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ABSTRACT Since the initial discovery of a mobilized colistin resistance gene (mcr-
1), several other variants have been reported, some of which might have circulated a
while beforehand. Publicly available metagenomic data provide an opportunity to
reanalyze samples to understand the evolutionary history of recently discovered anti-
microbial resistance genes (ARGs). Here, we present a large-scale metagenomic study
of 442 Tbp of sequencing reads from 214,095 samples to describe the dissemination
and emergence of nine mcr gene variants (mcr-1 to mcr-9). Our results show that
the dissemination of each variant is not uniform. Instead, the source and location
play a role in the spread. However, the genomic context and the genes themselves
remain primarily unchanged. We report evidence of new subvariants occurring in
specific environments, such as a highly prevalent and new variant of mcr-9. This
work emphasizes the importance of sharing genomic data for the surveillance of
ARGs in our understanding of antimicrobial resistance.

IMPORTANCE The ever-growing collection of metagenomic samples available in pub-
lic data repositories has the potential to reveal new details on the emergence and
dissemination of mobilized colistin resistance genes. Our analysis of metagenomes
deposited online in the last 10 years shows that the environmental distribution of
mcr gene variants depends on sampling source and location, possibly leading to the
emergence of new variants, although the contig on which the mcr genes were found
remained consistent.
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Antimicrobial resistance (AMR) is considered one of the most significant threats
against human and animal health (1). Over the years, we have observed the emer-

gence of a multitude of novel antimicrobial resistance genes (ARGs), and it is generally
believed that such genes have emerged and evolved in the commensal flora for a long
time prior to being detected in pathogenic isolates (2).

Colistin is an important antibiotic used as a last-resort choice to treat multidrug-re-
sistant (MDR) and carbapenem-resistant bacteria (3). Before 2015, colistin resistance
was believed to be only due to mutational and regulatory changes in chromosomal
genes. A mobilized colistin resistance gene,mcr-1, was discovered in 2015 on a plasmid
in Escherichia coli isolates from China (4), raising concern in the scientific community
about the possibility of resistance spreading more rapidly by horizontal gene transfer
by mobile genetic elements (MGEs) (4, 5). Immediately following the first report, a large
number of studies were initiated in several countries around the world, and it was
soon determined that mcr-1 was already widespread and has now been detected in all
continents (6–8). In initial reports, the most frequent isolates were sampled from live-
stock sources, followed by humans, meat, and food products (9). Since then, several
new variants of mcr genes have also been identified, named mcr-2 to mcr-10 and shar-
ing 81%, 32.5%, 34%, 36%, 83%, 35%, 31%, 36%, and 29.31% amino acid sequence
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identity to mcr-1, respectively (10–17). Retrospective screening of bacterial isolates and
available sequences of mainly pathogenic isolates showed a more widespread occur-
rence and prior evolution of mcr before its initial discovery (8, 18, 19).

However, investigating only pathogenic strains or cultivable bacteria will only provide
limited insight into the potential reservoirs of such novel ARGs. As documented by our
research group and others, investigating the entire microbiome provides additional infor-
mation on the presence and diversity of ARGs (7, 20–22). Today most researchers con-
ducting microbiome studies are depositing their raw data in global repositories, allowing
other researchers to reanalyze the data and provide novel insight.

This study was conducted to investigate the occurrence and global dissemination
of known mcr gene variants in publicly available metagenomic data sets. We down-
loaded 442 Tbp of raw reads from 214,095 metagenomic data sets and determined the
presence and abundance of 9 mcr gene variants. We found that only a small subset of
the metagenomic data sets was positive for at least one of the mcr genes but that the
abundance gradually increased as a function of time. The distribution of each variant
varied by region and sampling source, but the genomic background of each gene was
consistent across different environments. However, several subvariants are observed
with conserved single nucleotide polymorphisms (SNPs) across multiple samples.
Despite the sparsity of the data once stratified by the presence ofmcr genes, our analy-
sis suggests that multiple factors have likely influenced the dissemination of colistin re-
sistance and that screening publicly available metagenomic samples can, together
with single isolates, further deepen our understanding of the distribution of mcr gene
variants.

RESULTS
Data set. After retrieval, quality checking, and trimming of the raw sequencing

reads of the 214,095 metagenomic data sets, we aligned the reads against ARGs and
16S rRNA sequences using the assembly-free method KMA. The resulting counts of
read fragments aligned to different reference sequences were used to analyze the dis-
tribution and abundance of mcr genes. The abundance of an mcr gene was calculated
as the fragment count of that gene over the total amount of bacterial fragments for a
sample or a group, whereas the fragment count for ARGs was the only one used for
statistical analyses.

Out of the 214,095 metagenomes, we found that 2.09% (4,465) of them contained
read fragments aligning to at least 1 of the 9 mcr gene variants. The average number of
reads per mcr-positive sample was 27 million reads, and on average, 0.003% of the reads
were aligned to mcr genes. Among the variants in the mcr family, mcr-1 and mcr-9 were
the most frequent, with 25.91% and 57.47% of the mcr-aligned reads aligning to these
variants, and disseminated across 10 and 13 sampling years, 21 and 56 countries, and 23
and 61 hosts, respectively. The rarest variants were mcr-2, mcr-6, and mcr-8 with read fre-
quencies of 0.03%, 0.01%, and 0.08%, respectively, and their metagenomic origins were
more restricted (Table 1). Overall, different log-ratio abundance levels seemed to be dif-
ferent across the sampling years in different countries and hosts (Fig. S1).

Level ofmcr variants over time. The mcr-positive metagenomic samples were col-
lected between 2003 and 2019, with the exception of 2005, in which no mcr fragments
were detected (Fig. 1). Only two metagenomes sampled in 2003 contained mcr frag-
ments, and a single mcr-positive metagenome was from 2004. Onward, the percentage
of positive samples fluctuated, with the lowest value of 0.5% in 2008 and the highest
of 6.4% in 2019 (Fig. S1). All the variants were frequently found in samples from 2016
to 2017, except mcr-6, which was only found in 2012 (Table 1).

We found that the log ratio abundance of aligned read fragments fluctuated for the
nine variants in each sampling year (Fig. 1). The oldest positive metagenomes were
sampled in 2003 and 2004 and contained only mcr-3 and mcr-5. From 2006, the other
variants began to emerge. mcr-1 was detected first in 2009 at a low log abundance,
and increased levels were observed between 2011 and 2019. Similarly, mcr-9 could be
detected in small amounts in metagenomes from 2007. In 2012 and 2013, mcr-9 was
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the most abundant variant, with 81% and 86% of the read fragments aligning to this
gene. In 2007, only 3% of the mcr read fragments aligned to mcr-7, but more and more
fragments for each year were assigned to the mcr-7 gene and peaked in 2019 with
95% of the mcr fragments aligned being to it.

Significant levels of different mcr genes were observed for sampling years 2011,
2013, 2014, 2015, 2016, and 2017 (P value , 0.05, Fig. 4a). Even though the variance of
mcr levels within the sampling years was high, several variants stood out as having
higher or lower levels in specific years compared to other years. In 2011, mcr-3 had a
higher abundance than expected and continued to be high in 2013 to 2014, together
with mcr-1 and mcr-5. mcr-9 was lower in those years. In 2016, the metagenomic pic-
ture changed as mcr-3 and mcr-5 had decreased levels, while mcr-1, mcr-4, mcr-7, and
mcr-9 were increased.

Geographical distribution ofmcr gene variants. The 9 variants were spread across
95 different sampling locations (Fig. S1), although samples from different world regions
were often different in which variant they were positive for (Table 1). A higher abun-
dance of mcr gene variants was observed in the Americas, Asia, and Europe, and
decreased abundances were observed in Africa. The highest total log-ratio abundances
of mcr fragments could be found in metagenomes from Australia, Lake Huron (USA),
and Cambodia, and lowest levels, in Kiribati, Greece, and the Caribbean Sea (Fig. 2).

The individual variants were not equally distributed worldwide; instead, it seemed
like specific variants were restricted to specific regions (Fig. 2). For example, the variant
mcr-1 was less widely spread worldwide (Americas, Asia, and Europe) than mcr-9

TABLE 1 Read alignment of eachmcr variant across different sample types

mcr-1 mcr-2 mcr-3 mcr-4 mcr-5 mcr-6 mcr-7 mcr-8 mcr-9
Origina

Read frequency (%) 25.91 0.03 10.33 0.98 1.86 0.01 3.32 0.08 57.47
No. of yrs 10 6 14 13 13 1 13 11 13
No. of countries 21 6 59 42 43 1 27 14 56
No. of hosts/reservoirs 22 6 49 54 40 1 43 8 60

Yrb

2010 16.67
2012 9.03 100.00 20.00
2013 17.04
2014 23.89
2015 37.66
2016 58.77 20.89 61.11 30.68 16.00 22.11
2017 22.86 16.67 14.36 17.40

Countryc

Angola 16.67
Cambodia 6.36
China 68.96 21.9
Denmark 40.11 12.16 36.24
France 100.0
Kenya 11.10
Netherlands 16.67
USA 13.43 39.38 18.78 23.63 11.11 45.18

Host/reservoird

Homo sapiens 32.51 33.33 23.71 19.35 56.46
Panda 22.59
Activated sludge metagenome 5.93
Freshwater metagenome 10.16 18.24
Marine metagenome 22.22 48.39
Microbial mat metagenome 100.0
Wastewater metagenome 65.77 26.20 60.81 25.88 13.44

aRead frequencies and counts of unique sampling origins, i.e., the number of years, countries, and hosts/reservoirs.
bThe top two sampling years for the given variant was the most abundant in abundant in is shown in percentage ofmcr-mapped reads.
cThe top two sampling countries as described in footnote b.
dThe top two sampling hosts and reservoirs as described in footnote b.
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(Africa, Americas, Asia, Europe, Oceania, Atlantic Ocean, and the Pacific Ocean). No
metagenomic locations contained all types of variants. In the Australian metagenomes,
mcr-9 was the most dominant gene, whereas mcr-4 had high abundance levels in Lake
Huron (USA), and mcr-1 and mcr-9 had high abundance levels in Cambodian metage-
nomes. The only location of mcr-6 was France.

Of the 95 sampling locations, 15 had significant abundances of at least one of the
mcr variants (P value , 0.05); however, the variance in the samples from most of the
locations was high and did not have a large effect size compared to other locations
(Fig. 4c). Metagenomic locations that showed consistency within the group and were
found to be different from the rest of the locations had lower levels of single variants
—mcr-1 in Bulgaria, mcr-3 in Iceland, mcr-5 in Malaysia, and mcr-9 in Cambodia.

Host- and reservoir-specific mcr abundances. We found mcr genes present in 125
different sampling hosts and reservoirs, but with the various variants having different log-
ratio fragment abundances (Fig. S2) and the two most frequent types differing for each
variant (Table 1). All 6 metagenomes from Pomacea canaliculate (golden apple snail) and
the 11 Danio rerio (zebrafish) metagenomes containedmcr fragments. For two of the larg-
est sampling groups, we found 897 out of 1,803 (49.75%) wastewater metagenomes and
13,831 out of 102,211 (1.35%) human-derived samples to bemcr positive.

Out of the 125 hosts, only 20 of them showed significant levels of mcr gene frag-
ments. These all had higher levels of colistin resistance genes (Fig. 3). The dispersion
within most of the 20 hosts was high, and their log-ratio levels were not significantly
different from those of the other hosts, except a few (Fig. 4e). The zebrafish samples
had lower levels of mcr-7 than expected, whereas golden apple snail metagenomes
had higher levels. Panda metagenomes had elevated levels of mcr-9 but had slightly
smaller amounts of mcr-3, mcr-4, and mcr-5. Metagenomes from pigs (Sus scrofa and
pig gut) had increased levels of both mcr-1 and mcr-9. Human metagenomes did not
have large effect sizes but contained slightly less mcr-1 and mcr-9 than expected.

Diversity of mcr-positive metagenomes. By performing compositional PCA analy-
sis on CLR values, we can visualize the variance in mcr read proportions in biplots

FIG 1 Discovery and the change of mcr genes over time. (Top) Timeline showing when each gene was first reported in the literature. (Middle) Changes in
log abundance of aligned mcr read fragments over time for each gene are shown, as well as the number of samples with or without an mcr hit from each
year as bars. (Bottom) The frequency of each gene compared to the total mcr amount. Data were normalized with gene lengths to generate the charts.
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showing which type of samples make the level of a resistance gene significant (Fig. 4).
The biplots highlight a clear separation of metagenomes that contain mcr-1 or mcr-9
and show that these samples also differ a lot from each other. None of the samples
from the different years are similar, which means that high levels of one of the variants
cannot be explained simply due to a specific collection year (Fig. 4b). Instead, we can
see that several Panda metagenomes came from China in 2016, which most likely con-
tributed to the higher levels of mcr-1 in 2016 (Fig. 4d). Likewise, human metagenomes
clearly show a geographical separation mainly driven by mcr-1 being abundant in
China and mcr-9 in the United States and Australia (Fig. 4f, Fig. S3), which could explain
that even if these metagenomes contain significant levels of mcr genes, we could not
observe large effect sizes. Excluding these two most abundant genes suggests, how-
ever, that the differences are mainly driven by source and not by year or geographical
location (Fig. S4).

Distribution ofmcr variants in pathogenic bacterial genomes. As several studies
have performed retrospective screening of pathogenic bacterial isolates, we decided
to compare the metagenomic mcr abundances to the prevalence in pathogenic single
isolates. Out of 912,469 isolates screened by the NCBI Pathogen Detection Pipeline,
only 7,934 (0.87%) were shown to carry at least 1 of the mcr genes. The majority of the
mcr-positive isolates contained either mcr-1 (51.08%) or mcr-9 (40.38%), while mcr-6
and mcr-7 were not detected at all (Table S1).

The congruence of relative counts in isolates and relative abundance levels in
metagenomes varied depending on which allele and what kind of sample grouping it

FIG 2 Global levels of mcr genes. The large map shows the total log abundance levels of all mcr genes, whereas the nine smaller plots show the individual
gene log-scaled abundances worldwide. A circle represents a collection of samples from water containing mcr genes. White color indicates an absence of
results, not that a specific location does not have any mcr genes. The circle markers illustrate water environments.
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was. Grouped by the sampling location, the mcr-1 gene appeared to be more wide-
spread according to the isolates, whereas mcr-3 had a larger global distribution based
on the metagenomes. Similarly, for human samples, mcr-1 had a higher prevalence in
isolates, whereas metagenomes showed a higher abundance of mcr-9-aligned read
fragments (Fig. S5).

Genomic background ofmcr genes. The dissemination of colistin resistance genes
between different reservoirs and countries in different sampling years was further
investigated by creating assemblies of metagenomic samples with 95% coverage of at
least one variant. We assembled 869 metagenomes, where we found 1,939 different
contigs carrying mcr genes (range, 1 to 20 mcr contigs per metagenome). The most fre-
quent gene present on these contigs was mcr-9, followed by mcr-3 and mcr-5
(Fig. S6a). To identify structural patterns between different metagenomic origins, we
analyzed the genetic signatures in regions up- and downstream of an mcr gene (the
flanks) with a minimum size of 1,000 bp and a maximum of 21,000 bp to include most
of the elements found in the flanks (Fig. S6b). As most contigs were shorter than 1,000
bp (Fig. S6a), only 138 contigs passed the size criteria. All 20 contigs containing plas-
mid replicons in their flanks carried mcr-1 genes, whereas the 63 flanks with MGEs
were on contigs with different mcr variants (Fig. S6c).

Six distinct clusters became apparent upon calculating the distance between the
flanks surrounding the mcr genes (Fig. 5). We find that the presence of specific MGEs
seemingly correlated with the presence of an mcr variant on the contig, as ISApl1
occurs only on mcr-1 contigs, and IS903, on mcr-9 contigs. Five of the six clusters are all
flanks around the same variant, with two being mcr-1 clusters, while the sixth contains
flanks surrounding four different mcr gene variants.

In the first mcr-1 cluster, an IncX4 plasmid replicon was present either upstream or
downstream in most members. These contigs were found in metagenomes sampled in

FIG 3 Distribution of mcr genes in selected sampling hosts. Hosts were selected based on the host showing significant CLR values according to the
ALDEx2 analysis (Fig. 4). (Top) Bar plot showing both the number of samples without and with an mcr hit and the overall mcr level for each host measured
by log-abundance values. (Bottom) The abundance of individual mcr genes relative to total mcr levels. Data were normalized with gene lengths before
plotting. To see the distribution of mcr genes for all sampling hosts available, refer to Fig. S2.
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FIG 4 Analysis of significant mcr levels in sampling years, countries, and hosts. (a, c, and e, left column) Visualizations of within-
group dispersion of CLR values of individual mcr genes compared to the between-group difference in CLR values for (a) sampling

(Continued on next page)
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2016 and 2017 from a diverse background, indicating that IncX4 plasmids are involved
in multiple transmission events in different settings. The second mcr-1 cluster differs
from the first in that we see an absence of IncX4 and IncI2 in a few contigs instead. The
cluster can instead be best characterized by the presence of the insertion element
ISApl1 in half of the flanks, which mainly originate from gut metagenomes from
Cambodia in 2014, while those without the insertion element are from Chinese sam-
ples from 2015 to 2017.

Four of the mcr-9 contigs contain IS102, IS26, or ISKpn43, while the remaining carry
IS903. Since all these contigs contain at least one insertion sequence, it suggests that
they were highly mobilized between different metagenomes from human and environ-
mental sources between 2008 and 2018.

The mixed cluster shows a surprising clustering of flanks on contigs of uneven
lengths, with different MGEs and replicons present, carrying four different mcr gene
variants—mcr-1, mcr-4, mcr-8, and mcr-9. This indicates that despite the contigs carry-
ing different mcr genes, there are similarities in their broader genomic context, despite
it not being obvious how they are connected considering their various sample types.

Metagenomic evidence of new mcr subvariants. The varied origins of the col-
lected metagenomes can be used to investigate how conserved known mcr gene var-
iants are in different sources, as well as provide evidence of the presence of new mcr
subvariants. Overall, most of the mcr reference sequences could be recovered from the
metagenomic samples, although a large proportion seems only to be fragmented

FIG 4 Legend (Continued)
year, (c) location, and (e) host. (b, d, and f, right column) Compositional biplots of the first two principal components (PC) capturing
64% of the variation in the data set, where samples are colored according to significant (b) years, (d) countries, and (f) hosts. Gray
filled markers are samples that were nonsignificant. CLR: centered-log ratio transformed values of the proportion of mcr aligned read
fragments.

FIG 5 Clustering of mcr contigs reveals that the genomic context remains conserved. The k-mer distance tree for flanks of mcr contigs with flank sizes
between 1,000 bp and 21,000 bp is drawn in the left panel, with the metagenomic origins (year, country, host) added as colored tiles in the middle panel.
The genomic background on the right is a schematic illustration of the size of each flank region in gray centered on the middle of the mcr gene and
plasmid replicons and mobile genetic elements (MGEs) colored in the flanks.
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sequences (Table 2). We constructed consensus sequences that had at least 90% tem-
plate coverage, mean coverage depth of 5, and query identity of at least 90% and kept
single nucleotide polymorphisms (SNPs) that had a minimum depth of 5 and 90% fre-
quency. Of the 968 sequences constructed, 27.38% had at least one SNP difference in
their template (Table 3). The majority of consensus sequences recovered from the
metagenomes, whether they were known or new potential subvariants, could only be
recovered in a few samples. Although, there are a few groups that stand out. We found
33 different subvariants of mcr-3 genes, 32 of mcr-7.1, and a highly prevalent subvar-
iant of mcr-9.1 (Table 3, Fig. 6). Since these sequences were constructed from metage-
nomic samples with KMA, we call SNP variants for potential new subvariants.

The number of mcr-3 subvariants in our version of the ResFinder database is 25, mak-
ing it the variant with most subvariants. We found evidence of 33 new subvariants,
though most only appear in a small number of samples, except for a subvariant of mcr-3.6
called mcr-3.6.v1 (Fig. S7a) and a subvariant of mcr-3.15 called mcr-3.15.v2 (Fig. S7b). Both
mcr-3.6.v1 andmcr-3.15.v2 were detected in genomes of Aeromonas species (Table S2).

None of the mcr-7.1 constructed sequences was an exact match to the reference
sequence, and instead, we saw various numbers of SNPs (Fig. 6, Fig. S8a). While the fre-
quencies of each new possible mcr-7.1 variant in the metagenomes were not high, there
appear to be several SNPs that were well conserved, for example, the two SNPs A1020G
and A1275T present in 29 and 30 of the variants, respectively (Fig. S8a). Many of the 32
possible subvariants of mcr-7.1 were found in water sources (e.g., zebrafish, freshwater,
and wastewater) sampled over a period of 4 years (2016 to 2019) (Fig. 6). Unfortunately,
none of the possiblemcr-7.1 subvariants had complete BLAST matches (Table S2).

We saw a high occurrence of a new subvariant sequence of mcr-9.1, named mcr-
9.1.v4, which contained two SNPs, A1619G and A1620G (Fig. S8b). mcr-9.1.v4 appears
to originate in human or gut samples, a similar distribution to that of the template

TABLE 2 Coverage of mcr templates according to KMAa

Gene

No. of Template coverage (%) Depth of coverage (×)

Samples Known subvariants Avg. Min. Mdn. Max. Avg. Min. Mdn. Max.
mcr-1 418 12/14 71.238 1.05 85.980 100.18 43.877 0.01 2.350 1315.16
mcr-2 12 2/2 34.694 1.05 1.240 100 2.435 0.01 0.060 11.27
mcr-3 1,204 25/25 37.170 1.05 30.595 100.8 2.822 0.01 0.580 209.51
mcr-4 565 5/6 35.112 1.11 21.590 100 1.684 0.01 0.350 67.77
mcr-5 1,100 2/2 40.030 1.1 31.990 100 1.705 0.01 0.490 118.32
mcr-6 4 1/1 64.982 1.24 84.755 89.18 3.177 0.01 2.335 8.03
mcr-7 384 1/1 28.138 1.17 6.665 100.06 8.103 0.01 0.120 209.91
mcr-8 32 1/1 18.987 1.06 1.325 100 1.919 0.01 0.010 30.31
mcr-9 2,148 1/1 50.690 1.17 39.570 102.53 23.161 0.01 0.690 3,985.21
aThe table contains an overview of the found number ofmcr subvariants out of howmany were known in the metagenomic samples, as well as summary statistics of
template coverage and depth of coverages. Avg., average; Min., minimum; Mdn., median; Max., maximum.

TABLE 3 Overview of SNP variant calling on consensus sequences

Genea Total sequencesb SNP variants (%) Unique SNP subvariant sequencesc

mcr-1 170 1.18 2
mcr-2 4 100.00 4
mcr-3 127 47.20 33
mcr-4 33 36.40 5
mcr-5 58 1.72 1
mcr-6 0 0 0
mcr-7 39 100.00 32
mcr-8 3 66.70 2
mcr-9 534 27.20 6

Total 968 27.38 62
aThe number of consensus sequences permcr gene.
bThe percentage of consensus sequences found that are SNP variants.
cThe number of unique SNP variant sequences recovered.
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mcr-9.1 (Fig. 6). mcr-9.1.v4 had 20 BLAST hits, where the two most common species car-
rying this gene were Enterobacter hormaechei and Salmonella enterica subsp. enterica
(Table S2).

DISCUSSION

The growing collection of metagenomic sequencing data available in public reposi-
tories has the potential to provide a much more detailed picture of the emergence,
evolution, and spread of ARGs. We downloaded and analyzed 214,095 host-derived
and environmental metagenomes to characterize the global distribution of 9 mobilized
colistin resistance genes that have been identified since 2015. Among the downloaded
samples, we found that 4,465 metagenomes (2%) contained mcr reads distributed dif-
ferently across the sampling period (2003 to 2019) and geographical and host origins.
We found that all the nine different gene variants were present in metagenomes
sampled years before their discovery (Fig. 1), confirming the notion of the resistance
genes circulating in the environment long before being reported (18, 19, 23). This con-
firms the value of publicly sharing raw next-generation sequencing (NGS) data to pro-
mote new, better, and more comprehensive analyses of existing data.

To date, mcr-1 is the most studied mcr gene variant, and the dissemination has
been described in detail. Multiple studies agree that even though mcr-1 has been
detected in a few isolates from the 1980s (18), it has been appearing with increasing
frequencies in samples between 2011 and 2017 and was decreasing in later years (8,
18, 19, 24). We see a similar trend in the frequencies of mcr-1-positive metagenomes,
although the levels seem to increase starting from 2008 to the highest levels in 2015,
the year of mcr-1 first being reported (4) (Fig. 1).

In just a few years after discovering mcr-1, multiple other mcr variants were
reported in different world regions, with mcr-1 and mcr-9 being the most disseminated
genes (6). Despite mcr-9 being the newest member (17), we observe that it was the
most abundant gene variant in publicly available metagenomes, with mcr-1 being the
second most abundant. The two variants are not equally distributed across sampling
sites, as mcr-1 appears to be more geographically restricted to Europe and Asia,
whereas mcr-9 has reached a wider area (Fig. 2). In human metagenomes, mcr-1 and
mcr-9 dominate, whereas other hosts and environmental origins display a considerable

FIG 6 Phylogenetic tree of consensus sequences. Sequences were aligned with MAFFT and clustered with FastTree. On the right is the occurrence of each
sequence variant in different sampling origins (year, location, and source).
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variation in mcr variants. Despite earlier reports of the presence of mcr-1 of both ani-
mal (4) and environmental (25) origins, we see only very few environmental origins of
the gene (Fig. S2). Only a few hosts have significantly different levels ofmcr gene abun-
dances than expected, where mcr-1 and mcr-9 tend to be higher in pigs and pandas,
and mcr-3, mcr-4, mcr-5, and mcr-7 are lower in other hosts. Mcr-2, mcr-6, and mcr-8
only appear in very few metagenomes, with mcr-6 being the rarest variant. Since the
first report of mcr-6 (14), it has only been detected in very few places around the world
and all in 2014 and 2015 (14, 26), but we can here report the presence of mcr-6 in very
small amounts in a metagenome from France sampled in 2012 (Fig. 1 and 2). Overall,
there appears to be a connection between the abundance of a variant and the sampling
source and location, but due to the sparse nature of our data set, we have not been able
to determine the relative contribution of these factors to the observedmcr levels.

When observing the trends of the aligned mcr read fragment abundances in the
data set, one should keep in mind that this collection is restrained by what was
available in ENA at the time of download. The type of metagenomic data sets avail-
able is dependent on the ongoing research trends in the different scientific com-
munities, which can cause a bias toward specific hosts or environments, such as the
panda samples, by being overrepresented in the repository. Furthermore, there are
challenges due to improved experimental protocols and sequencing platforms
becoming available, possibly causing mapping bias. On the other hand, the evi-
dence of the number of read fragments that match a specific gene should not be
discarded too easily regardless of the sample origin. We applied compositional
methods that can handle the nature of various read counts to ensure that the
observed abundance levels of the different mcr alleles were not simply due to
chance.

The NCBI Pathogen Detection Project is another example of a surveillance program
that routinely screens available public data, in this case, genomes of single isolates.
This data collection also has the same biases as those highlighted for our metagenomic
collection, where our comparison of the two resources showed that each resource is in
some cases better at capturing the prevalence of specific mcr alleles than the other.
Essentially, our study highlights the benefit of using metagenomic data sets in addition
to single isolates to monitor the distribution of AMR.

Interestingly, we observed that the mcr contigs from the assembled metage-
nomes were well conserved across reservoirs and locations except for mcr-1 contigs.
This suggests that most of the mcr alleles have only been mobilized once and then
spread globally and between reservoirs. In contrast, mcr-1 is known to be present in
a variety of genomic backgrounds (8), which we also observe as the flanking regions
of our mcr-1 contigs grouped together in three distinct clusters (Fig. 5). Mcr-1 is
commonly found on IncI2, IncHI2, and IncX4 plasmids with ISApl1 (8, 25), although
we only observed ISApl1 on two IncI2 plasmids, a possible loss of ISApl1 near IncX4
replicons, and we observed that no IncHi2 plasmids were present on mcr-1 contigs.
The absence of ISApl1 in one of the mcr-1 clusters could indicate a loss of mobility
due to either their difference in sampling years or a shift in hosts. IS26 has been
observed downstream of mcr-9 (27), which we only observed once, and instead, we
see that IS903 occurs on both sides of mcr-9 in the examined contigs. The metage-
nomic origin of mcr-9 contigs is highly diverse, suggesting that the presence of mul-
tiple different insertion sequences has been a contributing factor in their mobiliza-
tion between 2008 and 2018.

Even with the diverse genomic context of mcr-1, only very few of the mcr-1 consen-
sus sequences we constructed contained any SNPs, indicating that despite the differ-
ent mobilization factors, the different mcr-1 subvariants remain well conserved (Fig. 6).
On the contrary, the sequences of mcr-3 subvariants were highly prone to contain
SNPs, as shown by our report of 33 potential new members, where several of them
could be matched to genes in known species with BLAST (Table S2). Similarly, the
diverse origin of mcr-9 contigs is also reflected in the fact that an unknown subvariant
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of mcr-9.1, which we are calling mcr-9.1.v4, was detected in 100 different genomes,
with the species Enterobacter hormaechei being the most common (Table S2). We hesi-
tate to call these SNP variants new variants, as more work needs to be done to test the
expression levels and susceptibility of the organism carrying one of these potential
subvariants, although there is strong evidence for the mcr-9.1.v4 variant already being
widely distributed.

As we collected data by downloading publicly available metagenomic samples, we
present a data set with uneven coverage of sampling locations and sources. This bias
heavily influences our ability to provide an in-depth understanding of the mobilization,
emergence, and spread of themcr genes. Regardless of this, we have shown the poten-
tial of using raw sequencing reads generated by other researchers to improve our
knowledge. It is, however, important that all such generated data are shared publicly
to allow for future exploration and improved understanding of the global microbial
biology (28). Since the start of this project, another mcr variant was discovered named
mcr-10 (29), but we decided not to include the gene due to the massive computation
task of mapping 442 Tb of raw sequencing reads. Nevertheless, it will be indeed inter-
esting to figure out when mcr-10 first appeared and characterize its dissemination as
well, which we hope to do for this and for other ARGs in the future.

MATERIALS ANDMETHODS
Data collection. Metagenomic data sets were collected from the public data repository the European

Nucleotide Archive (ENA) (30). We queried the ENA API for samples uploaded between 1 January 2010 and
1 January 2020 that were shotgun sequenced and had at least 100,000 sequencing reads. In total, we
downloaded 214,095 sequencing runs from 146,732 samples from 6,307 projects corresponding to 442 Tbp
of raw reads.

Reference sequence databases. The AMR gene database ResFinder (31) (downloaded 25 January
2020) contains 3,085 sequences. The 16S rRNA SILVA (32) gene database (version 138, downloaded 16
January 2020) contains 2,225,272 sequences.

Preprocessing and mapping sequencing reads. The raw FASTQ reads were quality checked using
FastQC v.0.11.15 (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and trimmed with
BBduk2 36.49 (33) to remove low-quality sequences and adaptors. BBduk2 settings were set as follows:
minimum read length set to 50 bp, k=19, kmin=11, tbo flag on 11, the Phred quality threshold at 20
(99% accuracy), and only right trimming (ktrim=r). Assignment of trimmed reads to reference sequen-
ces was done with global alignment using KMA 1.2.21 (34) with the following alignment parameters:
1, -2, -3, -1 for a match, mismatch, gap opening, and gap extension. Also, a value of 7 for read pairing
and a minimum relative alignment score of 0.75 were used. We used ResFinder to assess the number
of acquired AMR reads in each sample and Silva to determine the bacterial content. On average, it
took 5.7 s per metagenome for ResFinder mapping and 232.7 s for Silva mapping on a node equipped
with dual 20 core Xeon Gold 6230 CPUs clocked at 2.1 Ghz using the Danish National Supercomputer
for Life Sciences (https://www.computerome.dk).

Compositional data analysis. The collected metagenomic data have large variability in how the
samples were collected, how DNA was extracted, and how it was sequenced. Furthermore, the probabil-
ity of observing a gene also depends on the sequencing depth. To account for some of the variability,
we use read fragment counts as the gene counts for mapping against ResFinder genes, and they were
adjusted by individual gene lengths. Bacterial 16S read fragment counts from Silva mapping were aggre-
gated to a total sum for each sample and divided by a million.

Abundance tables of mcr genes were created by transforming the composition x of mcr-1 to mcr-9
length-adjusted counts ni (i = 1 . . .9) and the summed per million bacterial component nB by using the
bacterial component as the reference and log-transforming the ratios:

x ¼ ½n1; n2; . . . ; n9; nB�

Abundance xð Þ ¼ log
n1
nB

; log
n2
nB

; . . . ; log
n9
nB

� �

For the statistical analysis performed on the mapping results, we treated the mcr read fragment
counts as compositional. If we do not consider the observed counts as being relative to each sample,
statistical tests can produce faulty results. Instead, if we apply the methods of compositional data analy-
sis, this is avoided. As proposed by Aitchison (35), we log-ratio transform the counts to make the data
symmetric, linear, and in a log-ratio coordinate space.

However, before applying log-transformations, counts of zero needed to be treated. Since a zero
does not necessarily mean that a gene is absent from a sample and the logarithm of zero is an unde-
fined value, we infer the proportion pi of reads of an ARG i within a sequenced sample directly from the
observed read count ni. If we assume that each ni was sampled from a Poisson process, ni ; Poisson(l i),

Abundance ofmcr Variants in 214K Metagenomes mSystems

March/April 2022 Volume 7 Issue 2 10.1128/msystems.00105-22 12

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.computerome.dk
https://journals.asm.org/journal/msystems
https://doi.org/10.1128/msystems.00105-22


and the vector of counts follows a multinomial distribution n1; n2; . . .½ � jn� �
;Multinomialðp1; p2; . . . jnÞ,

where n ¼
X
i

ni and pi ¼ l iX
k
lk

. The posterior distribution of [p1, p1, . . . is given as the product of the

multinomial likelihood with a Dirichlet 1
2 ;

1
2 ; . . .

� �
prior. These inferred proportions will never be precisely

zero, even if the observed count is zero because of the multivariate distribution (36).
We used the centered log-ratio (CLR) transformation on the zero-replaced composition consisting of

mcr read proportions p, excluding the bacterial component:

p ¼ ½p1; p2; . . . ; p9�

CLR pð Þ ¼ log
p1

gm pð Þ ; . . . ; log
p9

gm pð Þ
� �

where gm pð Þ ¼
YD

i¼1
pi

� �1
D

; D ¼ 9 is the geometric mean of the composition. The CLR values were used

as the input for differential abundance tests and principal-component analysis, as described below.
Data visualization. Graphics visualizing abundance and relative abundances were created with

Python 3.8 with Matplotlib 3.3.2 (37) and seaborn 0.11.0 (38). Bar plots showing relative abundances
were created by closing the composition to 100. Geographical maps showing gene abundances were
created using Shapely 1 3166.7.1 (39) and Cartopy 0.18.0 (40) to translate labels from the metadata into
geographical shapes with the Natural Earth data set.

Statistical analysis. We carried out a differential abundance analysis on samples containing mcr
fragments with ALDEx2 (41) 1.18.0 in R. We aimed to identify which experimental groups showed a dif-
ference in their abundance of mcr gene read fragments compared to other groups. ALDEx2 tests for sig-
nificant differences of CLR abundance between categorical sample groups used Welch’s t test followed
by a Benjamini-Hochberg false-discovery rate (FDR) correction (42). We report significant groups of ei-
ther sample locations, host, or collection year where the FDR is ,0.05 and differential abundances were
represented in an effect plot (43) displaying the within- and between-group variation in CLR values.

Principal-component analysis (PCA) was applied to the centered, scaled by total variance, and CLR
transformed data set of mcr read proportions (44) to reduce the dimensionality of the data. The eigen-
vectors and eigenvalues from PCA were used to create a biplot, highlighting the significant sample
groups found in the differential abundance analysis.

Comparison of metagenomic abundance levels to prevalence in pathogen isolates. The NCBI
Pathogen Detection Project (45) routinely screens new isolates to identify AMR genes with the tool
AMRFinderPlus (46), which reports whether a gene was found or not in an assembled genome. We
downloaded the annotation results of 912,469 assembled genomes from NCBI’s Pathogen Detection
Resource (https://ftp.ncbi.nlm.nih.gov/pathogen/Results/, accessed 5August 2021); 7,934 (0.87%) of the
single isolates contained at least 1 of the 9 mcr variants. We reported the frequency of the number of
isolates carrying each mcr variant. Furthermore, we grouped the isolates by either sampling year, loca-
tion, or host and reported the relative count of each variant to the relative abundance levels in the
metagenomes.

Metagenomic assembly of mcr samples. We assembled metagenomes where at least one of the
mcr genes had a minimum coverage of 95% by trimmed reads, according to KMA. The trimmed reads
were assembled with MetaSPAdes 3.14.0 (47) with at least 1.2 terabytes of memory, 40 threads per
node, and a maximum runtime of 1 week. Out of 1,014 metagenomes, 145 were not assembled, as they
did not complete within the chosen time frame of a week. Contigs carrying the nine different mcr gene
variants were identified with blastn 11.0 (48) with a percentage identity of$95.

Flank analysis of metagenomic assemblies. The metagenomic contigs carrying mcr genes were
used in the flank analysis. Flanks were created by masking the mcr gene in the contig and cutting out
up- and downstream regions of increasing sizes between 1,000 bp and 30,000 bp by intervals of
1,000 bp with BEDTools (49). The presence of plasmids in the flanks was identified with PlasmidFinder
2.1 (50), and mobile elements, with MobileElementFinder 1.0.3 (51). The distance between the flanks
was calculated as the Szymkiewicz-Simpson dissimilarity with KMA (34). Hierarchical clustering on the
flank distances was done with Ward’s method (52) to create a dendrogram plotted with ggtree 2.0.4 (53)
and ggplot 3.3.3 (54). This approach is similar to the workflow of the tool Flanker by Matlock et al. (55),
except that we cluster with KMA.

Variant analysis of mcr genes. We investigated the presence of SNPs in KMA-produced consensus
sequences that matched the following minimum requirements: template coverage, $98%; depth of cover-
age, $5; query identity, $90%; and P value, #0.05. SNPs were kept if they passed the following filters,
checked with bcftools 1.13 (56): a minimum allele depth of 5 (AD) and a minimum allele frequency of 0.90
(AF). Sequences were aligned with MAFFT v7.490 (57), and phylogenetic trees were created with FastTree
v2.1.1 (58) using a nucleotide substitution model. Trees were visualized with ggtree. A visual summary of
SNPs in sequence alignments was created with snipit (https://github.com/aineniamh/snipit).

We screened all unique sequences that had at least 1 SNP difference to their template against com-
plete and draft genome sequences in GenBank with BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi,
accessed 24 January 2022). Matches were identified if they had 100% identity to the template.

Data availability. Source data for generating abundance figures and running statistical tests and
flank and variant analysis can be found in the supplementary files at https://doi.org/10.5281/zenodo
.5946866, and the supporting code is available at https://github.com/hmmartiny/mcr_metagenomes.
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