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Abstract

Background: The hippocampus and amygdala have been repeatedly implicated in the psychopathology of posttraumatic

stress disorder (PTSD). While numerous structural neuroimaging studies examined these two structures in PTSD, these

analyses have largely been limited to volumetric measures. Recent advances in vertex-based neuroimaging methods have

made it possible to identify specific locations of subtle morphometric changes within a structure of interest.

Methods: In this cross-sectional study, we used high-resolution magnetic resonance imaging to examine the relationship

between PTSD symptomatology, as measured using the Clinician Administered PTSD Scale for the DSM-IV, and structural

shape of the hippocampus and amygdala using vertex-wise shape analyses in a group of combat-exposed U.S. Veterans

(N¼ 69).

Results: Following correction for multiple comparisons and controlling for age and cranial volume, we found that partici-

pants with more severe PTSD symptoms showed an indentation in the anterior half of the right hippocampus and an

indentation in the dorsal region of the right amygdala (corresponding to the centromedial amygdala). Post hoc analysis

using stepwise regression suggest that among PTSD symptom clusters, arousal symptoms explain most of the variance in the

hippocampal abnormality, whereas reexperiencing symptoms explain most of the variance in the amygdala abnormality.

Conclusion: The results provide evidence of localized abnormalities in the anterior hippocampus and centromedial amyg-

dala in combat-exposed U.S. Veterans suffering from PTSD symptoms. This novel finding provides a more fine-grained

analysis of structural abnormalities in PTSD and may be informative for understanding the neurobiology of the disorder.
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Introduction

Posttraumatic stress disorder (PTSD) is a common
mental illness, with an estimated lifetime prevalence rate
of 6.8% in the general population in the United States,1

and an estimated 23% among post-9/11 U.S. Veterans.2

Yet, the neurobiological mechanisms underlying the dis-
order are not fully understood, and the availability of
effective pharmacotherapies is scarce.3–5 Better under-
standing of the underlying pathophysiology may contrib-
ute to the development of novel rational therapeutics. In
this article, we investigated the relationship between
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PTSD symptoms and the shape (vertex-based) of two
subcortical structures critical to stress response and emo-
tion regulation that have been repeatedly implicated in
the pathophysiology of PTSD:6–9 the hippocampus and
amygdala. In contrast to the presence of numerous
vertex-based cortical PTSD studies,10–25 structural
analyses of the hippocampus and amygdala have largely
been limited to volumetric measures (i.e., total or voxel-
based volumes). This vertex-based approach comple-
ments previous volumetric findings and might provide
enhanced localization of the structural abnormalities
within the hippocampus and amygdala.

Multiple neuroimaging studies have examined brain
regions involved in PTSD symptomatology in an effort
to characterize the mechanisms of the disorder and ultim-
ately inform treatment. In animal models, chronic stress
has been shown to have opposing effects on synaptic plas-
ticity in the hippocampus and the amygdala. Trauma and
stress induce synaptic degeneration and neuronal atrophy
in the hippocampus but result in trophic changes and
synaptogenesis in the amygdala.26 These preclinical find-
ings of atrophy have been paralleled by clinical evidence
of reduced hippocampal volumes in PTSD patients. A
large number of studies, including several meta-analyses,
have reported total volume reduction in the hippocampi
of PTSD patients16,27–39 (note that citations do not rep-
resent an exhaustive list; for further details refer to recent
meta-analyses by Kühn et al.36 and Li et al.37).
Nevertheless, it should be noted that a number of studies
and at least one meta-analysis have failed to replicate
these volumetric changes.40–43 In the case of the amyg-
dala, the increased synaptogenesis in preclinical models
has so far mostly been captured from the purview of
functional imaging, where findings of a hyperactive
amygdala are prevalent.44 The evidence from structural
imaging is inconclusive, as both reduced6,39,45,46 and
increased7 amygdala volumes have been reported. Other
studies40–42 including one meta-analysis47 failed to iden-
tify amygdala volumetric abnormalities associated with
PTSD.

The vast majority of structural neuroimaging studies
investigating these two structures have so far made use of
volume measurements, i.e., region of interest (ROI) or
voxel-based morphometry (VBM). Despite their value,
volumetric measurements are unable to capture abnorm-
alities related to the shape of a structure and possess
limited ability to localize abnormalities within regions
of interest. Furthermore, several questions have been
raised regarding the sensitivity of VBM towards subtle
morphometric changes, particularly with regard to sub-
cortical nuclei.48–50 The hippocampus and amygdala are
heterogeneous structures with different subregions having
unique cellular architectures and developmental and
functional properties.51,52 For example, the anterior
hippocampus is thought to perform stress- and

emotion-related functions while the posterior hippocam-
pus is associated with various cognitive functions.53

In addition, differing functional PTSD-related abnormal-
ities have been found in the anterior versus posterior
hippocampus.9,54 Similarly, the basolateral amygdala
(BLA) is involved in sensory integration with afferents
from the various sensory and association cortices; in con-
trast, the centromedial amygdala (CMA) mediates
efferent fear response.52,55 In animal models, trauma
and stress-induced amygdala hypertrophy has been
most evident in the BLA.56,57 It is therefore conceivable
that the inconsistent findings in the literature could be
partially due to an inherent limitation in gross volumetric
measurement, namely the inability to localize abnormal-
ities within the structure in question or to detect struc-
tural changes other than total volumes. Additionally, the
multifaceted phenotype observed in PTSD, which con-
sists of dimensions of depressive as well as hyperarousal
and reexperiencing symptoms,58 could be each linked to a
particular abnormality within the hippocampus or
amygdala.

Recent advances in neuroimaging methods have made
it possible to identify specific locations of subtle
morphometric changes within a structure of interest.
This morphometric approach, known as shape analysis
or vertex-wise analysis, aims to measure shape differences
by analyzing surface representation rather than
individual voxels.59 Here, we report on vertex-wise
shape analyses of the hippocampus and amygdala and
the relationship with PTSD symptomatology, as mea-
sured with the Clinician Administered PTSD Scale for
the DSM-IV (CAPS).60 Rather than using a dichotomy
consisting of PTSD patients and controls, we employ a
single-group dimensional approach in a sample of
combat-exposed U.S. Veterans to capture a continuous
spectrum of PTSD symptoms for the primary analysis.
We attempt to answer additional questions relating to
confounds, symptom clusters, and sex differences in
post hoc analyses.

Methods

Participants and Clinical Assessments

A total of 69 combat-exposed U.S. Veterans (aged 21–60)
participated in this study. Details of the study sample and
procedures were previously reported.61 Briefly, inclusion
criteria required at least one combat tour deployment,
and exclusion criteria included psychotic disorder or
bipolar disorder, attention-deficit/hyperactivity disorder,
learning disorder, moderate or severe traumatic brain
injury (TBI), brain tumor, epilepsy or other neurological
disorders, current benzodiazepine use, and magnetic res-
onance imaging contraindication. To ensure external val-
idity and generalizability of the findings to the target
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population, the following were not considered exclusion-
ary due to their high co-occurrence in Veterans
with PTSD: depression, anxiety, substance/alcohol use
disorder, and stable antidepressant regimens.

PTSD diagnosis, overall symptom severity, and
symptom cluster severity (i.e., numbing-avoidance,
hyperarousal, re-experiencing) were assessed using
CAPS.62 Combat exposure severity was assessed using
the Combat Exposure Scale.63 Depressive and anxiety
symptoms were assessed using the Beck Depression
Inventory64 and Beck Anxiety Inventory,65 respectively.
A measure of estimated pre-exposure intellectual func-
tioning was determined using the Wechsler Test of
Adult Reading.66 Psychiatric comorbidities were assessed
using the Structured Clinical Interview for the DSM-
IV.62

The study was approved by Institutional Review
Boards at the VA Connecticut Healthcare System and
Yale University. Written informed consent was obtained
from all participants.

Neuroimaging Methods

A Siemens TIM Trio 3.0 Tesla magnet with a 32-channel
head coil was used. magnetic resonance imaging
acquisition included a T1-weighted MPRAGE (voxel
size¼ 1� 1� 1mm; TR¼ 2530ms; TE¼ 2.71ms;
Flip¼ 7�). Shape processing for the hippocampus and
amygdala was conducted using the FSL FIRST
toolbox.59 Briefly, the processing included image
reorientation, cropping, bias-field correction, nonlinear
registration to standard space, FNIRT-based brain
extraction, and structural segmentation. FIRST auto-
mated segmentation uses shape models constructed
from manually segmented images; for technical details,
refer to a detailed description of the method by
Patenaude et al.59 In the standard space, the mesh
representation of each structure and their mode param-
eters were then used to generate a study specific surface
standard for the hippocampus and the amygdala (i.e., the
average of all subjects). Per subject, each vertex anatom-
ical location was projected onto the standard surface. The
signed perpendicular distance between each projected
vertex and the standard surface represent the projection
values (negative¼ depression/indentation & posi-
tive¼ inflation), which were used in the study statistical
analysis.

Statistical Analyses

Vertex-wise shape for the hippocampus and amygdala
was correlated with CAPS score using FSL Randomise
with nonparametric permutations (number of permuta-
tions¼ 5000) and cluster-based thresholding (z> 2.3, cor-
rected �¼ 0.05),67 controlling for age and cranial volume.

For post hoc analyses, we extracted the average of the
vertices in the segment showing significant abnormality in
the vertex-wise analysis as a measure of average
abnormality. It is important here to note that the post
hoc analyses should not be considered as independent
evidence, but rather an exploratory assessment to
inform future studies and meta-analyses, and to better
characterize the variables associated with the abnormal-
ities identified by the vertex-wise results. We first con-
ducted partial correlation analyses between CAPS
severity and average abnormality in the hippocampus
or amygdala, covarying for each of the following putative
confounds separately: sex, Major Depressive Disorder
diagnosis, substance/alcohol abuse, other psychiatric
diagnosis, combat exposure severity, pre-exposure intelli-
gence, education, medication status, and TBI status.
Before proceeding to test the symptom cluster scores of
numbing-avoidance, hyperarousal, and re-experiencing,
the variance inflation factor (VIF) was used to assess
for problematic multicollinearity, by entering the three
subtype scores simultaneously in a multiple regression
with either the hippocampus or amygdala abnormality
as dependent variables. Next, we conducted a stepwise
multiple regression to assess which of the PTSD symptom
clusters contribute most to the abnormalities. For each
structure separately, the average abnormality was entered
as a dependent variable, and the three symptom cluster
scores were entered into the model (p-value thresholds:
entry¼ 0.05, removal¼ 0.1). Considering the known sex
differences in PTSD,68,69 we assessed whether one group
was disproportionally influencing the results. Correlation
analyses were used to examine the relationship between
the shape abnormalities and CAPS scores for females and
males separately. Finally, to facilitate the interpretation
and integration of our results by other groups, we
included a group comparison between Veterans with
PTSD and without PTSD (non-PTSD), controlling for
age and intracranial volume.

Results

Demographic variables and clinical characteristics are
presented in Table 1. On average, participants had a
moderate level of PTSD symptoms, and 51% met
DSM-IV criteria for PTSD.

Vertex-Wise Analysis

Following correction for multiple comparisons using
Randomise and controlling for age and cranial volume,
the vertex-wise analysis revealed a negative correlation
between CAPS severity and hippocampal vertices, such
that participants with more severe PTSD symptoms
showed a depression/indentation in the anterior half of
the right hippocampus (Figure 1), but no significant
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alterations in the posterior right hippocampus or all of
the left hippocampus. Similarly, we found a negative cor-
relation between CAPS severity and amygdala vertices,
such that participants with more severe PTSD symptoms
showed a depression/indentation in the dorsal region
(corresponding to the CMA) of the right amygdala, but
no significant alterations elsewhere in the amygdala
(Figure 2).

Post Hoc Analyses

The correlation between hippocampus/amygdala shape
and CAPS remained significant (p< 0.05) after control-
ling for each of the following variables separately: age,
gender, Major Depressive Disorder diagnosis, other psy-
chiatric diagnosis, combat exposure severity, estimated
pre-exposure intelligence, education, substance/alcohol
abuse, medication status, and TBI.

All symptom cluster scores were significantly asso-
ciated with the identified indentations in both structures
(bivariate models are presented in Tables 2 and 3, respect-
ively). The multiple regression model revealed a moderate
level of multicollinearity between the symptom clusters
(VIF< 4 for all cases). In the stepwise model relating to
the hippocampus, initially all three terms that were
entered were significantly correlated with the indentation
(p< 0.01). Subsequently, only the hyperarousal score sur-
vived and demonstrated a significant effect, with the

model explaining 12% of the variance of the abnormality
(R2
¼ 0.12; p¼ 0.02). Neither the numbing-avoidance nor

re-experiencing scores were found to have significant
effect in the model as a whole and were excluded
(p> 0.4). Similarly, in the stepwise model relating to the
amygdala, all three terms were significantly correlated
with the indentation (p< 0.01), but only the re-experien-
cing score subsequently survived and demonstrated a sig-
nificant effect, with the model explaining 15% of the
amygdala abnormality variance (R2

¼ 0.15; p¼ 0.01).
Neither the numbing-avoidance nor re-experiencing
scores were found to have significant effect in the model
as a whole and were excluded (p> 0.7). A summary of the
stepwise models can be found in Table 4.

In the male group, abnormality in both structures cor-
related with the total CAPS score (hippocampus:
r¼�0.4, p¼ 0.02; amygdala: r¼�0.4, p¼ 0.02), whereas
in the female group, none of the two structures were
found to be significantly correlated with the total CAPS
score (hippocampus: r¼ 0.1, p¼ 0.9; amygdala:
r¼�0.23, p¼ 0.7). It is important to note that women
only constituted 11% (8 participants) of the total sample.

Compared to Veterans with no PTSD, the abnormality
in the PTSD group was as follows: hippocampus (PTSD:
mean� SEM¼�0.417� 0.175; non-PTSD: mean�
SEM¼ 0.454� 0.183; p¼ 0.001) and amygdala (PTSD:
mean� SEM¼�0.258� 0.121; CC: mean� SEM¼
0.282� 0.127; p¼ 0.003).

Discussion

Using a vertex-wise approach, we demonstrated shape
abnormalities in the right anterior hippocampus and
dorsal amygdala associated with increased PTSD symp-
tom severity. In the hippocampus, the direction of the
change—namely, indentation/depression—is consistent
with previous volumetric literature showing shrinkage
of this structure in PTSD.16,27–35 In the amygdala,
where prior evidence in PTSD has been inconclusive,
we found an indentation grossly overlapping with the
CMA area, but no changes in the BLA, an area that is
particularly sensitive to stress-related hypertrophy in
animal models.56,57

The hippocampus has long been identified as an
important structure in PTSD; its failure to recognize con-
textual cues in the absence of threat, and to relay that
information to the amygdala and the vmPFC, is believed
to contribute to the observed exaggerated states of fear
and hyperarousal.3 A smaller hippocampal volume in
PTSD has been widely reported in the literature16,27–35;
however, the majority of these studies considered the
hippocampus as a single entity. Evidence from animal
studies demonstrating functional segmentation within
the hippocampus is accumulating; according to such
models, the anterior portion of the hippocampus plays

Table 1. Demographic and clinical characteristics.

Mean� SEM or %

Age (years) 34.4� 1.1

Sex (% female) 11%

WTAR standard score 103� 1.0

Education (years) 14.0� 0.2

CAPS 44.7� 3.6

CES 18.0� 1.2

BDI 18.9� 1.5

BAI 13.4� 1.3

DSM-IV axis I 65%

PTSD 51%

MDD 18%

SUD 23%

Anxiety disorder 7%

Psychotropic medication 33%

Mild TBI 59%

Note: SEM: Standard Error of Means; WTAR: Wechsler Test of Adult

Reading; CAPS: Clinician Administered PTSD Scale for the DSM-IV; CES:

Combat Exposure Scale; BDI: Beck Depression Inventory; BAI: Beck

Anxiety Inventory; PTSD: Posttraumatic Stress Disorder; MDD: Major

Depressive Disorder; SUD: Substance/Alcohol Use Disorder; Anxiety:

Panic Disorder, Generalized Anxiety Disorder, Obsessive Compulsive

Disorder; TBI: Traumatic Brain Injury.
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a central role in stress, emotion, and affect, while the
posterior portion is primarily involved in spatial
memory and other cognitive functions.53 Converging evi-
dence suggests a gradient along longitudinal axis of the
hippocampus where coarse field representations take
place anteriorly while more fine-grained representations
are encoded posteriorly.70 It has been suggested that this
‘‘sparse’’ representation in the anterior hippocampus is
optimized for cross-environment generalization (i.e., pat-
tern completion); in contrast, denser and more fine-
grained segments present posteriorly enable filtering out
the interference, particularly useful in more similar envir-
onments (i.e., pattern separation).70 An altered balance
between pattern completion and pattern separation is
hypothesized to underline overgeneralization of fear
and context-inappropriate fear response in PTSD.71,72

Our analyses identified an indentation in the hippocam-
pus associated with increasing PTSD severity that is loca-
lized to the right anterior half of the hippocampus, which
could be reflecting a dysfunctional dynamic between these
two hippocampal functions.9 Reduction in the anterior
but not posterior hippocampal volume has also been pre-
viously described in Veterans with PTSD.73 Future

studies can further assess the anterior hippocampal
abnormalities by examining the role of hippocampal
subfields (e.g., CA3) in the pathophysiology of PTSD.
Finally, it is noticeable that in the current study, the
shape abnormalities were detected in the right hippocam-
pus, whereas in several previous PTSD studies, volumet-
ric differences were reported either bilaterally or on the
left.36 It remains to be seen whether this observation is
limited to our sample or whether our results represent a
lateralization of hippocampal shape abnormalities to the
right hemisphere.

The amygdala has a crucial role in fear learning and
expression, as well as the detection of threat.55 While
numerous functional neuroimaging studies have shown
heightened amygdala reactivity in PTSD patients in vari-
ous experimental paradigms, the evidence for amygdala
structural abnormalities has been contradictory.44 This
may have been due to the suboptimal sensitivity of the
employed volumetric and VBM approaches. Using
vertex-wise analyses, we identified a region of indentation
in the dorsal area of the right amygdala associated with
increased PTSD severity—which anatomically corresponds
to the central nucleus of the amygdala (CEA).

Figure 1. Localized right hippocampus abnormality. Three-dimensional (3D) depiction (blue) of the right hippocampus showing the

location of the indentation (yellow) in participants with severe PTSD symptoms. Standard brain added to aid visualization. Superior

(a), lateral (b), anterolateral (c), superolateral (d) views.
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The amygdala consists of multiple nuclei with distinct
roles. The CMA, which comprises the CEA and the
medial nucleus, plays a major role in affect expression
and anxiety-related behavior, while the BLA is involved
in perception and emotional modulation.55 In animal
models, the BLA, but not the CMA, is a site of synapto-
genesis under conditions of chronic stress.26,56,57 It is
therefore conceivable that inconsistent results in previous

volumetric studies of the amygdala reflect mixed changes
that could include concomitant CMA atrophy and BLA
hypertrophy. While we were not able to identify regions
of hypertrophy in the BLA, this approach highlights the
importance of pursuing similar analyses in larger samples
of PTSD patients.

Using CAPS symptom cluster scores for numbing-
avoidance, hyperarousal, and re-experiencing, we

Figure 2. Localized right amygdala abnormality. Three-dimensional (3D) depiction (blue) of the right amygdala showing the location of

the indentation (yellow) in participants with severe PTSD symptoms. Standard brain added to aid visualization. Superior (a), lateral (b),

anterolateral (c), superolateral (d) views.

Table 2. Bivariate correlation matrix for PTSD symptom clusters and the hippocampal abnormality.

Right hippocampus Re-experiencing Hyperarousal Numbing-avoidance

Right hippocampus r 1

p *

Re-experiencing r �0.339 1

p 0.002 *

Hyperarousal r �0.359 0.785 1

p 0.001 * *

Numbing-avoidance r �0.245 0.791 0.825 1

p 0.021 * * *

*p< 0.001.
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probed the association between the identified abnormal-
ities in the hippocampus and amygdala and these
symptoms. The results of the stepwise analysis support
a model in which PTSD arousal and re-experiencing
symptoms contribute most to the variance of the localized
abnormalities in the hippocampus and amygdala,
respectively. Although the amygdala plays a central role
in arousal,55 one possibility that could explain this appar-
ent discrepancy could be related to the location of the
abnormality in the CMA area. Recent evidence select-
ively implicates the BLA but not the CMA in the afferent
aspect of arousal in functional neuroimaging studies.74

Women have a higher life-time risk of developing
PTSD, and the manifestation of the disorder is often
more pronounced.68,69,75 Although female participants
only constituted 11% (8 participants) of our total
sample, we assessed how the results of this subgroup
relate to the predominantly male sample; particularly,
whether in this subgroup the relationship between
PTSD severity and structural abnormality would be
stronger. In the female group, we failed to show a statis-
tically significant relationship between PTSD severity and
the shape abnormalities that we detected at the level of
the whole sample. It is likely that this is due to small
number of observations, and should not be interpreted
as a confirmatory negative finding.

There are several limitations in our approach. Our
study was cross-sectional, which precludes conclusions
regarding causality between brain abnormalities and
symptomatology. It remains to be determined whether
these localized structural abnormalities represent

premorbid vulnerability or trauma-related changes.
Another limitation is related to our sample, which con-
sisted of predominantly male participants, with women
only comprising 11% of the total sample. This could limit
the generalizability of our findings to women. Medication
status as well as co-morbid psychiatric and substance
abuse disorders were not excluded so that our sample
was representative of the PTSD population, although
this limits internal validity. Additionally, the sample
size did not permit the inclusion of all 11 potential con-
founds in the primary analysis. Thus, we only included
the two main putative confounds (age and intracranial
volume), while the remaining variables were assessed in
a post hoc fashion which should be interpreted with cau-
tion. All post hoc analyses were conducted on the average
volume of indentation detected in the primary vertex ana-
lysis. Attempting to control for multiple potential con-
founds at this level would have reduced the statistical
power. It is therefore important to reiterate that the
post hoc analyses are not independent76 and were
included solely for the purpose of providing preliminary
data to better understand the different factors that might
have contributed to these shape changes. The study
strengths include the use of a validated neuroimaging
approach that allows identification of morphological
abnormalities beyond total volume59 and a dimensional
approach to examine the effects of PTSD symptoms
across the target population of combat-exposed U.S.
Veterans.

In sum, this study makes a unique contribution to the
literature by demonstrating shape abnormalities in the

Table 3. Bivariate correlation matrix for PTSD symptom clusters and the amygdala abnormality.

Right amygdala Re-experiencing Hyperarousal Numbing-avoidance

Right amygdala r 1

p *

Re-experiencing r �0.382 1

p 0.001 *

Hyperarousal r �0.319 0.785 1

p 0.004 * *

Numbing-avoidance r �0.289 0.791 0.825 1

p 0.008 * * *

* p< 0.001.

Table 4. Stepwise regression models with PTSD symptom clusters and the localized abnormalities.

Structure Predictor b SE Standardized b t p R2

Right hippocampus Arousal �.041 0.013 �0.359 �3.153 0.002 0.129

Right amygdala Re-experiencing �.032 0.009 �0.382 �3.381 0.001 0.146

Note: The original model in both cases included CAPS numbing-avoidance, arousal, reexperiencing.
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anterior part of the hippocampus and the dorsal amyg-
dala, which future studies might use to further explore the
neurobiology of PTSD and ultimately guide treatment
development. By identifying these abnormalities, our
study extends prior research on structural brain abnorm-
alities in PTSD that can be detected using neuroimaging
methods.
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