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Kidney xenotransplantation is expected to contribute to resolving the shortage of kidneys
from deceased human donors. Although progress in experimental life-supporting pig renal
xenotransplantation has been encouraging, there are still issues to be considered before a
clinical trial can be initiated. We attempted to clarify some of these by an in vitro study.
Blood was drawn from healthy volunteers (Volunteers, n=20), patients with end-stage
renal disease (ESRD, n=20) pre-operation (Pre), and on Day 1 (POD 1) and Day 14 (POD
14) after renal allotransplantation, brain-dead organ donors (DBD, n=20), and renal
allotransplant recipients who were currently experiencing T cell-mediated rejection (Allo-
TCMR, n=20). Serum IgM/IgG binding to, and complement-dependent cytotoxicity (CDC)
of, PBMCs and RBCs from (a) wild-type (WT), (b) a1,3-galactosyltransferase gene-
knockout (GTKO), (c) GTKO/beta-1,4-N-acety1 galactosaminyltransferase 2-knockout
(GTKO/b4GalNT2KO), (d) GTKO/cytidine monophosphate-N-acetylneuraminic acid
hydroxylase-knockout (GTKO/CMAHKO), and (e) GTKO/b4GalNT2KO/CMAHKO/
hCD55 (TKO/hCD55) pigs were measured by flow cytometry. We obtained the
following results: (i) Serum IgM/IgG binding and CDC in Volunteers were significantly
greater to WT, GTKO, and GTKO/b4GalNT2KO PBMCs or RBCs than to GTKO/
CMAHKO and TKO/hCD55 cells; (ii) ESRD, DBD, and Allo-TCMR serum antibody
binding and CDC to WT pig PBMCs were significantly greater than to GTKO, GTKO/
b4GalNT2KO, GTKO/CMAHKO, and TKO/hCD55 cells; (iii) antibody binding to GTKO/
CMAHKO pig cells was significantly lower in hemodialysis than peritoneal dialysis patients.
(iv) Two of twenty allotransplantation recipients’ serum IgG binding to GTKO pig PBMCs
increased on POD14 compared with Pre, but IgG binding to GTKO pig RBCs did not; (v) In
all sera, the lowest antibody binding and CDC were to GTKO/CMAHKO and TKO/CD55
pig cells. We conclude (i) CMAHKO in the pig may be critical to the success of clinical pig
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Abbreviations: Allo-TCMR, allograf
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human complement-regulatory protein, C
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kidney xenotransplantation, and may be the most important after GTKO, at least in
Chinese patients; (ii) subjects with ESRD, or who are immunosuppressed after kidney
allotransplantation, and DBD, have lower levels of antibody binding and CDC to
genetically-engineered pig cells than do volunteers; (iii) TKO pigs with selected human
‘protective’ transgenes, e.g., CD55, are likely to prove to be the optimal sources of
kidneys for clinical xenotransplantation.
Keywords: brain-dead organ donors, complement-mediated cytotoxicity, end-stage renal disease, kidney,
pig, xenotransplantation
INTRODUCTION

There is a critical shortage of deceased human donor organs for
transplantation in patients with end-stage renal disease (ESRD)
(1). Genetically-engineered pigs are a potential alternative source
of kidneys for these patients. Pig-to-nonhuman primate kidney
transplantation Is now associated with encouraging results with
recipient and graft survival extending to >1 year in several cases
(2–4). However, there are still some major issues that must be
resolved before a clinical trial can be initiated, e.g., (i) what
genetically-modified pigs should be the sources of kidneys for
clinical renal xenotransplantation; and (ii) whether a new
xenotransplantation model needs to be identified because of
differences in antibody binding and complement-dependent
cytotoxicity (CDC) to pig cells between humans and Old
World monkeys (OWMs) (5).

Pigs that do not express Gal or Sda (GTKO/b4GalNT2KO
pigs), with or without added human transgenes, may be the
optimal source of organs for OWMs (Table 1), whereas pigs in
which expression of all 3 known carbohydrate xenoantigens has
been deleted [triple-knockout (TKO) pigs], with or without
added human transgenes, are likely to be optimal for human
recipients (5–8). Humans have low (or no) antibody levels and
CDC to cells from TKO pigs.

Whether or not swine leukocyte antigen (SLA) expression
needs to be deleted remains uncertain. SLA is the homolog of
human leukocyte antigen (HLA), a protein complex expressed
on human tissue capable of stimulating the development of new
antibodies in allotransplantation. Some in vitro studies have
indicated that HLA-sensitized patients will not be at greater
risk of rejecting a pig organ than HLA-non-sensitized patients
(9–14), but other studies indicate that HLA-sensitized patients
have a greater risk of rejecting a pig organ (15–17), and so it
would be prudent not to select HLA-sensitized patients for the
first clinical trials of pig kidney transplantation (18).
t recipients who were currently
; b4GalNT2KO, beta-1,4-N-acety1
AHKO, cytidine monophosphate-N-
kout; CDC, complement-dependent
RD, end-stage renal disease; GTKO,
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Subjects with brain-death (DBD subjects) are a frequent
source of organs for transplantation, and transplantation of a
pig organ into a brain-dead human recipient has recently been
carried out (19). However, brain death is associated with
dysfunction of the cardiovascular, pulmonary, endocrine,
thermoregulation, renal, hematologic and inflammatory
systems (20–23). If DBD subjects are used as recipients in
preclinical models of pig renal xenotransplantation, there is
concern that these pathophysiological consequences may affect
the xenograft, e.g., by activation of T and B lymphocytes, release
of cytokines, etc. (19).

The aims of the present study were (i) to measure serum anti-
pig antibodies in healthy human volunteers, patients with ESRD
pre- and post-renal allotransplantation, DBD subjects, and
patients with renal allografts who were currently experiencing
acute T cell-mediated rejection (Allo-TCMR), and (ii) to provide
further data to help select pigs with the optimal genotype for
clinical renal xenotransplantation.
MATERIALS AND METHODS

Human Sera
Blood was drawn from (i) healthy volunteers (Volunteers, n=20;
ABO blood types A n=6; B n=6; AB n=3; O n=5), (ii) patients
with ESRD (n=20), pre-renal transplantation (Pre) and on Day 1
(POD 1) and Day 14 (POD 14) after renal allotransplantation,
TABLE 1 | Sources of human sera and types of pig cells used in these studies.

Human sera tested (and abbreviations used)
1. Healthy volunteers (Volunteers)
2. Patients with end-stage renal disease (ESRD) pre-kidney allotransplantation

(Pre), and post-kidney allotransplantation on day 1 (POD1) and on day 14
(POD14)

3. Brain-dead organ donors (DBD)
4. Patients with kidney allografts that were currently experiencing acute T cell-

mediated rejection (Allo-TCMR).
Pig cells (PBMCs and RBCs) tested (and abbreviations used)
1. Wild-type (WT, i.e., genetically-unmodified)
2. a1,3-galactosyltransferase gene-knockout (GTKO)
3. GTKO/b-1,4N-acetylgalactosaminyltransferase gene-knockout (GTKO/

b4GalNT2KO)
4. GTKO/cytidine monophosphate-N-acetylneuraminic acid hydroxylase gene-

knockout (GTKO/CMAHKO).
5. Triple knockout (i.e., GTKO/b4GalNT2KO/CMAHKO) + transgenic expression

of the human complement-regulatory protein, CD55 (TKO/hCD55).
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(iii) brain-dead organ donors (DBD, n=20) and (iv) patients with
renal allografts who were currently experiencing episodes of
acute T cell-mediated rejection (Allo-TCMR, n=20) (Table 1).
Sera were obtained from de-identified remnant/discarded
clinical laboratory samples.

Sera from Volunteers were obtained from the Second
Affiliated Hospital of Hainan Medical University, and all
experimental protocols were approved by the ethics committee
of the Second Affiliated Hospital of Hainan Medical University.
All procedures involving humans were performed in accordance
with the relevant guidelines and regulations, and had no adverse
effects on the subjects.

Pigs
Blood was obtained from wild-type (WT, i.e., genetically-
unmodified) pigs (n=4) and from different genetically-modified
pigs (n=4) (Table 1) (Chengdu Clonorgan Biotechnology,
Chengdu, Sichuan, China).

Detection of Expression of Xenoantigens
on Selected Pig Cells by Flow Cytometry
Pig RBCs and PBMCs were stained for expression of Gal (by
isolectin BSI-B4), Sda (Dolichos biflorus agglutinin,DBA),
Neu5Gc (chicken anti-Neu5Gc mAb), and SLA (anti-human
b2-microglobulin antibody, b2M).

Binding of Human Serum IgM and IgG to
pRBCs and pPBMCs by Flow Cytometry
Binding of human antibodies to pig cells was measured by flow
cytometry using the relative geometric mean (rGM), as previously
described (11). Briefly, pRBCs were separated from whole blood,
washed x3 with phosphate-buffered saline (PBS), and centrifuged
at 700g for 5min at 4°C. The washed RBCs were suspended in
fluorescence-activated cell sorting (FACS) buffer (PBS containing
1% bovine serum albumin). pPBMCs were isolated using Ficoll
(HaoYang, Tianjin, China) and suspended in FACS buffer for
IgM/IgG binding assays. The isolated pRBCs (5x105/tube) and
pPBMCs (5x105/tube) were incubated with heat-inactivated
human serum at 4°C for 30min, respectively, and the final
serum concentration was 20%. After incubation, cells were
washed with PBS to remove unbound antibodies and were
blocked with 10% goat serum for 15min at 4°C. After further
washing with PBS, anti-human IgM or anti-human IgG (Jackson
ImmunoResearch Laboratories, West Grove, PA, USA) (IgG:
concentration 1:1000 for pRBCs and pPBMCs; IgM:
concentration 1:1600 for pRBCs and pPBMCs) was added, and
the cells were incubated for 30min at 4°C. After washing with PBS,
100mL PBS buffer was added. Flow cytometry was carried out
using BD FACSCelesta (Becton Dickinson, San Jose, CA, USA).

Human Serum CDC of Pig PBMCs by
Flow Cytometry
Briefly, PBMCs (5×105 cells in 250μL FACS buffer) were
incubated with 50μL heat-inactivated human serum at 4°C for
1h. After washing with PBS, FACS buffer (200μL) and rabbit
complement (50μL, Cedarlane, Hornby, CA, USA) were added
Frontiers in Immunology | www.frontiersin.org 3
(final concentration 20%), and incubation was carried out at
37°C for 30min. After washing with PBS, the cells were incubated
in the dark at 4°C for 15min with propidium iodide, and finally
200μL FACS buffer was added. Flow cytometry was carried out
using BD FACSCelesta.

Cytotoxicity was calculated, as follows (11):

%  cytotoxicity = (½A − C�=½B − C�)� 100

where A represented the percentage of dead cells, B was the
maximal percentage of dead cells (PBMCs fixed with 70%
ethanol), and C was the minimal percentage of dead cells
(PBMCs incubated with medium only).

Statistical Analysis
Significance of the difference between two groups was
determined by student t-test or Wilcoxon test. Continuous
variables were expressed as mean ± SD. Comparisons among
multiple groups were performed using a One-way ANOVA test
(Tukey test) or nonparametric test (Dunn’s test). A p value
of <0.05 was considered statistically significant. All statistical
analyses were performed using social sciences software
GraphPad Prism 8 (GraphPad Software, San Diego, CA, USA).
RESULTS

Expression of Gal, Sda, Neu5Gc, and SLA
on Pig PBMCs and/or RBCs
PBMCs
PBMCs from WT pigs expressed Gal, Sda, Neu5Gc, and SLA
(Figure 1A). As anticipated, PBMCs from a GTKO pig did not
express the Gal antigen, but expressed Sda andNeu5Gc. Those from
a GTKO/b4GalNT2KO pig did not express Gal or Sda, but
expressed Neu5Gc. Those from a GTKO/CMAHKO pig did not
express Gal or Neu5Gc, but expressed Sda. And those from a TKO/
hCD55 pig did not express any of the 3 carbohydrate xenoantigens,
but expressed hCD55. Neu5Gc that was still expressed a small
amount in GKTO/CMAHKO and TKO/hCD55 pig PBMCs was a
false positive which was caused by Rabbit anti-Chicken IgY/Alexa
Fluor 555 antibody (Supplemental Material).

There was a positive expression The false positive expression
of Neu5Gc on GTKO/CMAHKO and TKO/hCD55 pig PBMCs
were caused by Rabbit anti-Chicken IgY/Alexa Fluor 555
antibody (Supplemental Material).

RBCs
Expression of xenoantigens on RBCs from all of the above pigs
followed the same pattern as that to PBMCs except that they did
not express SLA or hCD55 (Figure 1B).

Effect of Different Human Sera on IgM and
IgG Binding and CDC to WT and Various
Genetically-Modified Pig PBMCs by Flow
Cytometry
The aim was to compare the binding of different human sera to
various pig PBMCs.
March 2022 | Volume 13 | Article 844632
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d TKO/hCD55 pig PBMCs and RBCs by flow cytometry. (A) PBMCs and (B) RBCs from
. GTKO/CMAHKO expressed Sda. TKO/hCD55 PBMCs (but not RBCs) expressed hCD55.
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FIGURE 1 | Expression of Gal, Sda, Neu5Gc, SLA, and hCD55 on WT, GTKO, GTKO/b4GalNT2KO, GTKO/CMAHKO an
WT pigs expressed Gal, Sda, and Neu5Gc. GTKO expressed Sda and Neu5Gc. GTKO/b4GalNT2KO expressed Neu5Gc
All PBMCs expressed SLA, but RBCs did not express SLA.
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IgM Binding
Mean IgM binding to WT, GTKO and GTKO/b4GalNT2KO
PBMCs was significantly greater in Volunteers than in the other
three sera. Mean IgM binding to GTKO/CMAHKO and TKO/
hCD55 PBMCs was minimal and not significantly different
between all four groups of sera (Volunteers, ESRD, DBD, and
Allo-TCMR) (Figure 2A).

IgG Binding
Mean IgG binding to WT, GTKO and GTKO/b4GalNT2KO
PBMCs was significantly greater in Volunteers than in the other
three sera. No sera showed more than minimal binding to
GTKO/CMAHKO and TKO/CD55 PBMCs (Figure 2B).

CDC
Mean serum CDC to GTKO/CMAHKO and TKO/hCD55 pig
PBMCs was not significantly different between Volunteers,
ESRD, DBD, and Allo-TCMR (Figure 2C). However, mean
Frontiers in Immunology | www.frontiersin.org 5
CDC to WT, GTKO and GTKO/b4GalNT2KO pig PBMCs
was significantly greater in Volunteers than in ESRD, DBD,
and Allo-TCMR. CDC of GTKO/CMAHKO PBMCS was low or
negative in all sera, and almost no sera caused any killing of
TKO/CD55 PBMCs.

Effect of Different Human Sera on
IgM and IgG Binding to WT and
Various Genetically-Modified Pig
RBCs by Flow Cytometry
The aim was to compare the binding of different human sera to
various pig RBCs.

IgM Binding
Mean IgM binding to WT, GTKO and GTKO/b4GalNT2KO
RBCs was significantly greater in Volunteers compared with
ESRD, DBD, and Allo-TCMR. Mean IgM binding to GTKO/
CMAHKO and TKO/hCD55 RBCs was minimal in all sera and
A

B

C

D

E

FIGURE 2 | Continued
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FIGURE 2 | Effect of different human sera on IgM and IgG binding and CDC to various pig PBMCs and RBCs and effect of genetic-engineering of pig PBMCs and
RBCs on human IgM and IgG binding and CDC by flow cytometry. Comparison of mean (A) IgM/(B) IgG binding and (C) CDC of sera from Volunteers, ESRD, DBD
and Allo-TCMR to WT, GTKO, GTKO/b4GalNT2KO, GTKO/CMAHKO, and TKO/hCD55 pig PBMCs. Mean of (D) IgM and (E) IgG comparing binding of sera from
Volunteers, ESRD, DBD, and Allo-TCMR to WT, GTKO, GTKO/b4GalNT2KO, GTKO/CMAHKO, and TKO/hCD55 pig RBCs. (*p <0.05, **p<0.01, ***p<0.005,
****p<0.001). Volunteers had very low levels of IgM/IgG binding and CDC to GTKO/CMAHKO and TKO/hCD55 pig PBMCs (F-H) or RBCs (I, J). IgM and IgG
binding and CDC to GTKO, GTKO/b4GalNT2KO, GTKO/CMAHKO, and TKO/hCD55 PBMCs (F–H) or RBCs (I, J) were low in sera from ESRD, DBD, and Allo-
TCMR. (*p<0.05, **p<0.01, ***p<0.005, ****p<0.001).
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was not significantly different between all four groups of
sera (Figure 2D).

IgG Binding
Mean IgG binding to WT was significantly greater in Volunteers
compared with ESRD an Allo-TCMR. Mean IgG binding to
GTKO and GTKO/b4GalNT2KO RBCs was significantly greater
in Volunteers than in ESRD, DBD, and Allo-TCMR. Mean IgG
binding was absent or minimal to GTKO/CMAHKO and TKO/
CD55 RBCs (Figure 2E).

The Effect of Genetic-Engineering of Pig
PBMCs on Human IgM and IgG Binding
and CDC by Flow Cytometry
The data presented in relation to differences in binding of various
human sera to pig cells (Figures 2A–E) were re-presented to
more clearly illustrate the effect of different pig genotypes
(Figures 2F–J).

IgM Binding
Mean IgM binding in serum from Volunteers to WT, GTKO,
and GTKO/b4GalNT2KO PBMCs was significantly greater than
to GTKO/CMAHKO and TKO/hCD55 PBMCs. Mean IgM
binding in serum from ESRD to WT PBMCs was significantly
greater than to GTKO, GTKO/b4GalNT2KO, GTKO/
CMAHKO and TKO/hCD55 PBMCs, and mean IgM binding
to GTKO PBMCs was significantly greater than to TKO/hCD55
PBMCs. Mean IgM binding in serum from DBD and Allo-
Frontiers in Immunology | www.frontiersin.org 7
TCMR to WT PBMCs was significantly greater than to GTKO/
b4GalNT2KO, GTKO/CMAHKO and TKO/hCD55 PBMCs,
and the mean IgM binding to GTKO PBMCs was significantly
greater than to GTKO/CMAHKO and TKO/hCD55 PBMCs,
what’s more, Mean IgM binding in serum from Allo-TCMR to
GTKO/b4GalNT2KO PBMCs was significantly greater than to
GTKO/CMAHKO and TKO/hCD55 PBMCs (Figure 2F).

In healthy human sera (Volunteers), mean IgM binding was
reduced by approximately 20% by GTKO (compared to WT),
but by approximately 80% by CMAHKO (WT vs GTKO: 199 vs
138, p=ns; WT vs CMAHKO: 199 vs 4, p<0.001) (Figure 2F).

IgG Binding
Mean IgG binding was almost lower than mean IgM binding in all
sera (Figure 3A). Mean IgG binding in Volunteers to WT, GTKO
and GTKO/b4GalNT2KO PBMCs was significantly greater than
to GTKO/CMAHKO and TKO/hCD55 PBMCs. Mean IgG
binding in ESRD and DBD to WT PBMCs was significantly
greater than to GTKO, GTKO/b4GalNT2KO, GTKO/
CMAHKO and TKO/hCD55 PBMCs. Mean IgG binding in
serum from Allo-TCMR to WT PBMCs was significantly greater
than to GTKO/b4GalNT2KO, GTKO/CMAHKO and TKO/
hCD55 PBMCs (Figure 2G). In all sera, binding to GTKO/
CMAHKO and TKO/CD55 PBMCs was minimal or absent.

In healthy human sera (Volunteers), mean IgG binding was
reduced by approximately 5% by GTKO (compared to WT) but
by approximately 90% by CMAHKO (WT vs GTKO: 100 vs 58,
p=ns; WT vs CMAHKO: 100 vs 1, p<0.01)
A

B

FIGURE 3 | Comparison of serum IgM and IgG binding to PBMCs and RBCs. All human subjects had lower levels of IgG binding (compared to IgM) to WT, GTKO,
GTKO/b4GalNT2KO, GTKO/CMAHKO, and TKO/hCD55 PBMCs (A) and RBCS (B). (*p<0.05, **p<0.01, ***p<0.005, ****p<0.001).
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CDC
Although there were many variations in CDC depending on the
serum and the source of PBMCs (Figure 2H), the most obvious
finding was that CDC to GTKO/CMAHKO and, particularly,
TKO/CD55 PBMCs was generally low or absent.

In healthy human sera (Volunteers), mean CDC was reduced
by approximately 10% by GTKO (compared to WT) but by
approximately 80% by CMAHKO (WT vs GTKO: 97 vs 88,
p=ns; WT vs CMAHKO: 97 vs 25, p<0.001).

The Effect of Genetic-Engineering
of Pig RBCs on Human IgM and IgG
Binding by Flow Cytometry
IgM Binding
Mean serum IgM binding followed the same pattern as for IgM
binding to PBMCs, with minimal binding to GTKO/CMAHKO
and TKO/CD55 RBCs in all sera (Figure 2I).

IgG Binding
Mean serum IgG binding was lower in all sera than IgM binding
(Figure 3B). Binding was greatest in the sera from Volunteers,
but again was minimal to GTKO/CMAHKO and TKO/CD55
RBCs (Figure 2J).

Comparison of IgM/IgG Antibody
Binding and CDC to Pig PBMCs or RBCs
Between Hemodialysis Patients and
Peritoneal Dialysis Patients
Patients with ESRD were divided into 2 groups based on whether
they were undergoing hemodialysis (n=15) or peritoneal
dialysis (n=5).

IgM/IgG Binding
There were no significant differences in IgM/IgG binding to WT,
GTKO, GTKO/b4GalNT2KO, and TKO/hCD55 PBMCs and
RBCs between hemodialysis and peritoneal dialysis patients
(Figure 4), but serum IgM binding to GTKO/CMAHKO
PBMCs and RBCs was significantly lower in hemodialysis
patients than in peritoneal dialysis patients.

CDC
There was no significant difference in CDC to any cell type
between hemodialysis and peritoneal dialysis patients (Figure 4).

Changes in the Levels of IgM and IgG
Binding in Patients With ESRD Who
Underwent Kidney Allotransplantation
Serum samples from renal allotransplant recipients were
collected pretransplant (Pre), and on POD1 and POD14, and
the levels of anti-pig IgM and IgG antibodies were measured
(Figure 5). In the majority of patients (n=18), there was no
change in IgM/IgG binding to PBMCs or RBCs between Pre,
POD 1, and POD 14, although in some patients anti-pig IgM/IgG
decreased transiently on POD1, but recovered to Pre levels by
POD14. (This may possibly be related to hemodilution by
perioperative fluid infusion.) However, in 2 of the recipients
Frontiers in Immunology | www.frontiersin.org 8
(red dot), serum IgG binding to GTKO PBMCs increased by
POD14, compared with Pre and POD1. There was no change in
IgG binding to GTKO RBCs (that do not express SLA), nor in
binding to PBMCs and RBCs from the other pig genotypes.

Influence of ABO Blood Type of Healthy
Human Volunteers on Serum IgM and IgG
Binding and CDC to WT and Various
Genetically-Modified Pig PBMCs or RBCs
by Flow Cytometry
Healthy volunteers were divided into 4 groups based on ABO
blood type.

IgM/IgG Binding
There were no significant differences in IgM/IgG binding to WT,
GTKO, GTKO/b4GalNT2KO, and TKO/hCD55 PBMCs and
RBCs in relation to ABO blood type, but IgM binding to
GTKO/CMAHKO RBCs was significantly lower in sera from
subjects with A blood type compared to those with O blood
type (Figure 6).

CDC
There was no significant difference in serum CDC between
subjects of the four blood types (Figure 6).
DISCUSSION

Effect of CMAHKO
The first important observation in this study was that our data
showed that healthy volunteer serum IgM binding to WT,
GTKO, GTKO/b4GalNT2KO PBMCs was significantly greater
than to CMAHKO and TKO/hCD55 PBMCs, strongly
suggesting that CMAHKO will be important for clinical renal
xenotransplantation, as others have also reported (24, 25).
However, deletion of expression of Neu5Gc appeared to play a
more important role in reducing human antibody binding to the
pig cells than deletion of expression of Gal, which is in contrast to
some previous studies in which GTKO had a much greater
impact than CMAHKO on IgM binding (14, 26). The reduction
in IgM and IgG binding to GTKO pig cells when compared to
WT cells was less than reported in most previous studies (25),
but, in contrast, the reduction in binding and CDC was
significantly greater after deletion of expression of Neu5Gc.
This is most likely explained by differences in the antibody
profiles of the Chinese participants in this study compared
with those of some other ethnic groups.

Neu5Gc is expressed in pigs, apes and OWMs, but not in
humans (27–29), and therefore only humans develop anti-
Neu5Gc antibodies (30). Gao and her colleagues drew
attention to the fact that natural antibodies are largely
associated with exposure to glycans expressed on flora in the
gastrointestinal tract (26), as suggested by others previously (31).
In humans, anti-Neu5Gc antibodies develop during the first 6
months of life, and reach adult levels by the end of the first year
(32). Both anti-Neu5Gc IgM and IgG increase soon after the
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infant is exposed to cow’s milk and baby foods containing red
meat, which express Neu5Gc (32).

All of the subjects from whom blood was drawn in the present
study were Chinese and had been resident in China throughout
most of their lives, whereas those in other reported studies were
from a variety of ethnic and geographic backgrounds. This
suggests that maybe in Chinese patients (or in patients who
have been exposed to Chinese environmental factors, e.g., diet,
for a prolonged period of time), an absence of expression of
Neu5Gc in the pig organ may be as important, if not more
important, than absence of expression of Gal.

We therefore suggest that the Chinese subjects included in the
present study expressed different gastrointestinal flora (perhaps
based on differences in diet), than other groups that have been
studied in other geographic regions (26, 33), thus rendering
Neu5Gc a more important stimulus to natural antibody
production. However, of interest, no correlation between diet
and anti-pig antibody levels was found in a previous study in
Taipei (34). There may other ‘ethnic’ or ‘environmental’
differences in other population groups that have not yet
been investigated.

There are increasing in vitro data indicating that TKO pig
organs will prove to be a major advance over GTKO organs for
transplantation into humans (5, 7, 35) which is consistent with
our conclusions from the present study.
Frontiers in Immunology | www.frontiersin.org 9
Healthy Human Volunteers vs
Other Groups
A second major observation made in this study was that (i)
patients with ESRD, brain-dead donors, and immunosuppressed
patients with kidney allografts generally had significantly lower
levels of anti-pig antibodies than healthy human volunteers,
except in regard to WT pig cells. The trends in CDC were
similar to those of IgM and IgG. In addition, the ABO blood type
of the donor of the serum appeared to play no part in influencing
the results.

The clinical impact of ESRD on anti-pig immunity remains to
some extent uncertain because immune dysfunction in ESRD
includes both immunoactivation and immunosuppression.
Heparin-induced antibodies (HIA) (36, 37) and anticardiolipin
antibodies (IgG-ACA) (38) are elevated in ESRD and the
complement system can be activated (39, 40). However, It is
well-recognized that ESRD patients are to some extent
immunocompromised (41, 42), e.g., reduced number of NK
cells, reduced phagocytic activity of neutrophils (43). Anti-pig
antibodies are low in infants (44) and in patients with ESRD (14),
the last of which observations is consistent with our
present results.

Patients with kidney allografts are receiving chronic
immunosuppressive therapy, and presumably this has
prevented an increase in antibody levels even though T cell
A

B

FIGURE 4 | Comparison of serum IgM/IgG binding and CDC to PBMCs or RBCs from WT, GTKO, GTKO/b4GalNT2KO, GTKO/CMAHKO and TKO/hCD55 pig in
patients receiving hemodialysis or peritoneal dialysis. (A) There were no differences in IgM/IgG binding or CDC to WT, GTKO, GTKO/b4GalNT2KO, and TKO/hCD55
PBMCs, but IgM binding to GTKO/CMAHKO to PBMCs was significantly lower in hemodialysis patients. (B) There were no differences in IgM/IgG binding to WT,
GTKO, GTKO/b4GalNT2KO, GTKO/CMAHKO, and TKO/hCD55 RBCs, but IgM binding to GTKO/CMAHKO to RBCs was again significantly lower in hemodialysis
patients. (*p<0.05; ns=not significant).
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activation had taken place in the patients we studied. The
explanation in brain-dead donors is not so obvious, but may
be associated with the infusion of fluids to maintain an adequate
hemodynamic state, resulting in hemodilution.

However, there was no difference in serum IgM/IgG binding
to GTKO/CMAHKO and TKO/hCD55 PBMCs or RBCs in the 4
groups, indicating that the effect of deletion of Neu5Gc
expression on the pig cell was sufficient to reduce antibody
binding and CDC to negligible levels whatever the source of
the serum. Expression of CD55 on TKO pig PBMCs further
reduced CDC of the cells.

Hemodialysis vs Peritoneal Dialysis
Our data showed that there was no significant difference in
serum IgM/IgG binding to any of the pig cell types between
hemodialysis and peritoneal dialysis patients, with the exception
of lower IgM binding to GTKO/CMAHKO cells in patients on
Frontiers in Immunology | www.frontiersin.org 10
hemodialysis. This suggests that hemodialysis might remove
anti-b4GalNT2 antibodies. However, it is unlikely that
hemodialysis directly removes antibodies since standard
hemodialysis filters typically have a cut-off size of between 10–
20 kDa, whereas IgM/IgG molecules are >150 kDa, and are thus
not removed by hemodialysis (45).

Experimental Models of Pig
Organ Xenotransplantation
As is well-known, the most widely used xenotransplantation model
is the genetically-modified pig-to-OWM. A major difference
between humans and OWMs is that OWMs express Neu5Gc on
the vascular endothelium, whereas humans do not. OWMs,
therefore, are far from ideal models for xenotransplantation, as
there is markedly increased OWM serum antibody binding
and CDC to TKO pig cells. Although New World monkeys have
some advantage in this respect (5), their small size and the
A

B

C

D

FIGURE 5 | Changes in IgM and IgG binding to pig cells in patients with ESRD pre and early post-renal allotransplantation. Serum samples from renal allotransplant
recipients were collected Pre, and on POD1 and POD14 to measure IgM (A) and IgG (B) binding to pig PBMCs or to pig RBCs (C, D). In the majority of cases,
there were no significant changes in binding between the time-intervals, although in some there was a transient reduction in IgM and IgG binding on POD1 (possibly
associated with hemodilution or binding to the pig cells) that had recovered to Pre levels by POD14. In two sera, IgG binding to GTKO PBMCs increased on POD14
compared with Pre and POD1, but there was no change in binding to GTKO RBCs, nor to pig cells of other genotypes. (ns, not significant).
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ineffectiveness of some immunosuppressive drugs in them negates
their suitability as a surrogate recipient for pig organ
transplantation (46–50). Is there an alternative recipient as a
surrogate for living humans?

Could DBD subjects be used as recipients in preclinical studies
of xenotransplantation? Our data indicate that their levels of
anti-pig antibodies are significantly lower than healthy
volunteers (possibly associated with hemodilution through the
need for fluid administration to maintain hemodynamic
stability), and comparable to those in patients with ESRD.
However, activation of innate immunity and inflammation can
occur in brain-dead subjects (21). This observation, and because
of their hemodynamic instability that may limit follow-up to
days rather than months, reduces their suitability as potential
surrogates for living recipients (51, 52).

Our observation that 2 of 20 patients undergoing kidney
allotransplantation developed increased anti-pig antibody
binding on POD14 may suggest that, at least in some patients,
there may be cross-reactivity between anti-HLA antibodies
and SLA epitopes, but the data are too few to draw any
definite conclusions. (Unfortunately, anti-HLA antibodies were
not investigated.)

Conclusions
In summary, on the basis of the present study, (i) CMAHKO
in the pig may be critical to the success of clinical pig
kidney xenotransplantation, and may be the most important
after a1,3-galactosyltransferase gene be knockout, at least
in Chinese patients; (ii) subjects with ESRD, or who are
immunosuppressed after kidney allotransplantation, and brain-
dead organ donors, all have lower levels of antibody binding and
CDC to genetically-engineered pig cells than do healthy human
volunteers; (iii) brain-dead subjects may mimic ESRD patients in
Frontiers in Immunology | www.frontiersin.org 11
that they both have low levels of anti-pig antibody levels, but
experimental pig organ transplants in this group are unlikely to
provide significant information of real value; (iv) TKO pigs
with selected human ‘protective’ transgenes, e.g., CD55, are
likely to prove to be optimal sources of kidneys for clinical
xenotransplantation. (v) The role of SLAKO or SLA knockdown
remains uncertain.
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