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Abstract: Heparin has been extensively studied as a safe medicine and biomolecule over the past
few decades. Heparin derivatives, including low-molecular-weight heparins (LMWH) and heparin
pentasaccharide, are effective anticoagulants currently used in clinical settings. They have also been
studied as functional biomolecules or biomaterials for various therapeutic uses to treat diseases.
Heparin, which has a similar molecular structure to heparan sulfate, can be used as a remarkable
biomedicine due to its uniquely high safety and biocompatibility. In particular, it has recently drawn
attention for use in drug-delivery systems, biomaterial-based tissue engineering, nanoformulations,
and new drug-development systems through molecular formulas. A variety of new heparin-based
biomolecules and conjugates have been developed in recent years and are currently being evaluated
for use in clinical applications. This article reviews heparin derivatives recently studied in the field
of drug development for the treatment of various diseases.

Keywords: heparin; heparin derivative; polysaccharide; anti-cancer effect; bioconjugate

1. Introduction

Heparan sulfate (HS) is a natural component of the extracellular matrix (ECM) that is
abundantly expressed at cell surfaces in vertebrate tissues as part of proteoglycans (PGs).
These proteoglycans carry branches of glycosaminoglycans (GAG) improving a lot of
critical physiological processes. Sulfated natural GAG molecules are chondroitin sulfate
(CS), heparin, heparan sulfate (HS), keratan sulfate, and dermatan sulfate (DS); non-sulfated
natural GAG molecule is Hyaluronic acid (HA). Considering the disadvantages of the
direct use of natural GAG, GAG-mimetic biomolecules have become the key of biofunctions
these days [1]. Among GAGs, HS is composed of D-glucosamine and hexuronic acid units
with many sulfate groups in a molecular structure and shows good biocompatibility and
biodegradability [2]. It is a biomaterial that is essential for normal embryonic development,
cellular homeostasis, and various pathological processes as well as neurodegenerative
diseases [3–5]. For example, abnormal heparan sulfate storage in lysosomes develops
primarily mucopolysaccharidosis lll B [6].

Heparin, whose structure and properties are similar to those of heparan sulfate, has
been used clinically as an anticoagulant. Heparin is an FDA (Food and Drug Administration)-
approved drug used for patients at the risk of blood clots. Heparin is found in animal
tissues in forms such as heparan sulfate but differs in that it is used in medicines based on
its strong anticoagulation effects [7]. Although heparin is mostly used as an anticoagulant,
it has great potential for use as a biomolecule for the treatment of inflammation, injury,
or malignant tumors [8]. In addition, the various advantages of heparin have led to the
development of similar biomolecules that mimic it. For example, different types of heparin
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mimetics were developed as di- and tri-block copolymers containing anionic poly (sodium
2-acrylamido-2-methylpropane sulfonate (PAMPS) acting as an anticoagulant component
with polyethylene glycol (PEG) [9].

Heparin and its derivatives have been clinically developed to optimize the anticoagu-
lant effect while decreasing the systemic toxicity [10,11]. Heparin is a linear macromolecule
consisting of a heterogeneous mixture of saccharide chains. Unfractionated heparin (UFH)
is a naturally occurring glycosaminoglycan ranging in molecular weight (MW) from ap-
proximately 16,000 Da [12]. The problem with the use of UFH as a safe medicine is that its
molecular size is not optimized for regulating the blood coagulation process or target inhibi-
tion. The average molecular weight of UFH is much greater than the small heparin binding
site of antithrombin or Factor Xa (58,000 Da), which is a target for exerting anticoagulant
effects. Low-molecular-weight heparins (LMWHs) derived from UFH have been widely
used due to their excellent efficacy and low number of side effects due to their optimized
molecular size. For many indications, LMWH is usually preferred over UFH due to its
good predictability, low number of side effects, and lower risk of inducing bleeding [6].
In this line, smaller heparins such as very-low-molecular-weight heparins (VLMWHs) or
ultra-low-molecular-weight heparins (ULMWHs) have also been introduced by researchers.
Furthermore, a small synthetic heparin pentasaccharide named fondaparinux was devel-
oped as an alternative anticoagulant with an optimized molecular weight and sequence;
relatively, a small heparin derivative with a small molecular weight is easy to synthesize.

Studies of various medical uses of heparin derivatives are not limited to analyses of
their anticoagulative effects. To date, many heparin derivatives and conjugates have been
developed as new drug candidates or theranostic (diagnosis and therapy) agents like probes.
Their therapeutic effects have been studied for use in anti-cancer, wound-healing, anti-viral,
and anti-inflammatory therapies [13,14]. In particular, a range of studies suggest that hep-
arin derivatives and conjugates can inhibit tumor growth and metastasis by suppressing
many tumor-related factors (Figure 1) [1,10,11]. Heparin-based biomolecules are able to
bind to vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF),
P-selectin, CXC motif chemokine ligand 12 (CXCL12, also called stromal-derived factor-
1; SDF-1), and heparanase, affecting cell migration, adhesion, and angiogenesis [15–17].
Therefore, in this review, we summarize the current advances and challenges in the devel-
opment of heparin-related biomolecules such as heparin derivatives and conjugates for
their successful clinical application.

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 2 of 14 
 

 

to the development of similar biomolecules that mimic it. For example, different types of 

heparin mimetics were developed as di- and tri-block copolymers containing anionic poly 

(sodium 2-acrylamido-2-methylpropane sulfonate (PAMPS) acting as an anticoagulant 

component with polyethylene glycol (PEG) [9]. 

Heparin and its derivatives have been clinically developed to optimize the anticoag-

ulant effect while decreasing the systemic toxicity [10,11]. Heparin is a linear macromole-

cule consisting of a heterogeneous mixture of saccharide chains. Unfractionated heparin 

(UFH) is a naturally occurring glycosaminoglycan ranging in molecular weight (MW) 

from approximately 16,000 Da [12]. The problem with the use of UFH as a safe medicine 

is that its molecular size is not optimized for regulating the blood coagulation process or 

target inhibition. The average molecular weight of UFH is much greater than the small 

heparin binding site of antithrombin or Factor Xa (58,000 Da), which is a target for exerting 

anticoagulant effects. Low-molecular-weight heparins (LMWHs) derived from UFH have 

been widely used due to their excellent efficacy and low number of side effects due to 

their optimized molecular size. For many indications, LMWH is usually preferred over 

UFH due to its good predictability, low number of side effects, and lower risk of inducing 

bleeding [6]. In this line, smaller heparins such as very-low-molecular-weight heparins 

(VLMWHs) or ultra-low-molecular-weight heparins (ULMWHs) have also been intro-

duced by researchers. Furthermore, a small synthetic heparin pentasaccharide named 

fondaparinux was developed as an alternative anticoagulant with an optimized molecular 

weight and sequence; relatively, a small heparin derivative with a small molecular weight 

is easy to synthesize. 

Studies of various medical uses of heparin derivatives are not limited to analyses of 

their anticoagulative effects. To date, many heparin derivatives and conjugates have been 

developed as new drug candidates or theranostic (diagnosis and therapy) agents like 

probes. Their therapeutic effects have been studied for use in anti-cancer, wound-healing, 

anti-viral, and anti-inflammatory therapies [13,14]. In particular, a range of studies sug-

gest that heparin derivatives and conjugates can inhibit tumor growth and metastasis by 

suppressing many tumor-related factors (Figure 1) [1,10,11]. Heparin-based biomolecules 

are able to bind to vascular endothelial growth factor (VEGF), basic fibroblast growth fac-

tor (bFGF), P-selectin, CXC motif chemokine ligand 12 (CXCL12, also called stromal-de-

rived factor-1; SDF-1), and heparanase, affecting cell migration, adhesion, and angiogen-

esis [15–17]. Therefore, in this review, we summarize the current advances and challenges 

in the development of heparin-related biomolecules such as heparin derivatives and con-

jugates for their successful clinical application. 
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2. Limitations and Challenges for Using Heparins for Medical Purposes

The decades-long clinical use of heparin and heparin derivatives has recently been
challenged due to the development of competitive drugs. Heparin is an FDA-approved
safe drug, but other competitive anticoagulants that can be used orally have been emerging
in the pharmaceutical market. It has been well documented that the administration of
UFH or LMWH is the current safe and standard treatment for deep vein thrombosis
(DVT), pulmonary embolism, and stroke prevention. The safety and efficacy of the use
of heparin have been confirmed over decades-long studies, and heparin is still in clinical
use in many high-risk patients [18,19]. However, UFH and LMWHs are difficult for the
body to absorb when administered orally because they have large molecular weights of
over 4000 Da and exhibit strong negative surface charges [20,21]. Since even very small
molecular heparins exceed 1500 Da, normal heparin derivatives also cannot be absorbed
in the gastrointestinal (GI) tract when they are administered orally [22]. However, in the
case of newly developed direct oral anticoagulants (DOACs), which act on similar targets
with low molecular weights, they are able to be used as oral medicine for patients [23,24].
For this reason, DOACs including rivaroxaban and apixaban are increasingly being used
to prevent venous thromboembolism after surgery or arthroplasty [25]. Considering the
importance of anticoagulants, which should be used daily for preventive purposes, DOACs
may continue to increase their share of the anticoagulant market as a substitute for heparins.

With the various studies of heparin as functional biomolecules, heparin and its deriva-
tives have been found to have various therapeutic functions in treating disease. In par-
ticular, the molecular structure of heparin is similar to that of HS, a component of the
ECM, and is capable of biological interactions with various proteins and cytokines [3,5].
For example, the currently used heparin derivatives could impact cancer progression in
cancer patients via anti-angiogenic and anti-metastatic effects [26]. The administration of
LMWH to cancer patients increased the survival rate in a manner that was not related to
the anticoagulant effect of heparin [27–29]. Additionally, heparins could act as effective
wound-healing accelerators, increasing angiogenesis; as anti-viral agents that can inhibit
human immunodeficiency virus; and as regulators of inflammatory arthritis, inhibiting
cell accumulation and collagen destruction [11,30,31]. In addition, several heparin deriva-
tives have been developed for non-anticoagulant applications. However, in order to use
a heparin derivative for therapeutic purposes other than its anticoagulant effect, its an-
ticoagulant effect needs to be eliminated. Additional molecular modifications such as
periodate treatment, molecular modification, and size control can be used to eliminate
the anticoagulant effect, but these methods have not been completely validated in clinical
studies [32]. It seems that the chemical conjugation of heparins with other molecules could
result in an increase in biological activity or therapeutic effect with the loss of the intrinsic
anticoagulant properties of heparin. Thus, an optimized heparin conjugate might be a good
drug candidate. Therefore, it is important to develop and study an appropriate heparin
derivative or conjugate suitable for potential clinical use.

3. Various Heparin Derivatives and Conjugates for Optimizing Anticoagulant Effect
3.1. Heparin Conjugates for Optimizing Anticoagulant Effects

To overcome several problems of UFH, such as unwanted interactions with plasma
proteins, low-molecular-weight heparin derivatives have been prepared and clinically used
(Figure 2). The optimal heparin molecular structure and size might be derived through
structural analysis of heparin based on computer simulation. Smaller heparins such as
LMWH have shown better pharmacokinetic and pharmacodynamic profiles because their
molecular size is optimized for targeting Factor Xa to exert anticoagulative effects [33,34].
Commercially available LMWHs include enoxaparin, nadroparin, tinzaparin, reviparin,
and dalteparin [35]. Although their anticoagulant effects are more predictable and dose-
dependent than those of UFHs, they have higher anti-Xa/anti-lla activity ratios compared
with UFH. Among the LMWHs, tinzaparin and dalteparin have molecular weights that
are higher than those of others by 1000 to 2000 Da [12]. On the other hand, the average
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molecular weights of enoxaparin and nadroparin are 4300–4500 Da. LMWH, those who
have low molecular weight, have low activity against Factor lla (thrombin). Therefore,
LMWH derivatives have a higher ratio of anti-Xa activity to anti-lla activity [36]. These
substances are widely used across the world as anticoagulants [7,37]. There are subtle
differences in the structure of the two LMWHs. Enoxaparin, for instance, is usually
prepared from UFH via a chemical b-elimination reaction so that 1,6-anhydrosugar residues
are present at the reducing end. However, nadroparin does not have a reducing end because
it is obtained by nitrous acid depolymerization.
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Figure 2. Chemical structures of unfractionated heparin (UFH), low-molecular-weight heparin (LMWH), very-low-
molecular-weight heparin (VLMWH), and synthetic heparin pentasaccharide used as anticoagulants. Based on the main
sequence of heparin, the molecular structure of heparin was specified through computer simulation to consider the molecu-
lar interaction with heparin related proteins. The molecules were generated from the solution structures of heparin obtained
using an X-ray scattering model (protein data bank; PDB, 3IRL) [38]. The molecular structures of heparin were further
modified using the ChemDraw 20.1 Professional (PerkinElmer) program based on their synthetic processes and average
molecular sizes. The modified molecules were visualized using the Discovery Studio 2021 (BIOVIA) software.

It has been reported that very-low-molecular-weight heparins or synthetic low molecu-
lar heparin mimics can show Factor Xa-specific anticoagulant effects, resulting in a decrease
in systemic toxicity [39–41]. The heparin binding site of antithrombin can accommodate a
small number (five or more) of polysaccharide residues at high affinity sequence. In fact,
the number of heparin saccharide rings that can bind effectively to antithrombin is limited
to approximately five, meaning that very small heparins with an average molecular weight
of 1800–2500 Da are sufficient for molecular binding [33,42]. Based on the structural infor-
mation of the small heparin binding site, VLMWHs including semuloparin and bemiparin
have been prepared and studied [43,44]. Furthermore, a size-optimized synthetic heparin
mimic was chemically synthesized and developed, exploiting the appropriate heparin size
and sequences [45]. Fondaparinux, a synthetic heparin pentasaccharide, was approved by
the FDA for medical applications with consistent pharmaceutical parameters [46]. Taken
together, these so-called VLMWHs or ultra-low-molecular-weight heparins (ULMWHs), in-
cluding fondaparinux, showed a higher anti-Xa activity than other heparin macromolecules
such as UFH or LMWHs. Therefore, these molecular-size-optimized ULMWHs or LMWHs
have shown great potential in clinical applications as drugs with improved therapeutic
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effects and low toxic effects when compared with large UFHs [47]. The design of heparin
derivatives can be optimized in terms of not only the molecular size and sequence but also
the route of administration.

The oral delivery of heparin is important for patients with a high risk of clotting
because the action of heparin is necessary for the prevention of thrombosis [22,48]. First,
in order to improve the oral bioavailability of heparin, an oral formulation with an en-
hancer including sodium N-[8-(2-hydroxybenzoyl) amino] caprylate (SNAC) or sodium
N-[10-(2-hydroxybenzoyl)amino] decanoate (SNAD) was developed [49–52]. Then, chemi-
cal heparin conjugates such as low-molecular-weight heparin and deoxycholic acid con-
jugate (LMWH–DOCA) or heparin–lipid conjugate were synthesized for oral heparin
delivery [53–56]. These oral chemical conjugates have also been widely studied for the
treatment of various other diseases such as cancer [13,57,58]. The problem with these
synthesized heparin derivatives and conjugates is that at least five intact heparin saccha-
ride rings are required for therapeutic action, but they can be easily lost during synthesis,
increasing the complexity. Therefore, a precise end-site-specific conjugation of heparin
to preserve its heparin sequence was attempted; then, a new enoxaparin and tetraDOCA
conjugate (EnoxaTD) was developed using end-site-specific chemical glycosylation [59].

3.2. Heparin Conjugates for Anti-Cancer Therapy

The study of the use of heparins or heparin derivatives in cancer treatment began
recently, showing promising results in terms of their ability to treat several tumors [60].
Cancer is one of the leading causes of death worldwide, and some cancer patients receive
UFH or LMWH to prevent cancer-associated thrombosis (CAT) or blood coagulation. The
use of heparin in cancer patients has shown various therapeutic effects; thus, scientists
have attempted to modify heparin’s molecular structure to enhance its anti-cancer effects.
In particular, heparin conjugates that have been chemically modified with other drugs or
molecules have several advantages in terms of decreasing the bleeding toxicity of heparin as
well as enhancing its biological activities. For example, when heparin binds to hydrophobic
molecules such as cholesterol or bile acids, its anti-cancer effect can be increased along
with a loss of its anticoagulant effect [61,62]. Various heparin and bile acid conjugates with
taurocholic acid (TCA) or deoxycholic acid (DOCA) have been prepared and their ability
proven, resulting in delayed tumor growth and metastasis [63,64]. Heparin–taurocholate
conjugate (HT10) or heparin–DOCA conjugate (H-DOCA) were shown to inhibit tumor
growth and metastasis while regulating the activity of tumor-related growth factors such
as vascular endothelial growth factor A (VEGF A). VEGF A has a heparin-binding domain
in its structure [65,66]. Recently, the target range of heparin derivatives was extended to
tumor-related proteins such as transforming growth factor-β1 (TGF-β1), CXCL12, vascular
endothelial growth factor C (VEGF C), and heparanase [67–69].

Heparin derivatives developed for anti-cancer treatment are not necessarily limited
to heparin–steroid structures or derived from UFH. For example, PG545 is a heparin-like
synthetic molecule with a hydrophobic cholestanyl aglycone moiety (Figure 3). It can
show a strong anti-cancer effect, inhibiting angiogenic factors, with mild anticoagulant
activity and stimulating immune responses against tumors [70–72]. Interestingly, it was
recently reported that PG545 also displays potential for use as an anti-viral agent against
SARS-CoV-2 and as a heparanase inhibitor with anti-lymphoma effects [73,74]. On the
other hand, various function molecules such as tocopherol (for pH-triggered polymeric
micelles) [75], biotin (for anti-heparanase activity to treat multiple myeloma) [76], chlo-
rambucil (as a redox-responsive prodrug) [77], suramin fragment (to enhance or mimic
heparin’s properties) [78,79], and the thiol group (for pH and GSH dual-responsive carriers
for inhibiting tumor growth) [80] were recently conjugated to heparin molecules as new
therapeutic biomolecules; they are currently under evaluation. In addition, heparin can be
chemically modified with a hydrophobic photosensitizer (pyropheophorbide-a) for pho-
todynamic therapy [81]. In a study, a polyethylene-glycol-modified (PEGylated) heparin
and PDT conjugate achieved high tumor accumulation and had strong tumor-inhibitory
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effects. There was a complex study concerning the synthesis of a heparin derivative with
matrix metalloproteinase (MMP2)-specific peptides for M2-to-M1-like macrophage repro-
gramming [82]. In the case of the heparin–peptide conjugate, heparin served not only as a
hydrophilic biomaterial but also as a vessel for normalizing biomolecules contributing to
anti-angiogenic effects. The results of studies conducted in animals showed that the hep-
arin conjugate promoted potent tumor inhibition, anti-metastatic effects, and overall tumor
microenvironment (TME) improvements. Taken together, heparin mimics, derivatives, and
conjugates may be used in the design of efficacious and biocompatible therapeutics rather
than unmodified heparins, as shown in Table 1.
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Figure 3. Chemical structures of recently studied heparin conjugates and heparin-mimic biomolecules. Heparin or
the heparin-mimic moiety in the molecule is expressed as a stick, while the conjugate is expressed as a sphere. The
molecular structures were visualized using the PyMOL (the PyMOL Molecular Graphics System, Version 2.5.0, Schrödinger)
program. SuraD, suramin fragment and deoxycholic acid conjugate; EnoxaTD, enoxaparin and TetraDOCA conjugate;
LHbisD4, LMWH and bisDOCA conjugate; Lpep, LMWH and peptide conjugate; LCY, LMWH and chrysin conjugate;
HP-Ppa-SS-mPEG, PEG-detachable pyropheophorbide-a (Ppa)-functionalized heparin; LHsura, LMWH, and suramin
fragment conjugate.
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Table 1. Recently developed heparin-based biomolecules for the treatment of various diseases.

Class Molecular Effects Materials Highlight Year Refs.

Heparin Inhibits influenza H5N1 Chemically modified
heparin

A H5 pseudotyped
HIV system 2015 [83]

Heparin Chronic kidney disease Tinzaparin CrCl ≥ 20 mL/min
in patients 2019 [84]

Heparin Transduction efficiency Enoxaparin pLV-S 1 typed
virus

2021 [85]

Heparin Sepsis inhibition LMWH Patients with
COVID-19 2020 [86]

Heparin Coagulopathy in COVID-19 LMWH Change in survival
rates 2020 [87]

Heparin Wound healing Heparin
Hemostatic

protein, VWF 2

deficiency
2019 [30]

Synthetic molecule Heparanase inhibitor Pixatimod
Directly binds to

S1 protein RBD of
SARS-CoV-2

2020 [88]

Synthetic molecule Heparanase inhibitor Roneparstat Myeloma therapy 2018 [89]

Nanocarrier Hybrid nano-thin film
Heparin/peptide–

polyethylene
glycol

Store morphogen 2018 [90]

Nanocarrier Anti-cancer activity AIB1 3 siRNA-loaded
PEI/heparin/Ca2+ NPs

A non-viral
polymer carrier for

AIB1 siRNA
2018 [91]

Nanocarrier Anti-thrombotic Hp-DOCA-PVAX 4

nanocomposite

Reduced
inflammation and

coagulation
2019 [92]

Nanocarrier Malaria therapy
Artesunate–heparin

conjugate-based
nano-capsules

P. falciparum
inhibition 2019 [93]

Nanocarrier Photodynamic therapy Hp-Ppa-SS-mPEG 5
Increased ROS
production and

apoptosis
2021 [81]

Nanocarrier Human colon
adenocarcinoma

Chitosan/heparin
polyelectrolyte complexes

Oral hydrophilic
drugs 2021 [94]

Nanocarrier Anti-tumor and
anti-angiogenic efficacy

Dalteparin-Poloxamer with
LR-DOX 6 hydrogel

Exhibiting a good
thermosensitivity 2019 [95]

Conjugate Heparanase With biotin Metastasis
inhibition 2020 [96]

Conjugate Anti-tumor and
anti-angiogenic efficacy

PEG-
LHT7/TRAIL/protamine

nanocomplex

Increased
tumor-resident
time for TRAIL

2021 [97]

Conjugate Anti-angiogenic activity Suramin fragment–DOCA Binding with HBD
7 of VEGF 8 2021 [78]

Conjugate GAG 9-based COVID-19
therapeutics

Heparin–amine–PEG3–
biotin

SARS-CoV-2 10

glycoprotein
binding

2020 [98]
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Table 1. Cont.

Class Molecular Effects Materials Highlight Year Refs.

Conjugate Anti-cancer activity Heparin–chlorambucil High redox
potential. 2019 [77]

Conjugate Anti-cancer activity Heparin–α-tocopherol–
docetaxel

Increased
cytotoxicity against

cancer cells
2020 [75]

Conjugate Protein interactions Biotin–heparin At low temperature 2018 [99]

Conjugate Anti-cancer activity Heparin–SH–doxorubicin High
biocompatibility 2020 [80]

Conjugate Improved anti-angiogenic
activity ES2-GSHP 11

Wide pH activity
range and a longer

half-life
2019 [100]

Conjugate Anti-cancer activity PCLA–PEG–PCLA 12

polymeric hydrogel

Temperature-
responsive
hydrogel

2019 [101]

Conjugate Anti-corneal
neovascularization LMWH Distribution level

needs every 4 to 6 h 2018 [102]

Conjugate Anti-microbial activity Piscidin–heparin Cu2+ interaction 2018 [103]
1 pLV = lentiviral vector; 2 VWF = von Willebrand factor; 3 AIB1 = nuclear receptor coactivator 3; 4 Hp–DOCA–PVAX = heparin–
deoxycholic acid copolyoxalate containing vanillyl alcohol; 5 Hp–Ppa–SS–mPEG = Hp-based polymer conjugate with pyropheophor-
bide; 6 LR–DOX = laponite RDS–doxorubicin; 7 HBD = heparin-binding domain; 8 VEGF = vascular endothelial growth factor;
9 GAG = glycosaminoglycan; 10 SARS-CoV-2 = severe acute respiratory syndrome-related coronavirus 2; 11 ES2–GSHP = endostatin2-
glycol-split heparin; 12 PCLA–PEG–PCLA = (poly-(ε-caprolactone-co-lactide)–b-poly (ethylene glycol)–b-poly(ε-caprolactone-co-lactide).

3.3. Heparins as Anti-Viral Agents

Various anti-viral effects of heparin-based biomolecules were demonstrated in a recent
study. In the case of influenza, a common flu virus, it is reported that heparin and heparin
derivatives can have preventative effects through inhibiting the ability of the H5N1 strain
of the virus to attach to cells [83]. This means that heparin derivatives and conjugates may
be a potential source of viral inhibitors. In terms of recent world events, coronavirus disease
2019 (COVID-19) grabbed the attention of researchers focusing on advanced medication
systems. Heparin treatment for COVID-19 patients has therapeutic potential; however,
the exact role of heparin needs to be proven [104]. Some research has shown, in vitro,
that heparin has promising anti-viral activity for the inhibition of SARS-CoV-2 (severe
acute respiratory syndrome-related coronavirus-2) [105]. Another report has suggested
that the administration of heparin to COVID-19 patients might be associated with lower
mortality [87]. The use of heparins in COVID-19 patients may be safe; however, further
clinical studies are needed to prove their therapeutic effect [106]. Regarding the use of
heparins as anti-viral agents, it seems that UFH has stronger antiviral activity than LMWHs,
inhibiting spike proteins in SARS-CoV-2 [107]. In addition, new anti-viral effects of heparin
derivatives such as PG545, which were initially developed as anti-cancer drugs, have also
been reported [74]. On the other hand, in response to the COVID-19 pandemic, the US
Food and Drug Administration (FDA) recently decided to allow the use of a medical device
named Seraph R100 that has heparin molecules on its surface for reducing bloodstream
pathogens [108]. The surface of the heparin is designed to bond with the existing virus and
remove it from the blood. These studies indirectly show that heparin may have value as
a probe as well as a therapeutic agent. The development of heparin-utilizing devices or
heparin derivatives for anti-viral effects might continue based on their protein binding and
anti-viral ability.
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4. Recent Nanoformulation of Heparin

The use of nanoformulations of heparin or heparin derivatives for the treatment of
various diseases has been shown to have several advantages [109]. Nanoformulations
of drugs usually have several advantages, such as targeting effects, increased circulation
times, and higher efficiency [110–112]. In the case of heparin, which is a highly hydrophilic
biomolecule, the formation of nanoparticles is mainly achieved though the binding of
hydrophobic organic molecules (Figure 4) [113]. For example, most heparin conjugates, in-
cluding heparin–DOCA conjugates and bisdeoxycholyl–heparin (LHbisD4), which was de-
veloped to enhance oral absorption, can generate nanoparticles via self-assembly [114,115].
The redox-responsive heparin–chlorambucil conjugate that was recently developed by
Andrgie et al., the heparin–biotin conjugates developed by Esposito et al., and the heparin-
pyropheophorbide conjugate developed by Wu et al. can also self-assemble into spherical
nanoparticles in an aqueous solvent [76,77]. Heparin conjugates are sometimes mixed with
other polymers such as their antidote (protamine sulfate) [116,117] or anti-inflammatory
polymer (copolyoxalate containing vanillyl alcohol, PVAX) [92] via co-assembly to increase
the function and retention time of heparin in the blood, thus reducing its side effects on
hemostasis. Heparin based on functional nanomaterials can be utilized for the treatment
of various diseases. For example, Wan et al. recently conjugated poly(ε-caprolactone)
(PCL) and keratin with heparin to bind VEGF [118]. Heparin/VEGF engineered materials
show good biocompatibility upon testing for blood clotting time, hemolysis, and platelet
adhesion. Taken together, it can be observed that there are many heparin-based nanopar-
ticles that bear interesting characteristics for use in medical treatment. Considering the
development of nanotechnology and heparin-based biomolecules, nanoformulations of
heparin should be further studied in the future.
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5. Conclusions and Perspectives

Heparin and heparin derivatives have shown great therapeutic potential as anticoagu-
lants or functional biomolecules in many polysaccharide studies. However, the clinical use
of heparin for the treatment of thromboembolism or atrial fibrillation has been challenged
with the advent of DOACs such as rivaroxaban and apixaban. Although heparins including
UFH and LMWHs are highly safe and effective, their use in the clinic is limited to par-
enteral administration due to their poor oral bioavailability. Considering the importance of
anticoagulants for use in prophylaxis, it is highly advantageous that DOACs can be taken
orally every day [33,119]. Therefore, although the increasing use of DOACs is inevitable,
both heparins and DOACs will likely be widely used clinically because of the unique
safety profile and effectiveness of heparin [120–124]. On the other hand, research on the
non-coagulant effects of heparin based on their therapeutic potential in various clinical
situations is ongoing. Due to the other functional properties of UFH and LMWH observed,
they have been utilized for applications besides being used as anticoagulants [125]. Many
preclinical studies and experimental research papers have shown that heparin can be con-
sidered a modulator of growth factors, cell-adhesion molecules, chemokines, viral proteins,
immune factors, and endothelial cells [42,126–128]. Even without the anticoagulant effect
of heparin, it is clear that its number of new applications seems set to increase in the
near future.

In this review, we propose that chemical modification or conjugation with heparin
molecules can improve the use of heparin as a therapeutic in various diseases. These
approaches might be able to greatly expand the current treatment options for heparins in
clinical settings with high efficacy and low toxicity, overcoming the current limitations of
their clinical application as anticoagulants. In this regard, several studies have evaluated
and clinically analyzed the therapeutic functions of various heparin-based biomolecules.
Recent advances in the preparation of heparin-related biomolecules or nanoformulations
of heparin conjugates include the emergence of heparin derivatives or conjugates that
are suitable for successful clinical applications. In this article, we summarized the recent
advances in the development of heparin derivatives and conjugates as potential thera-
peutics. Considering the current limitations of the use of heparin, we expect that new
heparin derivatives and conjugates will provide us with opportunities for further clinical
applications.
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