity would be repressed by other components in this complex.
This repression would be relieved in the germ plasm through the
presence of Osk and the loss of Smg from the complex (Fig. 5d).

Like all members of the GLD-2 family of poly(A) polymerases,
Wisp does not bind RNA but relies on RNA-binding proteins for
its recruitment to mRNAs38. We identify Aub as an RNA-binding

protein involved in Wisp interaction with mRNAs in embryos.
Intriguingly, Aub mode of mRNA binding that depends on
diverse piRNAs is consistent with the lack of specific motifs in
Wisp mRNA targets32,34. Poly(A) tail sequencing at the genomic
scale has recently been used to identify mRNAs undergoing
Wisp-dependent cytoplasmic polyadenylation in early
embryos33,34. Comparison of these mRNAs to Aub-interacting
mRNAs in embryos11 showed that up to 25% of Wisp target
mRNAs were also bound by Aub (Supplementary Fig. 5d),
indicating a widespread role of Aub in Wisp-dependent cyto-
plasmic polyadenylation.

Several studies addressing nos mRNA posterior localization
reported the role of discrete, but partially redundant localization
elements4,36. Our data are consistent with these findings: They
propose the involvement of piRNA target sites highly com-
plementary to piRNAs for mRNA localization. Deletion of these
sites in nosmRNA induces only partial mislocalization, indicating
redundancy with other localization elements.

These data reveal a role for piRNAs and PIWI proteins in
mRNA stabilization, and uncover a major developmental func-
tion of piRNAs in germ cell specification. They further highlight
the central role of Aub in coupling piRNA inheritance and
mRNA regulation for germ cell development and maintenance
through generations.

Methods
Drosophila stocks and genetics. The w1118 stock was used as a control. Mutant
stocks were aubHN2 cn1 bw1/CyO, aubQC42 cn1 bw1/CyO39, w*; armi72.1/TM6C, y1

w*; P{lacW}armi1/TM340, mnkP6 41, mnkP6 aubHN2/CyO, mnkP6 aubQC42/CyO,
mnkP6; armi1/SM6-TM6B, mnkP6; armi72.1/SM6-TM6B20, tud1 bw1 sp1/CyO42,
w1118; Df(2 R)Exel6072/CyO that overlaps tud43, csulRM/CyO44, w1118; Df(2 R)
Exel6063/CyO that overlaps csul43, nosBN/TM345, y1 wispKG05287/FM7c30 and Df(1)
RA47/FM7c that overlaps wisp. Transgenic stocks were osk-bcd3′UTR (ob21 and
ob42 on second chromosome and ob31 on third chromosome)22, nos-Gal4:VP1646,
UASp-GFP-Aub47, nos(Δpiroo-Δpi412)15, and gnosb (wild-type genomic nos
transgene)24.

Immunostaining and RNA in situ hybridization. Embryos were dechorionated
with bleach for 3 min and thoroughly rinced with H2O. They were fixed in 37%
formaldehyde with heptane (1:1) for 7 min on a wheel; formaldehyde was replaced
by methanol and embryos were vortexed for 1 min. Embryos that sank to the
bottom of the tube were rinced three times with methanol. Before immunostaining,
embryos were gradually rehydrated with methanol-PBT (PBS supplemented with
0.1% Triton-X 100) and washed three times with PBT. Embryos were incubated on
a wheel at room temperature twice for 30 min in PBT, once for 20 min in PBT 1%
BSA, and at 4 °C overnight in PBT 1% BSA with primary antibodies. Embryos were
rinced three times, washed twice for 30 min in PBT, then incubated in PBT 1% BSA
for 30 min, and in PBT 1% BSA with secondary antibodies for 2 h at room tem-
perature. Embryos were rinced three times and washed twice for 30 min in PBT.
Ovaries were dissected at room temperature in PBS, fixed with 4% paraf-
ormaldehyde, rinced and blocked with PBT containing 1% BSA for 1 h, and
incubated in PBT 1% BSA with primary antibodies overnight at 4 °C. Ovaries were
washed three times in PBT 1% BSA for 10 min at room temperature. They were
incubated in PBT 0.1% BSA with secondary antibodies for 2 h at room tempera-
ture, then washed three times in PBT for 10 min. DNA staining was performed
using DAPI at 0.5 μg mL−1. Primary antibody dilutions for immunostaining were
mouse anti-GFP (Roche IgG1κ clones 7.1 and 13.1) 1:200; rabbit SYM11 antibody
(EMD Millipore, 07-413) 1:200; rabbit anti-Osk (a gift from P. Lasko) 1:1000;

Fig. 4 Wisp colocalizes and interacts with Aub. a, b Immunostaining of UASp-GFP-Aub nos-Gal4 stage 10 oocytes, also stained with DAPI (blue) (a) and
0–2 h-embryos (b), with anti-GFP and anti-Wisp. Posterior poles are shown in the bottom panels in a, and in b. Quantification of colocalization in the germ
plasm using the Manders coefficient is shown in b. Scale bars: 30 μm in a top panels, and 10 μm in a bottom panels and in b. c Immunostaining of UASp-
GFP-Aub/nos-Gal4 0–2 h-embryos with anti-GFP and either anti-CCR4 (top panels), or anti-Smg (bottom panels). Scale bars: 10 μm. d Co-
immunoprecipitation of Wisp with GFP-Aub in UASp-GFP-Aub/nos-Gal4 0–2 h-embryos. w1118 0–2 h-embryos were used as negative control (Mock).
Immunoprecipitation was with anti-GFP (GFP IP) either in the presence (+) or the absence (−) of RNase A. e Co-immunoprecipitation of Aub with Wisp in
wild-type, csul and tud mutant 0–2 h-embryos. Immunoprecipitation was with anti-Wisp in the presence of RNase A. Bound proteins were detected using
western blots with anti-Wisp and anti-Aub; inputs correspond to protein extracts before IP in d, e. f GST pull-down assays between GST-Wisp and HA-
Aub. Constructs and interactions are shown in the table. HA-tagged Aub fragments were revealed using western blot with anti-HA. Inputs correspond to
1:10 of in vitro-synthetized HA-Aub fragments before pull-down. GST alone was used as a negative control. GST and GST-recombinant proteins used in
each pull-down are shown (bottom panels). Arrowheads indicate full-length recombinant proteins
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mouse anti-Aub (4D10)48 1:800; rabbit anti-Aub (Abcam, ab17724) 1:100; mouse
anti-Armi49 1:500; mouse anti-Wispy (7B3, a gift from N. Kim) 1:100; guinea pig
anti-Smg50 1:1000; and rabbit anti-CCR451 1:200. Secondary antibodies (anti-
rabbit Alexa 488-conjugated (Invitrogen, A-11034); anti-mouse Alexa 488-
conjugated (Invitrogen, A-11029); anti-rabbit Cyanine 3-conjugated (Jackson
Immunoresearch, 711-165-148); anti-mouse Cyanine 3-conjugated (Jackson

Immunoresearch, 115-166-006); anti-mouse Alexa 647-conjugated (Invitrogen, A-
21236); anti-guinea pig Cyanine 3-conjugated (Jackson Immunoresearch, 706-165-
148)) were used at dilution 1:500. For whole-mount in situ hybridization experi-
ments, fixed embryos were rehydrated gradually with methanol-PBT-Tween (PBS
supplemented with 0.1% Tween-20) and washed three times in PBT-Tween.
Embryos were prehybridized in pre-warm HB buffer (50% formamide, 5× SSC, 50
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Fig. 5 Aub recruits Wisp to stabilize germ cell mRNAs in the germ plasm. a ePAT assays of nos mRNA in 0–1 h- and 1–2 h-ob/+ embryos, in wild-type
and aub mutant backgrounds. ePAT assay profiles using ImageJ are shown on the right. b, c Distribution of sequenced nos mRNA poly(A) tails in ob/+ and
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shown in the scheme (top panel). The x-axis represents the number of non-templated A-bases sequenced at the end of each read and the y-axis represents
the normalized number of reads on a log scale. The portion of the graph corresponding to the pool of nos mRNA with long poly(A) tails is indicated with
broken lines. In b, the proportion of reads having 100 A-bases or more (% of total) is significantly reduced in the aub mutant (p= 0.0025) by two-way
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decay and stabilization in the germ plasm. See text for details
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µg mL−1 heparin, 0.1% Tween-20, 5 μg mL−1 torula yeast RNA (Sigma)) for 1 h at
65 °C and hybridized with 1:50 to 1:100 of probe in HB buffer overnight at 65 °C.
Embryos were washed for 15 min at 65 °C twice with 2X SSC, 0.1% Tween-20,
twice with 0.2× SSC, 0.1% Tween-20, and at room temperature three times with
PBT-Tween. Embryos were incubated with preabsorbed anti-Digoxigenin-alcaline
phosphatase antibody (Roche, 11093274910) at 1:2000 for 1.5 h at room tem-
perature on a wheel. They were washed three times for 20 min in PBT-Tween and
once for 20 min in AP buffer (100 mM Tris 2M pH 9.5, 50 mM MgCl2, 100 mM
NaCl, 0.1% Tween-20). Revelation was in 1 mL AP buffer with 7.5 μL NBT (nitro
blue tetrazolium) and 5.6 μL BCIP (5-bromo-4-chloro-3-indolyl-phosphate) for
5–15 min, and was stopped by three washes with PBT-Tween. Embryos were
dehydrated gradually with ethanol-PBT-Tween and washed twice in ethanol 100%.
Mounting was in Canada Balsam supplemented with methyl salicylate (4:1). Probes
for in situ hybridization experiments were Digoxigenin-labeled antisense RNA
in vitro transcribed from coding regions of the corresponding genes cloned into the
Topo TA pCRTM II vector (Invitrogen)11 or from the pN5 nos cDNA clone. For
fluorescent in situ hybridization coupled with immunostaining (immuno-FISH),
after hybridization and washing of the probe, embryos or ovaries were blocked 1 h
in PBTHBR (1× PBS, 0.1% Triton-X100, 0.04% horse serum, 0.001% BSA, 40 U μL
−1 RNase Inhibitor (Promega)) and incubated overnight at 4 °C in PBTHBR with
anti-Digoxigenin-POD antibody (peroxidase-conjugated, Jackson Immunor-
esearch, 200-032-156) at 1:200 and other antibodies. Embryos or ovaries were
washed three times for 20 min in PBT-Tween. Tyramide Signal Amplification was
performed at room temperature on a wheel for 10 min with 1:25 TSA Cyanine 3 in
amplification diluent provided by the manufacturer (TSA® Cyanine 3, Perki-
nElmer). The reaction was stopped with two quick washes in PBT-Tween, followed
by three 10 min-washes in PBT-Tween. Secondary antibodies were incubated at
room temperature for 2 h and washed three times for 10 min in PBT-Tween.
Mounting was in Vectashield.

Microscopy and image processing. Fluorescent images were acquired using a
Zeiss LSM 780 laser scanning confocal microscope equipped with a Zeiss 40×
PLAN-APO 1.3 oil-immersion DIC (UV) VIS-IR and a Zeiss 20× PLAN-APO 0.8
objective lens. The acquisition software was Zen. Contrast and relative intensities
were processed and quantified with ImageJ software. Light microscope images were
acquired using Leica Leitz DMRB Fluorescence-Phase Contrast Microscope with
Nomarsky lens.

RT-qPCR and PAT assays. Total RNA was prepared from 30 embryos using
Trizol (Invitrogen). RNA concentration was determined with nanodrop ND-
1000 spectrophotometer. For RT-qPCR, 0.5–1 µg of total RNA was reverse tran-
scribed with SuperScript III (Invitrogen) and random hexamers (Invitrogen). RNA
levels were calculated using the LightCycler® 480 SYBR Green I Master (Roche) on
the LightCycler® 480 Instrument (Roche) and the primers 5′-CGGAGCTTCCAA
TTCCAGTAAC-3′ and 5′-AGTTATCTCGCACTGAGTGGCT-3′ for nos, and 5′-
CTGTGAGAGTTCGCCAAATG-3′ and 5′-CATTGAGTTTCCGGTGTGTC-3′
for RpL32. Poly(A) test (PAT) assays were performed with 1 µg of total RNA using
either regular PAT (Fig. 3), or ePAT (Fig. 5) methods52. For the PAT reaction,
mRNA poly(A) tails were coated with 0.1 µg oligo-d(T)12–18 primers which were
then ligated with 40 U of T4 DNA Ligase; this reaction was followed by annealing
of the d(T)-anchor primer to the overhanging remaining As at 12 °C and its
subsequent ligation, then by reverse transcription with SuperScript III (Invitrogen)
from this ligated primer, and PCR using the primers 5′-GCGAGCTCCGCGGCCG
CGTTTTTTTTTTTT-3′ (d(T)-anchor) and 5′-TTTTGTTTACCATTGATCAATT
TTTC-3′ for nos or 5′-GGATTGCTACACCTCGGCCCGT-3′ for sop. For ePAT,
mRNA poly(A) tails was annealed with the d(T)-anchor primer by mixing 1 µg of
total RNA with 2 µL of 50 µM d(T)-anchor primer and used as template for mRNA
extension with 5 U of DNA Polymerase I, Large (Klenow) Fragment (New England
Biology) at 37 °C; this reaction was then switched to 55 °C to dissociate annealings
that had not been extended by DNA Polymerase I, and followed by reverse tran-
scription with SuperScript III (Invitrogen) and PCR using d(T)-anchor and the
specific primer 5′-GAAAAATTCAATGGCTCGAGTGCC-3′ for nos. PCR frag-
ments were visualized on 2% agarose gel.

mPAT. To improve the resolution and sensitivity of gel-based PAT assays, we
adapted the ePAT approach53 to multiplexing on the Illumina MiSeq instrument.
Sequencing ensures that any amplicon detected is specific to the gene of interest,
and enables a digital read-out of the amplicon amount, and visualization of the
distribution of sequenced poly(A) lengths. We refer to this assay as mPAT for
multiplexed Poly(A) Test. A nested-PCR approach was used to sequentially
incorporate the P5 and P7 elements necessary for bridge-amplification and
sequencing on the Illumina flow-cell. First, ePAT cDNA was generated using the
mPAT Reverse Primer 5′-CAGACGTGTGCTCTTCCGATCTTTTTTTTTTTTT-
3′ using 500 ng total RNA from the indicated genotypes as input. In a first round of
PCR amplification the sequence 5′-CCTACACGACGCTCTTCCGATCT-3′ was
appended upsteam of traditional PAT primers designed ~100 nt from the poly-
adenylation site: nos mPAT 5′-CCTACACGACGCTCTTCCGATCTCACACATG
AAACAACCGCCA-3′; pgc mPAT 5′-CCTACACGACGCTCTTCCGATCTCAAG
AACAAGGAGGGAAGCTCG-3′; tim10 mPAT 5′-CCTACACGACGCTCTTCCG

ATCTGCGCTACGATTGTTAGAGGTAC-3′. A pool of such gene-specific pri-
mers were used in five cycles of first-round amplification with the mPAT reverse
primer. Unincorporated primers from this first round amplification were removed
using NucleoSpin columns (Macherey-Nagel). Eluted amplicons were entered into
a second round PCR using the universal Illumina Rd1 sequencing Primer 5′-AAT
GATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCC
G-3′ and TruSeq indexed reverse primers from Illumina, with ten cycles of
amplification. Note that each experimental condition was amplified separately in
the first round with identical pooled primers. In the second round, each experi-
mental condition received a different indexing primer. These second-round PCR
reactions were pooled, cleared of excess primers using AMPure XP beads (Beck-
man Coulter) and sequenced using the MiSeq Reagent Kit v2 with 300 cycles (i.e.,
300 bases of sequencing) according to the manufacturer’s specifications. The data
were analyzed using established bioinformatics pipelines54 and figures were gen-
erated using the R framework.

Immunoprecipitations. For immunoprecipitations, 0–2 h-embryos (≈100 μL
embryos per IP) were homogenized in 500 μL DXB-150 (25 mM Hepes-KOH pH
6.8, 250 mM sucrose, 1 mMMgCl2, 1 mM DTT, 150 mM NaCl, 0.1% Triton X-100)
containing cOmpleteTM EDTA-free Protease Inhibitor Cocktail (Roche) and either
RNase Inhibitor (0.25 U μL−1, Promega) or RNase A (2 μg mL−1, Sigma). A total of
50 μL Dynabeads protein A (Invitrogen) were incubated with either 10 μL mouse
anti-GFP (monoclonal antibody 3E6, Invitrogen, A-11120), 5 µL mouse anti-Wisp
(14D1, a gift from N. Kim), or 5 µL purified mouse IgG (Invitrogen, 02-6502)
(mock IP) for 1 h on a wheel at room temperature. Protein extracts were cleared
on 30 μL Dynabeads protein A previously equilibrated with DXB-150 for 30 min at
4 °C. The pre-cleared protein extracts were incubated with Dynabeads protein A
bound to antibodies for 3 h at 4 °C. The beads were then washed 7 times with DXB-
150 for 10 min at room temperature. Proteins were eluted in 1X NUPAGE buffer
supplemented with 100 mM DTT at 70 °C and analyzed using western blots with
antibodies at the following dilutions: mouse anti-Aub (4D10)48 1:2500; rabbit anti-
Aub (Abcam, ab17724) 1:2000; guinea pig anti-Wispy30 1:3000; rabbit anti-
Wispy31 1:2500. Complete blots are shown in Supplementary Fig. 6.

GST pull-down assays. The constructs for production of GST-Wisp(11-547) and
GST-Wisp(702-1373) were previously generated30. The N-terminal half of Wisp
(amino acids 1–713) was cloned into the pGEX-5X-2 vector using NotI and XhoI.
The central region of Wisp (amino acids 636–746) was amplified by PCR and
cloned into the pGEX-4T-1 vector, digested with EcoRI and XhoI. HA-Aub con-
structs were obtained by cloning PCR-amplified Aub fragments (amino acids
1–482 and 476–866) into the EcoRI and XhoI sites of the pCSH2 vector (pCS2 +
backbone vector with two HA tags). GST-fused proteins were expressed in E. coli
BL21 and affinity-purified on glutathione-Sepharose 4B beads (GE Healthcare); the
beads were incubated overnight at 4 °C in PBT, cOmpleteTM EDTA-free Protease
Inhibitor Cocktail (Roche) and 5% BSA. HA-tagged proteins were synthesized
in vitro using the TnT Coupled reticulocyte lysate system (Promega). HA-tagged
proteins were incubated with immobilized GST fusion proteins for 1.5 h (45 min
at room temperature followed by 45 min at 4 °C) in 400 μl binding buffer
(50 mM Hepes pH 7.5, 600 mM NaCl, 0.2 mM EDTA, 1 mM DTT, 0.5% Nonidet
P-40, cOmpleteTM EDTA-free Protease Inhibitor Cocktail (Roche)) containing
0.2 μg μL−1 RNase A. Beads were washed four times with binding buffer. Recom-
binant proteins were dissociated from the beads by boiling 5 min in Laemmli buffer
and separated on a SDS-PAGE gel. Western blots were revealed with mouse anti-
HA antibody (Covance, MMS-101R) at dilution 1:1000.

Statistical and bioinformatic analyses. Colocalization was analyzed using the
ImageJ tool Coloc2 with 4–5 embryos or oocytes and calculated using the Man-
ders’s overlap coefficient55. Prediction of piRNA target sites on cellular mRNAs
was performed as follows. We used a pool of piRNAs from 0–2 h-embryos
sequenced in previously published libraries (GSM327625, GSM327626,
GSM327627, GSM327628, GSM327629, GSM1818089, GSM1818091). This led to a
total of 3,305,903 non-redundant piRNA sequences. Bowtie was used with different
complementarities to identify piRNA target sites on transcripts with reproduced
cross-links, as follows. Bowtie with option ‘-v 0’, ‘-v1’, ‘-v 2’ or ‘-v3’ was used to
identify piRNAs that potentially target mRNAs with up to 0, 1, 2 or 3 mismatch
(es), respectively. For complementarities with a seed, we did not use quality values,
therefore the sum of the quality values at all mismatched read positions (-e/-
maqerr) was set to an arbitrary value of 2000, which disabled the quality values.
Furthermore, -l (length of the seed) and -n (number of mismatches within the
seed) were set to different values. The option ‘–nofw’ was used to search only for
reverse-complementarity between piRNAs and mRNAs.

Data availability. Accession numbers of previously published datasets are
GSM327625, GSM327626, GSM327627, GSM327628, GSM327629, GSM1818089,
GSM1818091. mPAT sequences generated in this study have been deposited to
figshare, under the link: https://doi.org/10.4225/03/59b074beaefcc
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