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DeepRank: a deep learning framework for data
mining 3D protein-protein interfaces
Nicolas Renaud1, Cunliang Geng 1,2, Sonja Georgievska 1, Francesco Ambrosetti 2, Lars Ridder 1,

Dario F. Marzella 3, Manon F. Réau2, Alexandre M. J. J. Bonvin 2✉ & Li C. Xue 2,3✉

Three-dimensional (3D) structures of protein complexes provide fundamental information to

decipher biological processes at the molecular scale. The vast amount of experimentally and

computationally resolved protein-protein interfaces (PPIs) offers the possibility of training

deep learning models to aid the predictions of their biological relevance. We present here

DeepRank, a general, configurable deep learning framework for data mining PPIs using 3D

convolutional neural networks (CNNs). DeepRank maps features of PPIs onto 3D grids and

trains a user-specified CNN on these 3D grids. DeepRank allows for efficient training of 3D

CNNs with data sets containing millions of PPIs and supports both classification and

regression. We demonstrate the performance of DeepRank on two distinct challenges: The

classification of biological versus crystallographic PPIs, and the ranking of docking models.

For both problems DeepRank is competitive with, or outperforms, state-of-the-art methods,

demonstrating the versatility of the framework for research in structural biology.
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H ighly-regulated protein-protein interaction networks
orchestrate most cellular processes, ranging from DNA
replications to viral invasion and immune defense. Pro-

teins interact with each other and other biomolecules in specific
ways. Gaining knowledge on how those biomolecules interact in
3D space is key for understanding their functions and exploiting
or engineering these molecules for a wide variety of purposes such
as drug design1, immunotherapy2, or designing novel proteins3.

In the past decades, a variety of experimental methods (e.g.,
X-ray crystallography, nuclear magnetic resonance, cryogenic
electron microscopy) have determined and accumulated a large
number of atomic-resolution 3D structures of protein-protein
complexes (>7000 non-redundant structures in the PDBe
databank (https://www.ebi.ac.uk/pdbe/) as of Sep. 2nd 2020).
Numerous machine learning methods4, and recently several deep
learning techniques5–7, have been developed to learn complicated
interaction patterns from these experimental 3D structures.
Unlike other machine learning techniques, deep neural networks
hold the promise of learning from millions of data without
reaching a performance plateau quickly, which is computationally
tractable by harvesting hardware accelerators (such as GPUs,
TPUs) and parallel file system technologies. Wang et al5. have
trained 3D deep convolutional networks (CNNs) on 3D grids
representing protein-protein interfaces to evaluate the quality of
docking models (DOVE). Gaiza et al6. have recently applied
Geodesic CNNs to extract protein interaction fingerprints by
applying 2D ConvNets on spread-out protein surface patches
(MaSIF). Graph Neural Networks (GNNs)8, representing protein
interfaces as graphs, have also been applied to predict protein
interfaces7. Finally, rotation-equivariant neural networks have
recently been used by Eisman et al. on point-based representation
of the protein atomic structure to classify PPIs9. One outstanding
illustration of the potential of deep neural networks in structural
biology is the recent breakthrough in single-chain protein struc-
ture predictions by AlphaFold210–12 in the latest CASP14 (Cri-
tical Assessment of protein Structure Prediction round 14).
Predicting the 3D structure of protein complexes remains how-
ever an open challenge: in CASP14 no single assembly was cor-
rectly predicted unless a known template was available. This calls
for open-source frameworks that can be easily modified and
extended by the community for data mining protein complexes
and can expedite knowledge discovery on related scientific
questions.

Data mining 3D protein complexes presents several unique
challenges. First, protein interfaces are governed by physico-
chemical rules. Different types of protein complexes (e.g.,
enzyme-substrate, antibody-antigen) may have different domi-
nant interaction signatures. For example, some complexes may be
driven by hydrophobicity, and others by electrostatic forces.
Second, protein interactions can be characterized at different
levels: Atom-atom level, residue-residue level, and secondary
structure level. Third, protein interfaces are highly diverse in
terms of shapes, sizes, and surface curvatures. Finally, efficient
processing and featurization of a large number of atomic coor-
dinates files of proteins is daunting in terms of computational
cost and file storage requirements. There is therefore an emerging
need for generic and extensible deep learning frameworks that
scientists can easily re-use for their particular problems, while
removing tedious phases of data preprocessing. Such generic
frameworks have already been developed in various scientific
fields ranging from computational chemistry (DeepChem13) to
condensed matter physics (NetKet14) and have significantly
contributed to the rapid adoption of machine learning techniques
in these fields. They have stimulated collaborative efforts, gen-
erated new insights, and are continuously improved and main-
tained by their respective user communities.

Here we introduce DeepRank, a generic deep learning platform
for data mining protein-protein interfaces (PPIs) based on 3D
CNNs. DeepRank maps atomic and residue-level features calcu-
lated from 3D atomic coordinates of biomolecular complexes in
Protein Data Bank15 (PDB, www.wwpdb.org) format onto 3D
grids. DeepRank applies 3D CNN on these grids to learn
problem-specific interaction patterns for user-defined tasks. The
architecture of DeepRank is highly modularized and optimized
for high computational efficiency on very large datasets up to
millions of PDB files. It allows users to define their own 3D CNN
models, features, target values (e.g., class labels), and data aug-
mentation strategy. The platform can be used both for classifi-
cation, e.g., predicting an input PPI as biological or a crystal
artifact, and regression, e.g., predicting binding affinities.

In the following, we first describe the structure of our Dee-
pRank framework. To demonstrate its applicability and potential
for structural biology, we apply it to two different research
challenges. We first present the performance of DeepRank for the
classification of biological vs. crystallographic PPIs. With an
accuracy of 86%, DeepRank outperforms state-of-the-art meth-
ods, such as PRODIGY-crystal16,17 and PISA18, which respec-
tively reach an accuracy of 74 and 79%. We then present the
performance of DeepRank for the scoring of models of protein-
protein complexes generated by computational docking. We
show here that DeepRank is competitive and sometimes out-
performs three state-of-the-art scoring functions: HADDOCK19,
iScore20,21, and DOVE5.

Results
Description of DeepRank. DeepRank is built as a Python 3
package that allows end-to-end training on datasets of 3D
protein-protein complexes. The overall architecture of the pack-
age can be found in Supplementary Note 1 together with details
regarding its implementation. The framework consists of two
main parts, one focusing on data pre-processing and featurization
and the other on the training, evaluation, and testing of the neural
network. The featurization exploits MPI parallelization together
with GPU offloading to ensure efficient computation over very
large data sets.

Data pre-processing and featurization:

1. Feature calculations. Starting from the PDB files that
describe the 3D structures of protein-protein complexes,
DeepRank leverages pdb2sql22, our fast and versatile PDB
file parser using Structured Query Language (SQL), to
identify interface residues between the two chains. Interface
residues are by default defined as those with any atoms
within a 5.5 Å distance cutoff (configurable) from any atom
of another chain (Fig. 1A). The atomic and residue-based
features presented in Table 1 are by default calculated, but
users can easily define new features and include them in
their feature calculation workflow.

2. 3D grid feature mapping. DeepRank maps the atomic
and residue features of the interface of a complex onto a 3D
grid using a Gaussian mapping (see Methods). The grid
size and resolution can be adjusted by users to suit their
needs. Fig. 1A illustrates the mapping process for a residue-
based feature (see the Methods section for explanations).
Thanks to this gaussian mapping, each feature has a non-
local effect on the 3D feature grid, contributing to a
multitude of grid points. This feature mapping of the PPIs
results in a 3D image where each grid point contains
multiple channel values corresponding to different proper-
ties of the interface. Several data augmentation and PPIs
structure alignment strategies are available to enrich the
dataset.
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3. Flexible target value definitions and calculations. Users may
easily define problem-specific target values for their protein
structures. For the scenario of computational docking,
standard metrics to evaluate the quality of a docking model,
i.e., by comparison to a reference structure, as used in the
CAPRI (Critical Assessment of PRedicted Interactions)23,
are integrated into DeepRank. These include ligand
RMSD (Root Mean Square Deviation)24, interface RMSD
(iRMSD)24, FNAT (Fraction of Native Contacts)24, CAPRI
quality labels24, and DockQ score25. DeepRank leverages
pdb2sql22 to perform these calculations efficiently.

4. Efficient data storage in HDF5 format. Dealing
with sometimes tens of millions of small-size PDB files
with rich feature representations presents a challenge both
for the file system and for efficient training of deep
neural networks. DeepRank stores the feature grids in
HDF5 format, which is especially suited for storing and
streaming very large and heterogeneous datasets. The
general structure of the HDF5 generated by DeepRank is
represented in Fig. 1B.

To train the neural network, DeepRank relies on the popular
deep learning framework PyTorch26. The general network

Fig. 1 The DeepRank framework. A The interface definition used by DeepRank. A residue is considered an interface residue if it is within a distance cutoff
(5.5 Å by default, adjustable) of any atom on the other chain. The properties of interface residues or their atoms are used as features mapped on a 3D grid
centered onto the interface. B Efficient storage of protein coordinates, features, and labels in HDF5 files. Given PDB files of protein-protein complexes,
DeepRank determines interface residues, calculates features, and maps the features onto 3D grids, storing these data, along with necessary metadata into
HDF5 files. These files are the input for the subsequent CNN (Convolutional Network). This HDF5 format greatly facilitates and speeds up the retrieval of
specific information. C Illustration of the training process. Users may select a subset of features and/or a subset of PPIs (protein-protein interfaces)
contained in the HDF5 file and use them as input for a 3D CNN. The example network consists of several layers that mix convolution, max pooling, batch
norm operations as well as fully connected layers. The output of the network is the prediction of user-defined targets. Both classification and regression are
supported.

Table 1 Interface features predefined in DeepRank.

Feature Type Feature Name Details

Atom-level Atom density Density per element type40

Atomic charges Based on the OPLS force field41 implemented in HADDOCK19

Intermolecular electrostatic energy Based on the OPLS force field41 implemented in HADDOCK19

Intermolecular van der Waals energy Based on the OPLS force field implemented in HADDOCK19

Residue-level Number of residue-residue contacts Classified based on residue types17

Buried Surface Area42

Position specific scoring matrix (PSSM)43 The log likelihood of 20 residue types appears at the specific position in a multiple
sequence alignment
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architecture used in this work is illustrated in Fig. 1C. Starting
from the HDF5 files, users can easily select which features and
target value to use during training and which PPIs to include in
the training, validation, and test sets. It is also possible to filter the
PPIs based on their target values, for example by only using
docking models with an iRMSD values above or below a certain
threshold, thus discarding unrealistic data points. The input data
are fed into a series of 3D convolutional layers, max pool layers,
and batch normalization layers, usually followed by fully
connected layers. The exact architecture of the network as well
as all other hyper parameters can be easily modified by users to
tune the training for their particular applications (see Supple-
mentary Notes 1 and 4). The result of the training is stored in a
dedicated HDF5 file for subsequent analysis.

Application 1: Detecting crystal artifacts. X-Ray crystallography
is one of the most important experimental approaches to deter-
mine 3D structures of protein complexes (it accounts for >80% of
all deposited PDB entries). This experimental technique first
requires the proteins to be crystallized and then exposed to X-rays
to obtain their structures. When it comes to structures of com-
plexes, the resulting crystals often contain multiple interfaces,
some of which are biologically relevant and some are mere arti-
facts of the crystallization process, the so-called “crystal inter-
faces” (Fig. 2A, B). Distinguishing crystal interfaces from
biological ones, when no additional information is available, is
still challenging. Several computational approaches have been
proposed to distinguish such interfaces, among which PISA18 and
PRODIGY-crystal16,17 show the highest prediction performances.
PISA is based on six physicochemical properties: Free energy of
formation, solvation energy gain, interface area, hydrogen bonds,
salt-bridge across the interface, and hydrophobic specificity.
PRODIGY-crystal is a random forest classifier based on structural
properties of interfacial residues and their contacts16.

We applied DeepRank to the problem of classifying biological
vs. crystal interfaces. We trained and validated the 3D CNN
specified in Supplementary Note 3 on the MANY dataset27,

which consists of 2828 biological interfaces and 2911 crystal ones,
only using Position Specific Scoring Matrix (PSSM) features. Each
structure was first augmented by random rotation (30 times)
before training. Early stopping on the validation loss was used to
determine the optimal model (see Supplementary Fig. 3). The
trained network was tested on the DC dataset28, containing 80
biological and 81 crystal interfaces. On this test set, the trained
network correctly classified 66 out of 80 biological interfaces and
72 out of 81 crystal interfaces (Fig. 2C). DeepRank thus achieved
an accuracy of 86%, outperforming PRODIGY-crystal and PISA,
which reported 74 and 79%, respectively16 (Fig. 2D). While 89
test cases present at least one homolog in the MANY dataset,
removing these cases from the testing dataset still leads to
satisfying performance with an accuracy of 82%. (Supplementary
Table 1).

Application 2: Ranking docking models. Computational dock-
ing is a valuable tool for generating possible 3D models of protein
complexes and provides a complementary alternative to experi-
mental structure determination. Given the 3D structures of
individual proteins, docking aims at modeling their interaction
mode by generating typically tens of thousands of candidate
conformations (models). Those models are ranked using a scor-
ing function to select the correct (near-native) ones (Fig. 3A).
Although much effort is dedicated to improve the scoring23,29–31,
reliably distinguishing a native-like model from the vast number
of incorrectly docked models (wrong models) remains a major
challenge in docking.

We used HADDOCK19 to generate a set of docking models of
various qualities for the docking benchmark v5 (BM5) set32,
including both rigid-body docking, flexible docking, and final
refined docking models. In this work, we focused on 142 dimers
for which near-native models were available in the generated data
sets, excluding all antibody-antigen complexes.

We trained the 3D CNN (architecture specified in Supple-
mentary Note 3) using all available atomic and residue-based
features (Table 1), mapped onto a grid of 30 × 30 × 30 Å3 with 1 Å

Fig. 2 Classification of biological and crystal interfaces using DeepRank. A, B. Illustration of the two types of interfaces, i.e., biological and crystal
interfaces, found in a crystal. Protein molecules are orderly arranged in repetitive crystal units. Crystallographic interfaces can originate from the seeming
interaction from the two neighboring crystal units, which may or may not represent biological interactions. The crystal structure shown in B corresponds to
PDB entry 1ZLH. C Confusion matrix of DeepRank on the DC test dataset. D Accuracy of DeepRank, PISA, and PRODIGY-crystal on the DC dataset.
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resolution. The network was trained on over 300,000 labeled
docking conformations to classify models as near-native or
wrong. The DeepRank score, i.e., the predicted likelihood of a
model to be a wrong model, was then used to rank the models for
each case. To ensure objective evaluations, we conducted 10-fold
cross-validation at the level of complexes, i.e., all models for a
given complex are used exclusively in either training, validation,
or test sets in each fold.

DeepRank performs well on HADDOCK models generated in
the rigid-body docking stage. The DeepRank scores are well
separated between near-native and wrong models (Fig. 3B), while
the HADDOCK scores present a significant overlap between
those two classes. In terms of ranking performance, DeepRank
outperforms HADDOCK on rigid-body docking models by
selecting more near-native models among Top N (Fig. 3C top).
The narrow spread of the values obtained with DeepRank,
illustrated by the 25–75% quantile interval, indicates that
DeepRank is rather consistent in its ranking of different cases,
while HADDOCK presents poor performance for some cases.
This difference might be explained by the fact that DeepRank is
less sensitive to the detailed energetics of the interface than the
HADDOCK score.

The differences between DeepRank and HADDOCK are less
pronounced for water-refined docking models (Fig. 3C bottom).
However, note that HADDOCK requires using different scoring
functions for models generated in rigid-body, flexible-docking,
and water-refinement stage while DeepRank use the same scoring
function for all stages (see Methods and Supplementary Fig. 6).
An analysis of Success Rate of DeepRank and HADDOCK at the
different stages (Supplementary Fig. 7) confirms the good
performance of DeepRank that slightly outperforms HADDOCK
for each model type. This confirms again the robustness of the
DeepRank score, since it provides a single score that performs
well across differently refined models.

To further test the performance of DeepRank we have trained a
final 3D CNN model using the docking conformations of all the
142 BM5 dimer complexes and applied it to 13 cases from the
CAPRI score set33. We compared DeepRank with three leading
scoring functions, the HADDOCK19 scoring function that uses an
energy-based approach; the recently developed iScore20,21 a
graph-kernel based scoring function; and DOVE5 a recent
deep-learning method also based on 3D CNNs. DeepRank is
competitive with these scoring functions, even outperforming
them on some cases (Supplementary Fig. 8 and Supplementary
Table 2). Our results also suggest the ability of DeepRank to
correctly identify favorable interactions that are ignored by the
other methods, which might indicate a possible complementarity
of these approaches (Supplementary Figs. 9 and 10).

Discussion
We have presented here our DeepRank framework, demonstrat-
ing its use and performance on two structural biology challenges.
Its main advantages are as follows:

1. From a user’s perspective, the platform provides a user-
friendly interface. It implements many options that can be
easily tuned. It provides flexibility through the featurization
and the design of the neural network architecture (see code
snippets in Supplementary Note 4). This makes it directly
applicable for a range of problems that use protein-protein
interfaces as input information.

2. From a developer’s perspective, DeepRank is developed as a
software package following software development
standards34 including version control, continuous integra-
tion, documentation, and easy addition of new features.
This flexibility increases the maintainability and further
development of DeepRank by the community, for example,
to allow predicting mutation effects on single protein
structures.

Fig. 3 DeepRank applied to the docking scoring problem. A Top: Using a docking software (e.g., HADDOCK36) a large number of docking poses between
two proteins (here PDB ID: 1AK4) are generated. Bottom: Distribution of iRMSD (interface root mean squared deviation) values obtained for the docking
benchmark 532 using HADDOCK in five docking scenarios (see Methods). Most conformations (93%) are wrong with iRMSD values larger than 4 Å and
only less than 1% of the conformations have iRMSD values lower than 1 Å. B Distribution of the DeepRank and HADDOCK scores for the wrong models
and near-native models from the rigid body docking stage. The lower the score the higher likelihood a model is predicted to be a near-native model.
C Performance of DeepRank on the BM5 set compared to HADDOCK’s scoring function. This data represents the predictions of both methods on
140 distinct test cases considered during the 10-fold cross-validation. Each individual test case contains about 3000 conformations of a single complex.
The thick line marks the median of the Hit Rates (see Methods) calculated for individual test cases and the shaded area marks the 25–75% quantile
interval. The data is shown up to the top 1000 (see Supplementary Fig. 6 for the full-range plot). Top: Rigid-body docking models only; Bottom: Water
refined models only. HADDOCK uses different scoring functions for models generated in different stages: rigid-body, flexible-docking, and water-
refinement stages (see Methods).
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3. Computational efficiency: in all stages, DeepRank has been
developed to make it possible to use millions of PDB files to
train models, and test their performance.

4. Finally, the performances competing and outperforming
the state-of-the-art on two different research problems
demonstrate the versatility of DeepRank in general
structural biology.

When applied to the classification of biological versus crys-
tallographic interfaces (application 1), the trained network (pro-
vided in Data Availability) shows satisfying performance leading
to a better classification than competing methods, PRODIGY-
crystal and PISA. This improvement is due to the use of evolution
information through the PSSM and from the use of deep neural
network that are capable of learning the subtle differences
between the interaction patterns of the two types of interfaces.

When considering the scoring problem (application 2), Dee-
pRank performs especially well on scoring rigid-body HAD-
DOCK models, outperforming the HADDOCK’s rigid-body-
specific Score (Fig. 3C). Since rigid-body docking is the first
modeling stage of HADDOCK, incorporating DeepRank scoring
in the HADDOCK docking workflow is expected to improve the
modeling success rate by passing more high-quality models to the
later flexible refinement stages. This result also indicates that our
trained network (provided in Data Availability) could be gen-
erally applicable to models from a variety of rigid-body docking
software. DeepRank is robust on different type of models (rigid-
body, flexible-refined, water-refined) (Fig. 3C) and not sensitive
to clashes at the interface. This wide applicability range is
important in experiments like the community-wide CAPRI
scoring experiment where a mixture of highly refined and rigid-
body models (that often present unphysical atomic arrangements,
or clashes) have to be scored23. While DeepRank does not sig-
nificantly outperform HADDOCK iScore nor DOVE on selected
cases from previous rounds of CAPRI, it does identify different
conformations as being near-native (Supplementary Fig. 9),
indicating a complementarity in scoring. The comparison of the
different methods clearly illustrates the difficulty in obtaining a
model that performs consistently across the diversity of PPIs and
calls for more research to engineer better featurization, datasets,
and scoring functions.

Currently DeepRank converts irregular-shaped PPIs into
structured data (i.e., 3D grids) so that 3D CNN can be applied.
These structured 3D grids could also be used with equivariant
neural networks35 that naturally incorporate translation- and
rotation-invariance and hence avoids the data augmentation that
is sometimes needed when using 3D CNN. The use of non-
structured geometric data such as graphs7, surfaces6, or point
clouds as input, offer additional opportunities for the future
development of DeepRank. For example, MaSIF6 exploits geo-
desic CNN to extract protein interaction fingerprint and therefore
only requires data augmentation in 2D instead of 3D. However,
the data preprocessing required by MaSIF to determine protein
surface patches, calculate polar coordinates and map the features,
is about 48 times more computationally demanding and 7 times
more memory demanding than computing all the 3D grids
required by DeepRank (see Supplementary Table 3). This hinders
the applicability of MaSIF to large-scale analyses on millions of
protein models obtained for example in computational docking
or large-scale modeling of mutations. Nevertheless, considering
the potential of geometric learning with respect to rotation-
invariance, it would be useful to extend DeepRank with geometric
deep learning techniques to more efficiently represent PPIs with
highly irregular shapes. Another enhancement would be to extend
the framework to handle complexes containing more than two
chains to broaden its application scope.

In summary, we have described an open-source, generic, and
extensible deep learning framework for data mining very large
datasets of protein-protein interfaces. We demonstrated the
effectiveness and readiness of applying DeepRank on two dif-
ferent challenges in structural biology. We expect DeepRank to
speed-up scientific research related to protein interfaces by
facilitating the tedious steps of data preprocessing and reducing
daunting computational costs that may be associated with large-
scale data analysis. Its modularized and extendable framework
bears great potential for stimulating collaborative developments
by the computational structural biology community on other
protein structure-related topics and will contribute to the adop-
tion and development of deep learning techniques in structural
biology research.

Methods
Gaussian mapping of the atomic and residue features. The atomic and residue
features are mapped on a 3D grid using Gaussian functions. The contribution wk of
atom k (or residue) to a given grid point follows a hence a Gaussian distance
dependence:

wkðrÞ ¼ vkexpðjjr � rkjj2=2σ2Þ ð1Þ

where vk is the value of the feature, rk the (x,y,z) coordinate of atom k, and r the
position of the grid point. For atomic features the standard deviation σ is taken as
the van der Waals radius of the corresponding atom. In case of residue-based
features, rk is taken as the position of the alpha-carbon atom of the residue and σ as
the van der Waals radius of that atom.

For pairwise features, such as interaction energy terms, the value of vk is defined
as the sum of the all the interaction terms between atom (residue) k and its contact
atoms(residues): vk ¼ ∑lvkl where vkl is the interaction term between
atoms(residues) k and l.

Application 1: Detecting crystal artifacts. Data Sets: The original MANY
dataset27 consists of 2831 biological interfaces and 2912 crystal ones. Entries
2uuy_1, 2p06_1 and 3dt5_1 were excluded due to all zero values of PSSM infor-
mation content (IC) and 1gc2_5 was excluded due to failed residue density cal-
culation. We thus used 2828 biological interfaces and 2911 crystal ones, which was
used to create the training (80%) and validation (20%) sets while maintaining the
balance between positive and negative data. The training set was then further
augmented by randomly rotating each complex 30 times. The DC dataset28 was
used as a test set. It contains 80 biological and 81 crystal interfaces, excluding
3jrz_1 due to failed residue density calculation. All entries of both the MANY and
the DC dataset have been previously refined16 using the refinement protocol of our
HADDOCK web server36.

Training and evaluations: The architecture of the CNN used in our experiments
is shown in Supplementary Fig. 2. We used the cross-entropy and log softmax as
loss and scoring functions, respectively, and stochastic gradient descent as
optimizer. The learning rate was set to 0.0005, momentum to 0.9, weight decay to
0.001, and batch size to 8. As features we used only the PSSM as evolutionary
information, which has been demonstrated to be useful for charactering protein
interfaces4. We used 10 × 10 × 10 Å3 grids with a resolution of 3 Å. This low-
resolution grid is sufficient to capture the variation of the PSSM which are residue-
based features and thus less finely defined than atomic-based features.

Application 2: Ranking docking models. Data sets: The dataset for scoring was
generated using HADDOCK, an integrative modeling software19. Docking in
HADDOCK follows three stages: (1) it0: rigid-body docking, (2) it1: semi-flexible
refinement by simulated annealing in torsion angle space, and (3) itw: final
refinement by short molecular dynamics in explicit solvent (default: water). We
used HADDOCK37 to systematically generate a set of docking models for the
docking benchmark v5 set32, BM5. In order to generate a suitable amount of near-
native models both guided and ab-initio dockings were performed following five
different scenarios: (1) Refinement of the bound complexes (50/50/50 models for
it0/it1/water stages, referred to as “refb”), (2) guided docking using true interface
defined at 3.9 Å cutoff as ambiguous interaction restraints (1000/400/400 models
for it0/it1/water, “ti”), (3) guided docking using true interface defined at 5.0 Å
cutoff (1000/400/400 models for it0/it1/water, “ti5”), (4) ab-initio docking with
center of mass restraints (10,000/400/400 models for it0/it1/water, “cm”), and (5)
ab-initio docking with random surface patch restraints (10,000/400/400 models for
it0/it1/water, “ranair”). Scenarios 2–5 are unbound-unbound docking, providing
real-life challenges (i.e., conformational changes upon binding) to DeepRank. BM5
consists of 232 non-redundant cases (the non-redundancy was here evaluated at
the SCOP family level32). In total, we generated ~5.84 million HADDOCK models
(25,300 models per case) corresponding to 11 TB of data (3D coordinates plus
feature grids) in HDF5 format. In this study, we focused on 142 dimers, i.e., cases
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with two chains (1IRA was excluded due to the lack of PSSM for the short
chain A).

As the models were not clustered, a large degree of redundancy exists in the
dataset, with very similar conformations being represented multiple times. After
experimentation, we observed that considering only a subset of about 420 K models
(~3000 models per complex) was sufficient to accurately represents the available
data (see Supplementary Fig. 4 for details). About 30 K models were near-native
models among these 420 K models. Each docking model was randomly rotated to
limit the sensitivity of our results to a particular orientation of the PPIs.

Network architectures and weight optimizations: The architecture of the CNN
in our experiment is shown in Supplementary Fig. 5. We used the cross-entropy
loss function over the raw scoring output. We used the Adam optimizer with a
learning rate of 0.001. The batch size during training was 100. We used the full set
of 36 physico-chemical features (channels) that are predefined in DeepRank
(Table 1). We used a grid size was 30 x 30 x 30 Å3 with a resolution of 1 Å to
accurately capture the variation of atomic-based features and to adequately resolve
the average buried surface area per monomer (BSA) of a dimer PPI in the BM5 set,
that is about 909 Å2. We evaluate the BSA as:

BSA ¼ 1
2
ðASAchainA þ ASAchainB � ASAcomplexÞ ð2Þ

where ASA stands for the accessible surface area.
Because our dataset is highly imbalanced (only around 7.1% of the models are

positives, i.e., with iRMSD 4 Å), for training the network we assigned class weights
to the loss function, proportional to the class sizes, that is, the class weights are
0.071 and 0.929 for the negatives and positives, respectively so that the loss
function penalizes equally errors made on the positive and on the negative dataset.

Training, validation, and testing: We performed a 10-fold cross-validation on
the BM5 set. In every fold, out of 142 complexes, we used models from 114
complexes for training, 14 complexes for validation, and 14 complexes were
reserved for testing. In this way, in total 140 out of the 142 complexes were used in
the test sets (two complexes BAAD and 3F1P are not used in the testing to keep the
testing set having an equal number of complexes for each fold). The training,
validation, and testing sets are disjunctive at complex-level so that complexes in the
testing set are never seen by the neural networks during its training and validation.
In the end, we trained one network for each fold (thus in total 10 trained networks
for 10-CV), and the set-aside independent test set was evaluated on this network.

The network is trained to perform positive/negative classification of models,
outputting two scores as predicted probability of an input model being near-native
or wrong. We then ranked the docking models based on their predicted scores of
being wrong models to be consistent with widely-used energy-based scoring
functions: i.e., a low prediction score indicates that the function predicts this model
is of high quality. For the final analysis (Supplementary Fig. 7), we merged
prediction results from 10 folds in our performance reports on the BM5 set.

To evaluate DeepRank on the CAPRI score set, we have first trained one
network on all the 449,158 docking models from 142 BM5 complexes. This trained
neural network model was then used on the CAPRI score set33.

HADDOCK scoring functions: HADDOCK uses three different scoring
functions for models generated at different docking stages. We neglected the AIR
restraints to facilitate the comparison between the different model qualities. We
used the following functions:

HADDOCKit0 ¼ 0:01Evdw þ 1:0Eelec þ 1:0Edesol � 0:01BSA ð3Þ

HADDOCKit1 ¼ 1:0Evdw þ 1:0Eelec þ 1:0Edesol � 0:01BSA ð4Þ

HADDOCKitw ¼ 1:0Evdw þ 0:2Eelec þ 1:0Edesol ð5Þ
where HADDOCKit0, HADDOCKit1, and HADDOCKitw are the scoring functions
used respectively for rigid-body docking, semi-flexible docking and water-refined
models. Evdw is the van der Waals intermolecular energy, Eelec the electrostatic
intermolecular energy, Edesol the desolvation energy and BSA the buried
surface area.

Evaluation metrics: Hit Rate and Success Rate are used to evaluate the
performance of scoring functions. The Hit Rate is defined as the percentage of hits
(models with iRMSD ≤4 Å) in the top ranked models for a specific complex:

Hit RateðKÞ ¼ nhitsðKÞ
M

ð6Þ

where nhits(K) is the number of hits (i.e., near-native models) among top models
and M the total number of near-native models for this case. The Hit Rate was
calculated for each individual case in our test set and statistics across the different
cases (median, 1st and 3rd quartile) were calculated. As the total number of models
varies between cases, these statistical values were only evaluated from K= 1 to
K=Nmin where Nmin is the smallest number of models that all cases have.

The Success Rate shown in Supplementary Fig. 7 is defined as the percentage of
complexes for which at least one near-native model is found in the top N selected
models. It is therefore defined as:

Success Rate ¼ nsuccessful casesðKÞ
N

ð7Þ

where nsuccessful_cases(K) is the number of cases with at least one near-native model
among top models, and N is the total number of cases.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The PDB files and PSSM files for the two experiments along with the code for training
and post analysis have been deposited in SBGrid (data.sbgrid.org, https://doi.org/
10.15785/SBGRID/843).

Code availability
The DeepRank software has been released to the Python Package Index at https://
pypi.org/project/deeprank/ (https://doi.org/10.5281/zenodo.3735042)38. Its source code
and documentation are freely available at https://github.com/DeepRank/deeprank and
https://deeprank.readthedocs.io, respectively. The PSSMs used in this paper were
calculated using our PSSMgen package: https://github.com/DeepRank/PSSMGen
(https://doi.org/10.5281/zenodo.4509544)39.
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