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In Brief
Membrane proteins, particularly
integral membrane proteins, are
barely detected in bottom–up
proteomics because of their
complex nature and abundant
soluble proteins. We applied
standard biochemical
procedures to optimize the
sample preparation method for
membrane proteome.
Membranes were precipitated by
ultracentrifugation, followed by
treatment with urea or alkaline
solutions to remove
contaminants. This enrichment
was critical to obtain
comprehensive membrane
proteome data. Among the
methods, washing membranes
by urea distinctly revealed
intricate membrane proteome
with keeping protein–protein
interactions.
Highlights
• Fractionation of membranes improves the identification of membrane proteins.• Membranes washed with urea or alkaline increase identified transmembrane proteins.• Urea wash increases the detection of multispanning transmembrane proteins.• Proteomics of urea-washed membranes keeps more protein–protein interactions.
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RESEARCH
Simple But Efficacious Enrichment of Integral
Membrane Proteins and Their Interactions for
In-Depth Membrane Proteomics
Pornparn Kongpracha1,2 , Pattama Wiriyasermkul1,2 , Noriyoshi Isozumi3,
Satomi Moriyama2, Yoshikatsu Kanai3, and Shushi Nagamori1,2,*
Membrane proteins play essential roles in various cellular
processes, such as nutrient transport, bioenergetic pro-
cesses, cell adhesion, and signal transduction. Prote-
omics is one of the key approaches to exploring
membrane proteins comprehensively. Bottom–up prote-
omics using LC–MS/MS has been widely used in mem-
brane proteomics. However, the low abundance and
hydrophobic features of membrane proteins, especially
integral membrane proteins, make it difficult to handle the
proteins and are the bottleneck for identification by
LC–MS/MS. Herein, to improve the identification and
quantification of membrane proteins, we have stepwisely
evaluated methods of membrane enrichment for the
sample preparation. The enrichment methods of mem-
branes consisted of precipitation by ultracentrifugation
and treatment by urea or alkaline solutions. The best
enrichment method in the study, washing with urea after
isolation of the membranes, resulted in the identification
of almost twice as many membrane proteins compared
with samples without the enrichment. Notably, the method
significantly enhances the identified numbers of multi-
spanning transmembrane proteins, such as solute carrier
transporters, ABC transporters, and G-protein–coupled
receptors, by almost sixfold. Using this method, we
revealed the profiles of amino acid transport systems with
the validation by functional assays and found more
protein–protein interactions, including membrane protein
complexes and clusters. Our protocol uses standard
procedures in biochemistry, but the method was efficient
for the in-depth analysis of membrane proteome in a wide
range of samples.

Approximately 30% of eukaryotic genes were predicted to
encode membrane proteins (1). Membrane proteins play a
variety of roles in crucial biological functions, for example,
transport of biological substances (ions, nutrients, metabo-
lites, and signaling molecules), signal transduction,
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bioenergetic processes, immune response, cell adhesion, and
cell–cell interaction. Membrane proteins, or more precisely
integral membrane proteins, have hydrophobic surfaces that
allow the proteins to insert deeply into lipid bilayers. These
membrane proteins are challenging to study with biochemical
methods because they are presented in low levels and un-
stable outside the lipid bilayers (2, 3). On the other hand,
soluble proteins, such as cytoplasmic proteins or peripheral
membrane proteins, are relatively abundant and, in many
cases, more stable than membrane proteins in test tubes.
Despite the significance of membrane proteins in biological
systems, numbers of membrane protein studies have not been
greatly denoted because of difficulties in handling and
detection.
Mass spectrometry (MS)–based proteomics has become a

standard analytical tool in various biological research fields,
from basic research to medical applications (4). The presence
of proteomics is increasing in the field of membrane protein
research, revealing critical physiological roles and identifying
disease-related biomarkers and drug targets (5, 6). While
bottom–up proteomics is one of the most potent methods to
explore protein molecules comprehensively, membrane pro-
teins are often underrepresented in such proteome data
because of the difficulties of detection by any means as
described previously. It is yet necessary to meet the growing
demand for improving the quality and quantity of membrane
proteomics data, although thousands of great efforts have
been improving membrane proteomics. Several steps are
essential to enhance the efficacy of membrane proteome
analysis: optimization of the sample preparation, inventions of
mass spectrometers, and development of data processing
and analysis (7–9). For instance, great achievements were
shown in methods for solubilization of membrane proteins or
efficient peptide digestion (3, 9–13). An elevating column
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A Sample Preparation Method for Membrane Proteomics
temperature of LC is very critical to recovery peptides from
integral membrane proteins (14). Multistep or high-resolution
chromatography has contributed significantly to the compre-
hensiveness of proteomics, resulting in the identification of
many membrane proteins (15, 16). Also, combinational ap-
proaches have been successful (13, 17).
In this study, we focused on the initial step of the sample

preparation. Based on previous biochemical studies of mem-
brane proteins, it is well known that membrane protein enrich-
ment helps to overcome the low abundance of membrane
proteins. To explore the function and structure of membrane
proteins, researchers have isolated membrane vesicles or pu-
rified the protein molecules to improve the signal-to-noise ratio
in their assays by reducing unexpected contaminations from
the soluble proteins (3, 13, 18, 19). Therefore, as researchers
have performed in the field of membrane protein research, we
also applied ultracentrifugation to enrich membranes in the
sample preparation steps of proteomics. However, because of
the low abundance of membrane proteins, cytoplasmic pro-
teins and peripheral membrane proteins interfere with the de-
tections of membrane proteins even in membrane fractions.
These contaminants attach to the integral membrane proteins
or the lipid bilayers by hydrophobic, electrostatic, or non-
covalent interactions. Therefore, a method to clean the con-
taminants, “membrane washing”, is another critical step in
enriching membrane proteins (20). Membrane fractions are
often treated with hypotonic solutions or high ionic strength
buffers (18, 21, 22). In the proteomic analysis by MS, several
studies employed the high pH sodium carbonate called alka-
line-wash or treatment (21, 23). Alternatively, in the field of
membrane protein biochemistry, researchers have used urea
solution to clean membranes for functional assays of mem-
brane proteins (18, 19, 24, 25). Despite the prevalent applica-
tions of membrane washing methods, as far as we know, the
precise advantages and details have not yet been demon-
strated in membrane proteomics. Although our group and
another researcher group have applied urea-treatment to
membrane proteomics (26–28), there is no characterization of
urea-treatment for membrane proteomics and no comparison
with other methods, such as alkaline-treatment. Using a human
cell line as a model, we compared each step of the membrane
enrichment side by side and settled a simple and effective
method for “in-depth” membrane proteomics. The evidence in
this study shows that our optimized protocol provides deeper
and further comprehension of the membrane proteome and
improves data quality for quantification.
EXPERIMENTAL PROCEDURES

Materials

Sucrose, Tris(hydroxymethyl)aminomethane (Tris), NaCl, CaCl2,
Dulbecco's modified Eagle's medium, urea, Na2CO3, sodium deoxy-
cholate (SDC), iodoacetamide, ethyl acetate, acetonitrile (ACN), distilled
water, methanol, TFA, ammonia solution, formic acid (FA),
2 Mol Cell Proteomics (2022) 21(5) 100206
triethylammonium bicarbonate (1 M, pH 8), and other chemicals were
purchased from FUJIFILM Wako. EDTA was purchased from Nacalai
Tesque. Fetal bovine serum and penicillin–streptomycin were pur-
chased from Life Technologies. Protein digestion standard mixture
(MassPREP: yeast alcohol dehydrogenase, rabbit glycogen
phosphorylase b, bovine serum albumin, and yeast enolase I) was
purchased from Waters. Protease inhibitor cocktails and trypsin were
purchased from Roche. Tris(2-carboxyethyl) phosphine hydrochloride
was purchased from Thermo Fisher Scientific. Styrene-divinylbenzene
crosslinked (SDB-XC) and octadecyl (C18) Empore disks were pur-
chased from 3M. Protein LoBind tubes (1.5 ml) were purchased from
Eppendorf. Dissolution buffer consists of 6 M urea, 0.1 M Na2CO3, and
0.5% w/v SDC.

Culturing of Human Embryonic Kidney 293T Cells

Human embryonic kidney 293T (HEK293T) cells were maintained in
Dulbecco's modified Eagle's medium supplemented with 10% fetal
bovine serum and penicillin–streptomycin at 37 ◦C with 5% CO2 and
humidity. For every experiment, the cells were cultured for 3 days to
obtain 90% confluence. For proteomic analysis, cell pellets were
washed twice with ice-cold PBS, harvested by centrifugation, quickly
frozen in liquid nitrogen, and stored at −80 ◦C until use.

Isolation of Whole Cell Lysate

Typically, pellets from 3.0 × 10⁷ HEK293T cells were lysed by
sonication on ice for 5 s on/off 10 times with level 8 by a handheld
ultrasonic homogenizer (UR-21P; TOMY) in 2.0 ml of 9.8 M urea with
protease inhibitor cocktail (cOmplete; Roche) and phosphatase in-
hibitor cocktail (PhosSTOP; Roche). The clear lysate was collected by
centrifugation at 15,000g for 30 min at 15 ◦C, and named “whole cell
lysate”. Very little sediment was visible. The protein concentration of
the lysate was measured by bicinchoninic acid (BCA) protein assay.

Isolation of Crude Membrane

The crude membrane was isolated by a centrifugation method as
described with some modifications (19). The pellet of HEK293T cells
was homogenized on ice for 20 strokes, 150 rpm, in homogenization
buffer (20 mM Tris–HCl [pH 7.4], 150 mMNaCl, 250 mM sucrose, 1 mM
EDTA, and protease inhibitor cocktail) using a Potter–Elvehjem ho-
mogenizer. The homogenatewas centrifuged at 1000g for 5min at 4 ◦C.
The supernatant was collected and then centrifuged at 10,000g for
10 min at 4 ◦C. After centrifugation, the supernatant was ultra-
centrifuged at 438,000g for 30 min at 4 ◦C. The pellet was resuspended
in the resuspension buffer to obtain amembrane fraction named “crude
membrane”. Crude membrane was also called “No Wash sample”.
Protein concentration was measured by BCA protein assay.

Washing of Crude Membrane

The membrane samples washed with urea solution and alkaline so-
lution are called “Urea Wash sample” and “Alkaline Wash sample”,
respectively. For Urea Wash sample, 150 μg of crude membrane of
HEK293T cells were dissolved by pipetting in 8 M urea at pH 7 to 7.5
(final 0.2 μg/μl of protein concentration) and then incubated for 20min at
4 ◦C. To sediment themembranes, the sampleswere twofold diluted by
ice-cold water and centrifuged at 438,000g for 30 min at 4 ◦C. After the
ultracentrifugation, the supernatant was completely removed. The
pellet was dissolved by the bath-type sonicator (Branson) for 5 s on/off
10 times in a dissolution buffer (6 M urea, 0.1 M Na2CO3, and 0.5%w/v
SDC) and transferred to a new tube (protein LoBind tube; Eppendorf).
For AlkalineWash sample, 150 μg of crudemembrane of HEK293T cells
were resuspended by pipetting in ice-cold 0.1 MNa2CO3 at pH 11 (final
0.1 μg/μl of protein concentration) and incubated for 20min at 4 ◦C. The
sample was centrifuged at 438,000g for 30 min at 4 ◦C. After
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ultracentrifugation, the supernatant was completely removed. The
pellet was dissolved in the dissolution buffer as described previously
and transferred to a new tube. The protein concentration was deter-
mined by micro BCA protein assay.

Sample Preparation and LC–MS/MS Analysis

Twenty micrograms of protein samples (whole cell lysate, crude
membrane [No Wash], crude membrane after Urea Wash, and crude
membrane after Alkaline Wash) were incubated with 2 mM Tris(2-
carboxyethyl) phosphine hydrochloride for 30 min at 37 ◦C for
reduction, followed by alkylation with 55 mM iodoacetamide for
30 min at room temperature. The mixture was then diluted fourfold
with 0.1 M triethylammonium bicarbonate (pH 8) and subjected to
trypsin digestion (1:40, trypsin:sample ratio) overnight at 37 ◦C. Then,
the digestion was acidified with TFA to be about pH 2. The samples
were mixed with a peptide standard mixture (10 fmol/ml MassPREP;
Waters) and subjected to the phase transfer surfactant method for
SDC removal (9). In brief, 110 μl of ethyl acetate was added to 110 μl of
the digested solution, and the mixture was shaken for 1 min, and then
centrifuged at 15,700g for 2 min to obtain aqueous and organic
phases. SDC in organic phase was removed once. Then ethyl acetate
at the top layer of the aqueous phase was eliminated by a cold vac-
uum evaporator for 7 min. The mixture was centrifuged at 20,000g for
3 min, and the supernatant was collected and adjusted at about pH 9
with ammonia. For fractionation, StageTips were prepared using two
disks of SDB-XC material, washed, and equilibrated with 100%
methanol, followed by 100% ACN/0.1% w/v NH4OH and 0.1% w/v
NH4OH. The peptide mixtures were loaded onto the SDB-XC Stage-
Tips. The peptides were fractionated with increasing concentrations of
ACN (0%, 10%, 20%, and 80%) in 0.1% w/v NH4OH. The first fraction
was acidified by FA to about pH 2 and subjected to desalting with
C18-StageTips (29). The StageTips with one disk of C18 material were
washed and equilibrated with 100% methanol, followed by 90% v/v
ACN/0.1% v/v FA and 3% v/v ACN/0.1% v/v FA. The peptide mixture
was loaded onto the equilibrated C18 StageTips. Peptides were
washed by 3% v/v ACN/0.1% v/v FA twice and eluted by 90% v/v
ACN/0.1% v/v FA twice. Each fraction was dried under a cold vacuum
evaporator and stored at −20 ◦C within 1 to 3 months until LC–MS/MS
data acquisition. For LC–MS/MS measurement, the peptides were
dissolved in 10 μl of the measurement buffer (3% v/v ACN and 0.1% v/
v FA). Samples were measured using Q Exactive (Thermo Fisher
Scientific) with Advance UHPLC (Michrom Bioresources/Bruker)
equipped with a trap column (L-column ODS, 0.3 I.D. × 5 mm; CERI)
and C18 packed tip column (100 μm I.D. × 15 cm; Nikkyo Technos).
Two microliter of the samples was injected into the LC by PAL auto-
sampler injection (CTC Analytics). To obtain the ideal temperature for
analyzing hydrophobic peptides (14), the column temperature was
controlled at 60 ◦C using ESCO column oven (AMR). Mobile phases
were composed of buffer A (0.1% v/v FA) and buffer B (100% v/v
ACN). A gradient condition was configured a 5 to 40% buffer B in
100 min with a flow rate of 400 nl/min. The spray voltage was 2000 V,
and the capillary temperature was 275 ◦C. The full MS/dd-MS2

(Top10) method was used. A single full-scan mass spectrum and 10
MS/MS spectra were acquired from each duty cycle to determine
peptide molecular weights and amino acid sequences, respectively.
The selected conditions for this method were as follows: (i) the full
mass range of m/z 300 to 1700; (ii) isolation width of m/z 3.0; (iii)
normalized collision energy of 27%; and (iv) dynamic exclusion of 30 s.

Data Processing and Analysis

The enriched membranes were prepared from two independent
culture batches of HEK293T cells, and each replicate was subjected to
two runs of LC−MS/MS. Raw data were analyzed using Proteome
Discoverer 2.2 (Thermo Fisher Scientific) with Mascot 2.6.2 (Matrix
Science) against UniProt human database (released in March 2019)
containing 148,117 protein sequence entries including internal stan-
dards and trypsin sequences. The maximum missed cleavage sites
were set to 3, precursor mass tolerance was set to 10 ppm, and
fragment mass tolerance was set to 0.01 Da. The carbamidomethy-
lation on Cys was set as a fixed modification. The oxidation on Met
and deamidations on Asn and Gln were set as variable modifications.
The false discovery rate of peptide identification using percolator in
proteome was set at 0.01, which was calculated from the target-decoy
search approach. For label-free quantification, a combination of
Minora Feature Detector, Feature Mapper, and Precursor Ions Quan-
tifier nodes was used in Proteome Discoverer 2.2 based on the
manufacturer's manual. Briefly, Minora Feature Detector and Feature
Mapper nodes were used with the default settings. The intensity was
used for the quantification in Precursor Ion Quantifier node. Normali-
zation between datasets was performed using total peptide amounts.
The peptide-level precursor intensity values are summarized into
protein-level abundances. Peak intensities of peptide ions correlate
well with protein abundances (30–32). After analysis by Proteome
Discoverer 2.2, the protein list was exported as an Excel file. Prior to
calculating the number of identified proteins, the peptide standards
were excluded. The list categorized the identified proteins into three
groups: “High confidence”, “Peak found”, and “Not found”. According
to the manufacturer, these categories of proteins were evaluated
based on quantification of precursor ions and availability of peptide
spectra matches (PSMs) for the protein. “High confidence” proteins
mean the precursor ion was detected, and the best confidence of the
PSMs for the proteins was determined (false discovery rate of 1%).
“Peak found” refers to proteins that showed only the results from
precursor ion quantification searches while the PSM was not deter-
mined (unidentified spectra). “Not found” refers to proteins that did not
exist in a particular sample but were detected in another sample.
Unless described separately, the proteins labeled as “identified pro-
teins” in all experiments were determined from only “High confidence”
proteins.

Characterization of Membrane Proteins

The localization and functional categories of all identified proteins
were determined by the Gene Ontology (GO) using DAVID Bioinfor-
matics Resources, version 6.7 (33, 34) and the ingenuity pathway
analysis (IPA) (released in autumn 2019; Qiagen).

The proteins were annotated by two databases and one algorithm
(GO, IPA, and TMHMM). The GO is a common resource describing the
localization of gene products and their functions. The GO provides a
consistent information-rich terminology applicable across species and
information repositories (35). IPA is a knowledge-based software for
the analysis, integration, and interpretation of data obtained from
omics experiments. TMHMM is a membrane protein topology pre-
diction method based on a hidden Markov model (36). It predicts
transmembrane helices and differentiates between soluble and
membrane proteins with a high degree of accuracy. A protein was
classified as “membrane protein” when it falls in at least one of these
cases: (1) GO term, if the protein is described as “membrane” in
cellular components; (2) IPA, if the protein was labeled at “plasma
membrane”; and (3) TMHMM, if the protein was predicted to possess
at least one transmembrane helix domain. Protein interaction and
complexes were analyzed by IPA, web resources including Search
Tool for the Retrieval of Interacting Genes/Proteins (STRING), a
database for protein interaction (37), MINT (The Molecular INTeraction
Database) (38), Harmonizome (39), and CORUM (the comprehensive
resource of mammalian protein complexes) (40).

To analyze protein–protein interaction (PPI) network, we created
two lists by combining 1) 1,573 membrane proteins found in both Urea
Wash and Alkaline Wash samples, and 2) proteins specifically
Mol Cell Proteomics (2022) 21(5) 100206 3
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identified from each washing method (780 proteins from Urea Wash
and 470 proteins from Alkaline Wash). The lists were queried in the
STRING database, version 11.5 (37), and the PPI networks were
visualized by Cytoscape, version 3.9.0 (41). For the STRING setting,
the “physical subnetwork” was selected, the “minimum required
interaction score” was set at 0.7, and the “maximum number of
interactors to show” was set at none. The clustering option was set at
“MCL clustering” with “the inflation parameter: 6”. In Cytoscape, GO
term was used for “functional enrichment”. “Singletons” proteins with
no interaction were omitted from the displayed Figures.

Amino Acid Transport Assay in HEK293T Cells

Transport assay was performed as described previously with some
modifications (42). HEK293T cells (0.5 × 105 cells/well) were cultured
on 24-well poly-D-lysine-coated plates for 3 days. Transport of 10 μM
L-[14C]leucine (17 Ci/mol; Moravek) or 10 μM [14C]glycine (20 Ci/mol;
American Radiolabeled Chemicals) was measured for 1 min at 37 ◦C in
Hanks' Balanced Salt Solution (pH 7.4). For the measurement in Na+-
free buffer, NaCl was substituted with choline chloride. The inhibitors
(1 mM 2-aminobicyclo heptane-2-carboxylic acid [BCH] or 1 mM
α-methylaminoisobutyric acid [MeAIB]) were added together with the
radiolabeled substrates. The cells were lysed, and an aliquot of the
lysate was subjected to BCA assay for protein concentration mea-
surement. Radioactivity accumulated in the cells was monitored, and
then the uptake values were calculated. Each condition was per-
formed in triplicates.

Experimental Design and Statistical Rationale

For the comparison of whole cell lysate and crude membrane, the
experiment was performed using one batch of HEK293T cells and one
technical procedure for sample preparation. In LC–MS/MS analysis,
the peptides were measured twice.
Trypsinization 
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LC-MS/MS
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in 9.8 M Urea 

Crude membra
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FIG. 1. Membrane enrichment strategy for membrane proteomic
sample preparation methods for membrane proteomics were systematica
and crude membrane. The crude membrane was then subjected to furthe
(No Wash), (2) Urea Wash, and (3) Alkaline Wash. HEK293T, human emb
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For analysis of membrane enrichment by washing methods, the
membranes were enriched from two independent batches of
HEK293T. The samples from each batch were washed, followed by
the sample preparation for LC–MS/MS analysis. Each replicate was
subjected to two runs of LC–MS/MS.

For amino acid transport assays, each condition was performed in
triplicates from the same culture batch of HEK293T cells. Data are
shown as mean ± SEM, n = 3.

Unless indicated separately, all data in LC–MS/MS analysis repre-
sent the average numbers ± SD of protein identification calculated
from four runs. Statistical significance was calculated with multiple
two-tailed t test using a two-stage linear step-up procedure of Ben-
jamini, Krieger, and Yekutieli, with Q = 1%. Each condition was
compared without assuming a consistent SD. Graphs and statistical
significance were analyzed and plotted by GraphPad Prism 8.3
(GraphPad Software). Venn diagram was plotted by the web appli-
cations BioVenn (43) and InteractiVenn (44).

Animal

All animal experiments were designed according to the highest
scientific, humane, and ethical principles, and all procedures were
approved by the Animal Care and the Use Committee of Osaka Uni-
versity and Nara Medical University.

RESULTS

Experimental Workflow

The goal of this study is to evaluate sample preparation
methods for identification and quantifications of membrane
proteins by MS. As a benchmark experiment, HEK293T cells
were used. In Figure 1, we describe the workflow diagram of
experiments in this study. We prepared two types of samples,
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“whole cell lysate” and “crude membrane”. The crude mem-
brane was divided into three subgroups with further enrich-
ment procedures, called “No Wash” (control), “Urea Wash”,
and “Alkaline Wash” as described in the Experimental
Procedures section.

Membrane Isolation Improves Identification of Membrane
Proteins

First, we compared the proteome data identified from whole
cell lysate and crude membrane. The isolation of membranes
by centrifugation resulted in more protein identification
(Fig. 2A). While we detected 2,008 proteins from the whole cell
lysate, 2,743 proteins were identified from crude membrane.
The numbers of peptides showed a more drastic difference
between the two samples: 9,330 and 15,118 peptides from
whole cell lysate and crude membrane, respectively (Fig. 2A).
Next, we analyzed the population of membrane proteins

from two proteome datasets. Proteins were annotated by
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(see the Experimental Procedures section: Characterization of
membrane proteins). We detected 1,348 and 1,052 membrane
proteins in crude membrane and whole cell lysate, respec-
tively. While 490 proteins are specifically detected in crude
membrane, 194 proteins are only from whole cell lysate
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and whole cell lysate, respectively (Fig. 2D). The TMD proteins
detected only in the crude membrane were over five times
higher than the whole cell lysate. In Figure 2E, we counted
identified numbers of ABCs and solute carriers (SLCs) trans-
porters as examples of membrane proteins possessing mul-
tiple TMDs. Generally, transporters are strongly hydrophobic,
extremely unstable outside lipid bilayers, and poorly detected
by general protocols for MS (2). The ABC and SLC trans-
porters were increased 1.6-fold in crude membrane compared
with whole cell lysate. Taken together, the isolation of mem-
branes improved the identification of membrane proteins,
especially with proteins containing transmembrane domains.

Membrane Washing Drastically Increases the Identification
of Membrane Proteins

We found that about 13% of the identified proteins from the
crude membrane were predicted as TMD proteins (Fig. 2B:
TMHMM) and 27 ABC and SLC transporters (Fig. 2E). To in-
crease the numbers of detected TMD proteins, we further
enriched membrane proteins by means of membrane
Pr
ot

ei
ns

Membrane proteins

 Alkaline Wash
          1,820

Urea Wash
1,876

No Wash
   1,535

129

1109

135

174

464

117

130

C

A

M
em

br
an

e 
pr

ot
ei

ns

1500

1000

500

0

D

G

***

0

1000

2000

3000

4000

12000

16000

0

8000

***
No Wash Urea Wash Alkaline Wash

Pe
pt

id
es

FIG. 3. Evaluation of membrane washing for identification of memb
Wash, and Alkaline Wash samples. A, bar graphs indicate the identified n
the mean ± SD, n = 4, ***p < 0.001. B, evaluation of the protein hydrop
proteins with different GRAVY scores ranking ≤0 and ≥0 from the membra
in either Urea Wash or Alkaline Wash samples, but not in No Wash sam
merged into one dataset and presented in a Venn diagram to compare thr
proteins annotated by GO, IPA, and TMHMM, separately. The data repr
grand average of hydropathy; IPA, ingenuity pathway analysis.

6 Mol Cell Proteomics (2022) 21(5) 100206
washing. As shown in Figure 1, we tested three subgroups:
nonwashed sample (No Wash sample), sample washed by
urea (Urea Wash sample), and sample washed by alkaline
(Alkaline Wash sample). The average numbers of identified
proteins from four runs of each No Wash, Urea Wash, and
Alkaline Wash samples were 2735, 2762, and 2440 proteins,
respectively, and of those, 14,307, 14,936, and 11,607 are
peptides, respectively (Fig. 3A). Alkaline Wash gave signifi-
cantly fewer identified proteins and peptides than others.
About 70% of identified proteins are common among each
condition (supplemental Fig. S1, A–C). All the Pearson's cor-
relation coefficient values were above 0.97, validating that our
data are highly reproducible among replicates (supplemental
Fig. S1, D–F).
To characterize the proteome data from the washed mem-

branes, we evaluated the hydrophobicity distribution of
membrane proteins in No Wash sample (1,535 proteins) and
membrane proteins only found in membrane enriched by Urea
Wash or Alkaline Wash (“Wash Only sample”: 723 proteins
only found in Urea Wash or Alkaline Wash samples). The
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hydrophobicity of membrane proteins was calculated by
grand average of hydropathy (GRAVY) (45). A higher GRAVY
score means higher hydrophobicity. As shown in Figure 3B,
the distribution of the proteins in Wash Only sample was more
hydrophobic than that of No Wash sample, indicating the ef-
ficiency of the membrane washing to enrich the hydrophobic
proteins, such as membrane proteins. We also compared the
GRAVY scores of membrane proteins found in Urea Wash and
Alkaline Wash samples. The results showed no significant
difference between the two washing methods (supplemental
Fig. S2).
Next, we further annotated the proteome data from the

three samples. The numbers of membrane proteins in Urea
Wash and Alkaline Wash samples were 1.22-fold and 1.19-
fold of No Wash sample, respectively (Fig. 3C). Approxi-
mately one-third of the identified membrane proteins were
detected only in Urea Wash sample (593 proteins) or Alkaline
Wash sample (594 proteins), whereas 135 proteins were found
only in No Wash sample. Almost 64% of the additionally
identified proteins (464 proteins) are commonly detected in
both Urea Wash and Alkaline Wash samples (Fig. 3C).
Remarkably, TMD proteins were increased twofold in Urea
Wash and Alkaline Wash samples compared with No Wash
sample (Fig. 3D: TMHMM). We categorized membrane pro-
teins found in Wash Only sample (proteins detected in wash
conditions but not in No Wash) based on their molecular
functions (Table 1). Washing the membranes enormously
improved the identification from wide ranges of protein types,
TABLE 1
Type of proteins found in “Wash Only”

Category Subtype
Number of
proteins

Adaptor/chaperone — 15
Adhesion molecule — 20
Enzyme Kinase 24

Peptidase 14
Phosphatase 12

Other 175
Membrane transport
protein

Ion channel 21
Transporter: ABCa 10
Transporter: ATPase

pumpb
14

Transporter: SLCc 64
Otherd 11

Receptor GPCR 9
Other 53

Regulator — 76
Respiration complex — 32
Translocase — 10
Vesicle/cargo protein — 51
Other — 112

aABCs.
bATP-driven pumps.
cSLCs.
dOther: unclassified transporter with high homology to SLC.
such as enzymes (225 proteins), membrane transport proteins
(120 proteins), and receptors (62 proteins).
Membrane proteins, especially TMD proteins, generally

have lower abundance, and their mass spectra are hampered
by contaminant proteins, resulting in unidentified spectra.
Correspondingly, this is a typical problem of the low identifi-
cation as observed in whole cell lysate and even No Wash
membrane. We speculated that the step of membrane
washing improves the low quality of the mass spectra from
TMD proteins, turning the “Peak found” (unidentified spectra)
into “High confidence” resulting in an increase of the protein
identification. To test our hypothesis, we calculated the
numbers of “High confidence”, “Peak found”, and “Not found”
as defined in the Experimental Procedures section, for both
membrane proteins and TMD proteins. The results clearly
verified our hypothesis. Both Urea Wash and Alkaline Wash
intensified the peak quality efficiently, in turn, having extensive
“High confidence” proteins and less unidentified spectra,
especially significant for the TMD proteins (Fig. 4, A and B).
We summed the intensities of membrane proteins and TMD
proteins from “High confidence” and “Peak found” proteins.
Sum intensities of membrane proteins and TMD proteins were
increased by washing steps (Fig. 4, C and D). Especially, either
Urea Wash or Alkaline Wash enhanced the sum intensities of
TMD proteins about fourfold. An increase of peptide precursor
ion MS signal intensities correlates with the elevated protein
abundance. Collectively, either Urea Wash or Alkaline Wash
remarkably amended the membrane proteomics in both
quantitative and qualitative manners.

Urea Wash is the Preferable Washing Method to Detect
Multiple TMD Proteins

As shown, both Urea Wash and Alkaline Wash significantly
improved the identifications of TMD proteins. We further
evaluated the proteome data by focusing on TMDs. In total,
961 proteins were predicted to possess at least one TMD
(Figs. 3D and 5A). Both Urea Wash and Alkaline Wash
increased the identification of TMD proteins, especially the
multiple TMD proteins. Remarkably, Urea Wash significantly
increased the numbers of proteins with four or over 9 TMDs in
comparison with Alkaline Wash (Fig. 5A). Next, we selected
ABC and SLC transporters as the representative population of
higher-number TMD proteins (46, 47). Compared with No
Wash, both Urea Wash and Alkaline Wash made identified
these transporters at 2.86-fold and 2.63-fold, respectively
(Fig. 5B). In terms of the data quality, No Wash exhibited many
proteins labeled as “Peak found” whereas both Urea Wash
and Alkaline Wash exceedingly increased the numbers of
proteins with “High confidence” (supplemental Fig. S3). Both
washing also improved the detection of the ABC and SLC
transporters (supplemental Fig. S3C). Our results indicated the
effectiveness of both Urea Wash and Alkaline Wash in the
identification of multiple TMD proteins, such as membrane
transport proteins. Urea Wash is comparatively better than
Mol Cell Proteomics (2022) 21(5) 100206 7
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A Sample Preparation Method for Membrane Proteomics
Alkaline Wash for identification of multiple TMD proteins,
regarding the greater numbers of identified multiple TMD
proteins (Fig. 5B and supplemental Table S1).
Previously, we applied Urea Wash for membrane prote-

omics of stria vascularis from rat cochleae (26), indicating the
usefulness of Urea Wash for proteomics of tissue samples. In
this study, we quantitatively compared Urea Wash and Alka-
line Wash for the membrane proteomic analysis of brush
border membrane vesicles from mouse kidneys (supplemental
Fig. S4). We found a similar tendency from the membrane
proteome of the tissue sample with the proteome data from
the cell line. For example, the numbers of identified proteins
and peptides obtained from Alkaline Wash sample were
significantly less than those from Urea Wash and No Wash
samples (supplemental Fig. S4A). All results indicated the
merits of the membrane washing step for membrane pro-
teomes of tissue samples and particularly the superiority of
Urea Wash over Alkaline Wash.

Urea Wash Leads to Reveal Profiles of Amino Acids
Transport Systems

Because of the increased identification of transporters by
Urea Wash, we applied the proteome data to study trans-
porters. The identified ABC and SLC transporters are listed in
8 Mol Cell Proteomics (2022) 21(5) 100206
supplemental Table S1. Here, we investigated amino acid
transporters in a human cell line, HEK293T cells. Leucine is an
essential amino acid and a signaling molecule to stimulate cell
growth (48). Among known leucine transporters, we detected
SLC7A5 in all samples (No Wash, Urea Wash, and Alkaline
Wash samples) together with the ancillary subunit SLC3A2
(Fig. 6A). By membrane washing, we in addition detected
SLC6A15 in both Urea Wash and Alkaline Wash samples and
SLC43A1 in only Urea Wash sample. We then performed L-
[14C]leucine transport assays to evaluate the contribution of
each leucine transporter. First, we compared the transport
activity in the presence or the absence of Na+ because
SLC7A5 and SLC43A1 are Na+-independent transporters,
whereas SLC6A15 is Na+-coupled transporter (48–50). As
shown in the bar graph of Figure 6B, the uptake activities were
similar in the condition with and without Na+, indicating
SLC7A5 and SLC43A1, but not SLC6A15, are major leucine
transporters of the cells. In the presence of 2-aminobicyclo
heptane-2-carboxylic acid (BCH), an inhibitor of all identified
leucine transporters (48–50), the uptake was largely dimin-
ished confirming the transport specificity of SLC7A5 and
SLC43A1 (Fig. 6B). Furthermore, Urea Wash samples revealed
the profile of the glycine transport system (Fig. 6C). SLC38A2
was the only one glycine transporter detected in No Wash
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A Sample Preparation Method for Membrane Proteomics
sample, whereas SLC6A9 and SLC36A1 were specifically
found in Urea Wash sample. Transport of [14C]glycine in the
presence of Na+ showed that 80% of the uptake was resistant
to α-methylaminoisobutyric acid (MeAIB), an inhibitor of
SLC38A2 and SLC36A1 (51, 52). Most likely, SLC6A9 is the
major glycine transporter in HEK293T (Fig. 6D).

Urea Wash Preserves More PPIs

Many membrane proteins form protein complexes or clus-
ters, and then the complexes/clusters express certain func-
tions (53–55). We observed that both Urea Wash and Alkaline
Wash markedly increased the identification of components in
the protein complexes and clusters; for example, in compo-
nents of respiratory chain complexes were found 19 proteins
in No Wash sample, 42 proteins in Urea Wash sample, and 37
proteins in Alkaline Wash sample (supplemental Table S2). We
further examined PPI networks containing membrane proteins
in Urea Wash and Alkaline Wash samples by using STRING
database. To focus on the specific PPI containing membrane
proteins in each sample, we merged membrane proteins
found in both Urea Wash and Alkaline Wash samples with the
identified proteins only in Urea Wash or Alkaline Wash sam-
ples and searched the PPI as described in the Experimental
Procedures section. As a result, the PPI networks in Urea
Wash sample showed more complexes/clusters, nodes (i.e.
proteins) and interactions than the PPI networks in Alkaline
Wash sample (Fig. 7A). We found 324 complexes/clusters
from 1,271 nodes and 3,591 PPIs in Urea Wash sample
(supplemental Table S3), whereas Alkaline Wash sample
showed only 276 complexes/clusters from 1,032 nodes and
2,159 PPIs (supplemental Table S4). The ratios of interaction
per node were 2.82:1 in Urea Wash sample and 2.09:1 in
Alkaline Wash sample.
In addition, we analyzed individual complexes and clusters
in detail. One of the top 10 complexes/clusters in Urea Wash
sample was respiratory chain complexes (Fig. 7B: top panel).
Many components of each complex were identified in Urea
Wash and Alkaline Wash samples (supplemental Table S2).
The PPI networks of the respiratory chain complexes showed
57 nodes and 285 interactions in Urea Wash sample and 34
nodes and 135 interactions in Alkaline Wash sample, indi-
cating the preservation of large protein complexes by Urea
Wash. Next, we focused on the complexes/clusters at plasma
membranes. In the case of a complex with γ-secretase, an
enzyme complex that cleaves numerous type-I trans-
membrane proteins on the plasma membrane (56), we found
39 nodes and 46 interactions in Urea Wash sample and 23
nodes and 21 interactions in Alkaline Wash sample (Fig. 7B:
second panel). The following example is integrins and the
proximate proteins, such as heterodimeric amino acid trans-
porters family (SLC3A2 and its partner-SLC7 members) or
tetraspanin family, which form protein clusters (57, 58). We
found 58 nodes with 59 interactions in Urea Wash sample and
48 nodes with 40 interactions in Alkaline Wash sample
(Fig. 7B: third panel). Receptors, such as some types of G
protein–coupled receptors, are also known to form clusters
(59). We found 116 nodes with 127 interactions in Urea Wash
sample and 81 nodes with 76 interactions in Alkaline Wash
sample (Fig. 7B: fourth panel). Taken all together, although
both Urea Wash and Alkaline Wash significantly enhanced
identification of membrane protein complexes/clusters, Urea
Wash is preferred to detect PPI involving membrane proteins.
DISCUSSION

We have evaluated membrane enrichment methods for
membrane proteomics. The best method tested in this study
Mol Cell Proteomics (2022) 21(5) 100206 9
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A Sample Preparation Method for Membrane Proteomics
is composed of two main steps: (1) isolation of membranes by
centrifugation and (2) membrane washing with urea. The first
step removes nonmembrane fractions roughly, and the later
step cleans up contaminants that are attached to membranes.
By using the method, we drastically improved the quantity of
identified membrane proteins, especially multiple TMD pro-
teins and protein complexes with PPIs, and the quality of the
mass spectra.
The isolation of membranes is the first key step for the

membrane enrichment. In this study, we selected Potter–
Elvehjem homogenization method for the cell disruption
because the process is simple and more gentle to the mem-
branes than some harsh methods such as sonication.
10 Mol Cell Proteomics (2022) 21(5) 100206
However, other cell disruption methods, such as high pressure
or sonication procedures, would apply if isolation of a specific
membrane fraction is required (60). After the cell disruption,
we isolated the membranes by using centrifugation method
because it is convenient and valuable for high-yield membrane
protein separation and suitable for both comprehensive pro-
teomics and targeting proteomics (61, 62). Crude membrane
fraction in this study were chiefly plasma membranes but also
contained endoplasmic reticulum, microsomes, and some
mitochondria (63). It is also possible to enrich other membrane
fractions by modification of the centrifugation protocol. If
necessary, crude membrane fraction is subjected to gradient
centrifugation for further purification (64). Affinity purifications,



FIG. 7. Urea Wash keeps more protein–protein interactions (PPIs). A, PPI networks in Urea Wash (cyan) and Alkaline Wash (magenta)
samples. The protein complexes and clusters were analyzed as described in the Experimental Procedures section. Protein molecules are shown
as nodes, and interactions are indicated as lines. B, examples of membrane protein complexes/clusters in the PPI networks. Cyan nodes
represent proteins found in Urea Wash sample (upper row). Magenta nodes represent proteins found in Alkaline Wash sample (lower row). The
identified proteins that are main components of complexes/clusters are displayed in yellow (see full list in supplemental Table S2). Top panel,
complexes I–V of the mitochondrial respiratory chain. Second panel, the γ-secretase complex and its substrate APP (example of type-I
transmembrane protein substrates). Third panel, membrane protein clusters of integrins and their interacting proteins. Integrins (α and β sub-
units) mediate the cell adhesion by interacting with their extracellular ligands (extracellular matrix [ECM]) and facilitate the signals via the
intracellular interaction with the focal adhesion complex. Some integrins interact with the HATs (SLC3A2 and its partner-SLC7 members) and
tetraspanin families. Fourth panel, clusters of receptor, GPCRs, and their interacting G proteins. A type of GPCR called adhesion GPCRs
transinteract with integrins. Some receptors or GPCRs contain a PDZ-binding motif at their cytosolic C termini. GPCR, G proten–coupled re-
ceptor; HAT, heterodimeric amino acid transporter.

A Sample Preparation Method for Membrane Proteomics
for example, surface biotinylation (21) or immunopurification
(65), are applicable to enrich a specific population of the tar-
geting membranes such as synaptic vesicles or exosomes, as
well as organelles.
We strongly demonstrated that membrane washing is

another critical step for improving membrane proteome data.
Membrane washing is a simple and useful step. Notably, it is
applicable for any of the aforementioned membrane isolation
methods. While membrane washing has been established in
membrane proteomics for a long time, it is not used very often
recently. It is probably because of advances in analytical
hardware or software, which give us more comprehensive
proteome data, including more membrane proteins. Although
alkaline-treatment has been used occasionally (66), on the
other hand, urea treatment is rarely used for proteomics. No
systematic comparison of the methods is available for all we
Mol Cell Proteomics (2022) 21(5) 100206 11



A Sample Preparation Method for Membrane Proteomics
notice. In this study, we compared side by side the efficiency of
our methods, Urea Wash and Alkaline Wash, for membrane
proteomics. Overall, both wash conditions were comparatively
applicable for the enrichment of membrane proteins, especially
TMD proteins. The success in high confidence protein identifi-
cation is due to (at least) two rationales: (1) the soluble protein
contaminants, which mask the signal of TMD protein, were
removed by washing thereby, precursor signals of TMD pro-
teins showed up and could be detected and (2) washing
enriched the abundance of TMD proteins in the samples. They
both yielded a high population of TMD proteins, although Urea
Wash gave slightly better results for multiple TMD proteins and
preserved protein complexes and clusters. Notably, the per-
centage of membrane proteins to the total identified proteins in
No Wash, Urea Wash, and Alkaline Wash samples was 56.1%,
67.9%, and 74.6%, respectively. Alkaline Wash exhibited the
highest percentage of membrane proteins to the total proteins
because the number of total proteins in AlkalineWash sample is
smaller than others (Fig. 3A), suggesting that membrane
washingwith alkaline solution is harder andmost likely removes
more peripheral proteins that interact with membranes or
membrane proteins, including functional interactions. The PPI
network analysis also supports this hypothesis aswe found that
morePPIswere kept byUreaWash thanAlkalineWash (Fig. 7). It
was reported that high pH from sodium carbonate of alkaline-
treatment resulted in depletion of some integral membrane
proteins because free fatty acids released by saponification
might act as mild detergents (67). This might be why the total
intensity of peptides from Alkaline Wash sample before
normalization was less than other samples (supplemental
Fig. S3A). We propose that Urea Wash is suitable not only for
comprehensive membrane proteomics but also for some spe-
cific proteomics, such as immunoprecipitation–MS and
proximity-labeling MS, that is, APEX and BioID-MS, targeting
membrane proteins. As shown in Figure 7, Urea Wash pre-
served more interacting functional proteins but may be enough
to clean out most of the contaminants.
It is the advantage that urea itself does not disturb mem-

branes but helps to solubilize the hydrophobic membrane
proteins in water (68). Washing the membranes with urea is
often applied to functional assays of membrane vesicles or
purifications of membrane proteins because polytrophic
membrane proteins, such as protein-conducting channels or
transporters, are active even after urea treatment (19, 69, 70).
Besides the advantage of Urea Wash in such biochemical
assays, we demystified the merits of Urea Wash in compre-
hensive membrane proteomics. Urea Wash increased the
identification numbers of particularly multiple TMD (TMD ≥10)
proteins, such as SLC and ABC transporters. In every single
cell of all organisms, such transporters play important roles for
life. However, because of their minority in proteomes and their
functional complexity, the linkage between proteomics and
the transport functions is poorly reviewed. Over a quarter of
400 SLC genes are correlated with human diseases, although
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the studies of SLCs are relatively less compared with other
gene families, which have similar stature (2). Transcriptome
studies suggest that roughly 200 SLC transporters are
expressed in the HEK293 cell line (71). We identified 87 SLCs
in Urea Wash sample (supplemental Table S1). Because the
numbers of mRNA transcriptions are not equal to that of
protein expressions, our simple method may have identified
about a half of SLC transporters in HEK293T cells. Urea Wash
employs the merits of SLC studies by demonstrating a simple
method to identify their expression profiles. In this study, we
demonstrated the advantage of Urea Wash by the identifica-
tion of SLC7A5 and SLC43A1 as the main leucine transporters
and SLC6A9 as the major glycine transporter in HEK293T
cells. Recently, we also utilized Urea Wash for the renal brush
border membrane proteomics of the ischemia-reperfusion
injury mouse model and identified SLC transporters respon-
sible for an emerging clinical biomarker of acute kidney injury
and chronic kidney disease (72).
Urea may also corporate the solubility and sustenance of

the hydrophobic proteins in a hydrophilic environment (68).
Urea-containing buffer is also compatible with trypsin diges-
tion in the next step of bottom–up proteomics. In addition,
urea does not significantly interfere with LC–MS/MS mea-
surement. If necessary, urea can be removed prior to MS by
common desalting techniques. Cautions for Urea Wash at
high concentrations include (1) urea tends to aggregate during
sample preparation at temperatures below 4 ◦C and (2) urea
may cause a protein modification, called carbamylation, at
elevated temperatures. Prolonged incubation of a protein
sample with urea resulted in carbamylation, blocking protease
digestion and affecting protein identifications and quantifica-
tions in MS analysis (8, 73, 74). Our study utilizes Urea Wash in
the crude membrane as a model study for membrane prote-
omics. Nonetheless, Urea Wash is not limited to enrichments
of plasma membranes. As mentioned previously, Urea Wash
is applicable for enrichments of broad types of membranes,
such as microsomes and organellar proteins. Notably,
because Urea Wash is compatible with membrane protein
functions, membrane samples after Urea Wash are applicable
for combinational strategies of proteomics and biochemical
approaches. For example, the same urea washed brush
border membrane vesicles can be subjected to both func-
tional enzymatic assays and quantitative proteomics.
Although recent advances in instruments and methods for

sample preparation and data acquisition are drastic, the
membrane enrichment protocol summarized here is simple,
low cost, and requires no special equipment to unveil multiple
TMD proteins and their PPI networks. Researchers who are
not experts in proteomics can easily apply the protocol to their
research. Moreover, multiple TMD proteins, such as trans-
porters, still contain large numbers of uncharacterized or
ignored molecules (2). The method is suitable for small-scale
samples that require some additional biochemical assays to
shed light on these orphan membrane proteins.
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