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CD4+CD25+Foxp3+ Regulatory (Treg) T cells are mainly generated within the thymus.
However, the mechanism of thymic Treg cell (tTreg cell) generation remains to be fully
revealed. Although the functions of TCR/CD28 co-stimulation have been widely accepted,
the functions of cytokines in the generation of tTreg cells remain highly controversial. In this
review, we summarize the existing studies on cytokine regulation of tTreg cell generation.
By integrating the key findings of cytokines in tTreg cell generation, we have concluded
that four members of gc family cytokines (IL-2, IL-4, IL-7 and IL-15), transforming growth
factor b (TGF-b), and three members of TNF superfamily cytokines (GITRL, OX40L and
TNF-a) play vitally important roles in regulating tTreg cell generation. We also point out all
disputed points and highlight critical scientific questions that need to be addressed in
the future.
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INTRODUCTION

CD4+ Regulatory T (Treg) cells that express IL-2 receptor a-chain (CD25) and the transcription
factor forkhead box P3 (Foxp3) are the major cell population that maintains immune tolerance (1–6).
Since these cells were identified in 1995 (2), Treg cells have been demonstrated to play extremely
important roles in maintaining tolerance to auto-antigens (7, 8) and commensal microbiota (9, 10),
controlling maternal-fetal immune interactions (11, 12), and suppressing overactive immune responses
during infection (13, 14). On the other hand, Treg cell-mediated immune suppression can also promote
tumor immune escape (15, 16). Therefore, targeting Treg cells could be a promising strategy to treat
autoimmune disorders, maternal-fetal conflict, infections, and malignant tumors.

A majority of Treg cells are generated in the thymus (thymic Treg cells, tTreg cells), however
some Treg cells can also be generated in periphery (pTreg cells) (17). Although it has been well
documented that tTreg cells are generated during CD4+ thymocyte development, the clear
mechanisms of tTreg cell development is still not completely understood. Since T-cell receptor
(TCR) stimulation from self-antigens and CD28 co-stimulation during thymocyte development are
indispensable for tTreg cell generation (18–20), the mainstream view once believed that high-
affinity TCR signal is the main driving force for inducing Treg cell differentiation (21–23). However,
later studies demonstrated that tTreg cells could be generated from developing CD4+ thymocytes
org March 2022 | Volume 13 | Article 8835601
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expressing TCRs with a broad range of self-reactivity (24, 25),
showing that the self-reactivity of the TCR signal is not the
deciding factor for tTreg cell generation.

In contrast, a two-step model of tTreg cell generation is
gaining acceptance (26–29). The first step is driven by self-
antigen induced TCR stimulation and CD28 co-stimulation,
which leads to differentiation of CD4+ CD8- Foxp3- CD25+

tTreg cell precursors (CD25+ Foxp3- tTreg precursors) and
CD4+ CD8- Foxp3+ CD25- Treg cell precursors (Foxp3+ CD25-

tTreg precursors) from developing CD4+ CD8- thymocytes. The
second step relies on IL-2, which leads to the generation of
CD25+Foxp3+ mature tTreg cells from CD25+ Foxp3- tTreg
precursors and Foxp3+ CD25- tTreg precursors. This model
proposes that both precursor populations are induced by TCR/
CD28 co-stimulation, and both precursor populations rely on IL-
2 to differentiate into mature tTreg cells. However, one recent
study indicated that CD25+ Foxp3- tTreg precursors and Foxp3+

CD25- tTreg precursors are generated through two distinct
developmental programs (30), suggesting that besides TCR/
CD28 co-stimulation, some other key factors must be involved
during development of these two tTreg precursor populations.
All this evidence shows that this model stil l needs
further refinements.

Besides TCR/CD28 co-stimulation, the most probable factors
that mediate the distinct developmental programs of tTreg cell
are different cytokines. Other than IL-2 and IL-15, three
members of the tumor necrosis factor (TNF) superfamily
cytokines (GITRL, OX40L and TNF-a) were demonstrated to
promote tTreg generation (31). Moreover, TGF-b has also been
shown to be important for tTreg cell generation (25, 32). In this
review, we summarize the existing studies showing the important
functions of cytokines in tTreg cell generation. We conclude that
IL-2, IL-7, IL-15, IL-4, TGF-b, GITRL, OX40L, and TNF-a all
play important roles in regulating tTreg cell generation, although
regulation mechanisms of these cytokines have yet to
be confirmed.
FOUR gC FAMILY CYTOKINES
(IL-2, IL-7, IL-15 AND IL-4)

Function of IL-2, IL-7, IL-15 and IL-4 in
tTreg Cell Generation
Before Treg cells were well identified, it was determined that
mice deficient in IL-2 (33–35), IL-2 receptor a chain (IL-2Ra,
also called CD25) (36) or IL-2 receptor b chain (IL-2Rb, also
called CD122) (37) would develop severe autoimmunity. It was a
surprising finding since IL-2 was found to be a critical T cell
growth factor (38–40). Since Treg cells have been identified,
CD25 was proven to be a surface marker of Treg cells (2), and
then it was determined that Treg cell-deficient scurfy mice
develop severe autoimmunity as well (3–5, 41). These findings
suggested that IL-2 might play a vital role in Treg cell generation.

However, the function of IL-2 in tTreg cell generation is still
contentious. Some studies are against the idea that IL-2 is key for
tTreg cell generation, because a significant number of CD4+
Frontiers in Immunology | www.frontiersin.org 2
CD8- CD25- FOXP3+ thymocytes were still present in IL-2
knockout (Il2-/-) mice, and these cells could still suppress
inflammation in adaptive transfer mice model (42–44),
although CD25- FOXP3+ thymocytes were defined as tTreg
precursors in the two-step model (29). Moreover, a recent
study found that IL-2 could modulate the tTreg cell epigenetic
landscape by targeting genome wide chromatin accessibility (45).
These studies showed that IL-2 is dispensable for tTreg cell
development, but important for mature tTreg cell survival, tTreg
cell stabilization, and tTreg cell suppression function. Consistent
with this idea, it was determined that Foxp3 is a proapoptotic
protein and these Foxp3+ CD25- tTreg precursors completed for
the limited IL-2 to support their survival (28). In contrast, some
studies found that although mice deficient in IL-2 or IL-2Ra had
a certain number of Foxp3+ cells, their tTreg cells were not
mature, and mice deficient in IL-2Rb were shown to have a
significant decrease in Treg numbers (44, 46), suggesting IL-2
should be important for tTreg cell development. Consistent with
this idea, in the two-step model of tTreg cell development, it was
found that CD25+ FOXP3- tTreg precursors needed IL-2 to
convert to mature tTreg cells (26, 27).

IL-2 receptor g chain (IL-2Rg), also known as the common
cytokine receptor g chain (gc) or CD132, is a common
component of the receptors for IL-2, IL-4, IL-7, IL-9, IL-15,
and IL-21 (gc family cytokines) (47, 48). Therefore, besides IL-2,
functions of other gc family cytokines in tTreg cell generation
have also attracted a lot of attention. Importantly, mice deficient
in IL-2Rb resulted in a large reduction in the number of tTreg
cells, whereas mice deficient in IL-2 or IL-2Ra still have high
Foxp3 expression (42, 44, 46). IL-2Rb is the receptor for both IL-
2 and IL-15, so the function of IL-15 in tTreg cell generation was
determined. Indeed, IL-2 and IL-15 double knockout (Il2-/-

xIl15-/-) mice have a significant decrease in Treg numbers
compared with Il2-/- mice (44), showing that IL-2 and IL-15
are important for tTreg cell generation. Moreover, mice deficient
in IL-2Rg were shown to be devoid of tTreg cells and have no
expression of Foxp3 (42, 49), suggesting other gc family
cytokines might also be important for tTreg cell generation.
After in-depth research and verification, IL-7 was proven to be
important for tTreg cell generation (50, 51). Moreover, IL-2Rb
and IL-7 receptor subunit a (IL-7Ra, also known as CD127)
double knockout (Il2rb-/-xIl7ra-/-) mice were also devoid of tTreg
cells, just like mice deficient in IL-2Rg (50). Further studies
proved that IL-2, IL-7, and IL-15 induces STAT5
phosphorylation and this process is indispensable for tTreg cell
generation (49, 50), as STAT5 phosphorylation is critical for
tTreg cell development by regulating Foxp3 expression (52–55).
Taken together, three gc family cytokines, IL-2, IL-7, and IL-15
are essential for Treg cell generation (Figure 1). However, it
remains to be confirmed whether these cytokines mainly induce
tTreg cell development, promote tTreg cell survival, and/or
maintain tTreg cell stabilization.

In the beginning, another gc family cytokine IL-4 was thought
to be not important for tTreg cell generation as mice deficient in
IL-4 receptor a (IL-4Ra) had absolutely normal tTreg cell
generation (50). Moreover, IL-4 was actually shown to
suppress Treg cell generation and induce T helper-9 cells (Th9
March 2022 | Volume 13 | Article 883560

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Tang et al. Cytokines in tTreg Cell Generation
cells) in periphery and in vitro (56–58). However, The same
research team corrected the views (59), as they found that IL-4
could promote tTreg cell generation from Foxp3+ CD25- tTreg
precursors, although IL-4 could not support tTreg cell generation
from CD25+Foxp3- tTreg precursors (30). This evidence shows
that IL-4 plays a role in tTreg cell development from
Foxp3+CD25- tTreg precursors.

Source of IL-2, IL-7, IL-15 and IL-4
in the Thymus
Determining the cellular sources of IL-2, IL-7, and IL-15 within
the thymus are important in revealing the generation of tTreg
cells, and it is also important for autoimmunity treatment
through the manipulation of tTreg cells. It has been shown
that tTreg cells could not produce IL-2 to support tTreg cell
development and survival because Foxp3 represses expression of
IL-2 (3, 60). More than that, in IL-2 wild type (Il2+/+) and Il2-/-

bone marrow chimera mice, tTreg cell generation was totally
rectified in Il2-/- thymocytes and these bone marrow chimera
Frontiers in Immunology | www.frontiersin.org 3
mice did not develop autoimmunity (20). Therefore, tTreg cell
generation mainly relied on IL-2 produced by non-Treg cells.

Although dendritic cells (DCs) and B cells were shown to be
able to produce IL-2, mice that have selectively deleted IL-2 in
DCs and B cells had been shown to have normal tTreg cell
development and homeostasis (61, 62), showing DCs and B cells
are not the major cellular sources of IL-2 in the thymus. In
contrast, tTreg cell development was largely impaired in Il2f/f

CD4-Cre mice, suggesting T cells are the key cellular source of
IL-2 in the thymus (62). Moreover, a recent study determined
that cells that secrete IL-2 are predominantly mature CD4+ CD8-

(CD4SP) thymocytes in the thymus; it has further been identified
that IL-2 is mainly produced by self-reactive CD4SP thymocytes
through single-cell RNA sequencing analysis (63). This evidence
shows that self-reactive CD4SP thymocytes are the major cellular
sources of IL-2 in the thymus.

Unlike IL-2, the major cellular sources of IL-7 and IL-15 are
not T cells. It was determined that both cortical thymic epithelial
cells (TECs) and medullary TECs express high levels of IL-7, and
FIGURE 1 | Cytokines that are important for tTreg cell generation. Four gc family cytokines (IL-2, IL-4, IL-7, and IL-15), Three TNF superfamily cytokines (GITRL, OX40L,
and TNF-a) and TGF-b have been determined to be important for tTreg cell generation. There may be other cytokines that are important for tTreg cell generation but have
not yet been identified. It has been proven that CD4+CD8-Foxp3-CD25+ thymocytes and CD4+CD8-Foxp3+CD25- thymocytes are two populations of tTreg cell precursors
that generated through two distinct developmental programs, but the regulatory network of these cytokines in the development of these two precursor populations and
mature tTreg cell has not been fully revealed.
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IL-7 expression in cortical TECs is even higher than in medullary
TECs (64). However, medullary TECs that highly expressed
MHC class II were the major cellular source of IL-15 (65).
Interestingly, it is well documented that tTreg cells are mainly
generated in the medulla (66–69), suggesting it might be why IL-
7 is not as important as IL-2 and IL-15 during tTreg cell
generation in thymus. So far, the major cellular source of IL-4
in the thymus has not been determined (30).
TGF-b

Function of TGF-b in tTreg Cell Generation
Although it has been determined that TGF-b is the key inducer
of Foxp3 in periphery and in vitro (70, 71), the function of TGF-
b in tTreg cell generation is still in dispute. During early research,
TGF-b was thought to be dispensable for tTreg cell development,
because TGF-b1 deficient (8-10 days old) mice (Tgfb1-/-) had
normal frequency of tTreg cell in thymus (72), and T cell-specific
TGF-b receptor II-deficient mice (Tgfbr2f/f x CD4-Cre) did not
change the frequency of tTreg cell in thymus (12-14 days old
mice) either (73, 74). In contrast, it was shown that TGF-b is
critical for tTreg cell stabilization and regulatory function (72–
74). Although the same research team repudiated their earlier
study and thought TGF-b was not important for tTreg cell
function and stabilization (75, 76), a recent study determined
that TGF-b is critical for tTreg cell function in specific tissue
environments, but not important for tTreg cell stabilization (77).

Surprisingly, TGF-b was identified to be important for tTreg
cell development by studying tTreg cell generation in 3-5 days
old neonatal mice (32, 78). It was shown that deletion of TGF-b
receptor I (Tgfbr1f/f x Lck-Cre) in T cells blocks tTreg cell
development largely in 3-5 days old neonatal mice, then tTreg
cell frequency was recovered and became even higher in thymus
of 3-4 weeks old Tgfbr1f/f x Lck-Cre mice than that in WT mice
(32). It was then shown that tTreg cell frequency was increased in
thymus due to increased tTreg cell proliferation in Tgfbr1f/f x
Lck-Cre mice, as thymocytes lacking TGF-b receptor I produced
more IL-2 and tTreg cells lacking TGF-b receptor I proliferated
much faster in response to IL-2 (32). More importantly, further
deletion of IL-2 in Tgfbr1f/f x Lck-Cre mice (Tgfbr1f/f x Lck-Cre x
Il2-/-) blocked tTreg cell development and expansion totally, as 3-
4 weeks old Tgfbr1f/f x Lck-Cre x Il2-/- mice were devoid of tTreg
cells as well (32).

The other group also reported a lack of tTreg cells in the
thymus of 3-5 days old neonatal Tgfbr2f/f x CD4-Cre mice, but
they proposed that this was due to increased tTreg cell apoptosis
caused by the deletion of TGF-b signaling (78). Since TGF-b
promotes thymocyte cell survival (79), a Treg cell-specific TGF-b
receptor I-deficient mice (Tgfbr1f/f x Foxp3-Cre) was generated
to determine whether the main function of TGF-b is to promote
tTreg cell survival in the thymus (25). Surprisingly, it was found
that tTreg cell frequency and number in Tgfbr1f/f x Foxp3-Cre
mice did not decrease at all (25), and the aged Tgfbr1f/f x Foxp3-
Cre mice had even more tTreg cells (77), showing the main
function of TGF-b in tTreg cell generation is not to support tTreg
Frontiers in Immunology | www.frontiersin.org 4
cell survival. Existing mechanism studies have found that Smad3
could bind at the conserved noncoding sequence 1 (CNS1) of
Foxp3 enhancer and induce Foxp3 expression (80, 81), but it was
argued that Smad3 binding to the foxp3 enhancer was
dispensable for tTreg cell development (82). Taken together,
these findings show that TGF-b is critical to tTreg cell
development, although the exact mechanisms need to be
further identified (Figure 1).

Source of TGF-b in the Thymus
Thymocyte apoptosis has been identified to increase by day 2 after
birth (83), TGF-b level was found to increase significantly in the
thymus by day 3 after birth (25), and tTreg cells were shown to
appear in large numbers in the thymus by day 3 after birth (84).
This evidence suggests that tTreg cell generation, thymocyte
apoptosis, and TGF-b production are highly correlated. Indeed,
one study showed that the intrathymic concentration of TGF-b is
highly dependent on thymocyte apoptosis (25). However, the
major cellular source of TGF-b in the thymus has not been
uncovered. Based on the existing studies, TGF-b is likely to be
released from two possible cellular sources. The first possible
source is apoptotic T cells that release TGF-b directly (85), and
the second possible source is phagocytes that release TGF-b after
these cells phagocytize apoptotic cells (86, 87).

It is worth mentioning that TGF-b is secreted into the
extracellular matrix in an inactive latent form (latent TGF-b)
and needs to be activated to produce bioactive TGF-b (88, 89).
By now, it has not been determined how TGF-b is activated in
the thymus. One possible mechanism for the activation of TGF-b
in the thymus is through apoptotic cell-released ROS, as
apoptotic thymocytes could release a high level of ROS (85),
and ROS has been shown to induce TGF-b activation and
promote Treg cell generation in periphery (90–92).
THREE TNF SUPERFAMILY CYTOKINES
(GITRL, OX40L AND TNF-a)

Function of GITRL, OX40L, and TNF-a in
tTreg Cell Generation
The tumor necrosis factor (TNF) superfamily is a protein
superfamily originally produced as type-II transmembrane
proteins, but these proteins can function as cytokines once
they are cleaved off the cell membrane by metalloproteinases
(93). The receptors of the TNF superfamily are tumor necrosis
factor receptor superfamily (TNFRSF) (94). It has been
determined that CD25+ Foxp3- tTreg precursors and mature
tTreg cells express high levels of TNFRSF members called
Glucocorticoid-induced tumor necrosis factor receptor-related
protein (GITR, also known as CD357 or TNFRSF18), OX40 (also
known as CD134 or TNFRSF4) and TNFR2 (also known as
CD120b or TNFRSF1B) (26, 31, 95). Moreover, it was found that
a TNF superfamily member, TNF-a, a ligand of TNFR2, could
promote Treg cell expansion in vivo (96–98). These findings
suggest that the TNF superfamily might be important for tTreg
cell generation.
March 2022 | Volume 13 | Article 883560
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Three TNF superfamily members, GITRL, OX40L, and TNF-a
have been identified to promote tTreg cell generation (31, 99). One
study reported that deficiency in TNFR2 reduced tTreg cell
generation significantly (99). Another study showed that
deficiency in all three of the TNFRSF members GITR, OX40,
and TNFR2, or neutralization of TNF superfamily members
GITRL, OX40L, and TNF-a together, markedly inhibited the
generation of tTreg cells (31) (Figure 1). It was shown that
GITRL, OX40L, and TNF-a could convert CD25+ Foxp3- tTreg
precursors into mature Foxp3+ Treg cells at very low dose of IL-2
(31), showing these three TNF superfamily members promote
tTreg cell mature from CD25+ Foxp3- tTreg precursors. However,
it is still not clear whether TNF superfamily members and IL-2
complement each other, or TNF superfamily members just
function as compensatory signals of IL-2 signal.

Source of GITRL, OX40L and TNF-a in
the Thymus
Although the major cellular sources of GITRL, OX40L, and
TNF-a have not been well defined, it was identified that
medullary TECs expressed GITRL, OX40L, and TNF-a, while
conventional dendritic cells (cDCs) and plasmacytoid dendritic
cells (pDCs) expressed only GITRL and TNF-a (31). Further
studies are needed to determine which kind of APCs are the
major cellular source of GITRL, OX40L, and TNF-a. Moreover,
whether membrane-bound or soluble GITRL, OX40L, and TNF-
a play a more important role in tTreg cell generation has not yet
been determined either.
CONCLUSIONS AND
FUTURE PERSPECTIVE

By summarizing the existing studies of cytokines in tTreg cell
generation, we conclude that four members of gc family
cytokines (IL-2, IL-4, IL-7 and IL-15), transforming growth
factor b (TGF-b), and three members of TNF superfamily
cytokines (GITRL, OX40L, and TNF-a) play vitally important
roles in regulating tTreg cell generation, although regulation
mechanisms of these cytokines have yet to be confirmed.
Functions of these cytokines in tTreg cell generation are still
divisive. For example, opinions are still divided on the functions
of TGF-b and IL-2, whether they are important for tTreg cell
development, survival, and/or proliferation are still controversial.

On the other hand, when and how cytokines interact with
each other and mediate tTreg cell generation in the thymus
Frontiers in Immunology | www.frontiersin.org 5
remains to be fully revealed. Also, when and how these cytokines
take effect during tTreg cell development is still unclear.
Therefore, future studies should focus on why developing
tTreg cells are divided into two populations of tTreg
precursors. Since CD25+ Foxp3- tTreg precursors and Foxp3+

CD25- tTreg precursors are generated through two distinct
developmental programs (30), it is very likely that cytokines
play key roles in inducing these two precursor populations
besides TCR/CD28 co-stimulation. So far, it has been proven
that IL-4 can support tTreg cell generation from Foxp3+ CD25-

tTreg precursors (30), and TNF superfamily cytokines (GITRL,
OX40L and TNF-a) can support tTreg cell generation from
CD25+ Foxp3- tTreg precursors (31). These findings can partially
explain the differences of CD25+ Foxp3- tTreg precursors and
Foxp3+ CD25- tTreg precursors. However, the regulatory
network of these cytokines during the development of tTreg
precursors and mature tTreg cell has not yet been fully revealed.
It is beyond all doubt that answering these basic questions is
extremely important for fully disclosing the generation of
tTreg cells.
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