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Electronic health records (EHR) are not designed for population-based research,
but they provide easy and quick access to longitudinal health information for
a large number of individuals. Many statistical methods have been proposed
to account for selection bias, missing data, phenotyping errors, or other prob-
lems that arise in EHR data analysis. However, addressing multiple sources of
bias simultaneously is challenging. We developed a methodological framework
(R package, SAMBA) for jointly handling both selection bias and phenotype
misclassification in the EHR setting that leverages external data sources. These
methods assume factors related to selection and misclassification are fully
observed, but these factors may be poorly understood and partially observed
in practice. As a follow-up to the methodological work, we demonstrate how
to apply these methods for two real-world case studies, and we evaluate
their performance. In both examples, we use individual patient-level data col-
lected through the University of Michigan Health System and various external
population-based data sources. In case study (a), we explore the impact of these
methods on estimated associations between gender and cancer diagnosis. In
case study (b), we compare corrected associations between previously identified
genetic loci and age-related macular degeneration with gold standard external
summary estimates. These case studies illustrate how to utilize diverse auxiliary
information to achieve less biased inference in EHR-based research.
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1 INTRODUCTION

Electronic health record (EHR) databases allow researchers to study many diseases across patients’ course of medical
care. However, observational databases such as EHR present many practical challenges for health research, which can
negatively impact internal validity and external generalizability of resulting inference. Some issues include poorly mea-
sured variables, missing data, confounding, and limited information about patient recruitment mechanisms. Analytical
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and design-based strategies for addressing these data limitations are key to obtaining improved inference based on EHR
data.

In this article, we focus on two potential sources of bias for EHR analyses: (1) lack of representativeness of the EHR
sample relative to some target population (selection bias) and (2) measurement error in EHR-derived outcome/phenotype
variables. In particular, we consider the common setting where researchers are interested in using EHR data to study the
relationship between a binary disease phenotype, D, to a set of patient characteristics, Z. Selection bias can occur due to
lack of representativeness of a defined target population such as the US adult population, and the EHR-derived disease
phenotyped may be misclassified for some patients. Many researchers have proposed methods to correct for either selec-
tion or measurement error in the EHR setting, this prior scholarship does not address how to handle both sources of bias in
a single analysis.1-4 More recently, Beesley and Mukherjee (2022) proposed novel methodology that leverages population
summary statistics and internal data (eg, patient visit patterns) to address both sources of bias simultaneously in a single
data analysis.5 As discussed later on, several existing strategies for handling either selection bias for non-probability sam-
ples or phenotype misclassification can be viewed as special cases of the methods in Beesley and Mukherjee.1,3,4,6 In the
ideal setting where variables related to selection (collectively, denoted W) and phenotype misclassification (denoted X)
are known and observed, Beesley and Mukherjee demonstrates good bias reduction and inferential performance for the
proposed class of methods.

In reality, however, drivers of selection and misclassification may not be known, and known drivers may not always be
observed (eg, income, residential information, access to health care). Additionally, the methods for handling selection bias
proposed in Elliot 2009 and extended in Beesley and Mukherjee rely on access to high-quality external data (or summary
statistics) on D and W from the target population (or a probability sample).6 The availability of such external data will
depend on the target population, the outcome of interest, and the complexity of W . External individual-level data may
present additional challenges such as missing data, or we may have access to marginal distributions of variables D and
some subset of W for the target population but not their joint distribution. Our ability to correct bias will naturally be
limited by the observed internal data and external information we have available. Implementation of these methods in
messy real-life data analysis is not trivial, and good performance is not guaranteed by proven theoretical results. It is of
interest, therefore, to explore how the methods in Beesley and Mukherjee (and by extension, earlier methods in Sinnott
et al, Duffy et al, and Elliot) perform for some real-world inferential problems. Our goal in this paper is to provide a general
road map for researchers interested in applying these types of bias correction methods in their own data analyses, which
is non-trivial even if the theory and the software package exist.

In this article, we demonstrate how the methods discussed in Beesley and Mukherjee can be applied in practi-
cal EHR data analysis through two case studies.5 In doing so, we explore the potential for bias reduction in practice
and highlight some limitations. We consider data from the Michigan Genomics Initiative (MGI), a longitudinal EHR
and genotype-linked biorepository within The University of Michigan health system. In case study (a), we examine the
relationship between cancer diagnosis and gender, accounting for the strong enrichment of cancer patients due to ascer-
tainment mechanisms in MGI. This case study addresses bias by leveraging cancer prevalences by age from SEER (Surveil-
lance, Epidemiology, and End Results program by the National Cancer Institute), age distributions from the US Census,
and individual-level data from NHANES (National Health and Nutrition Examination Survey by the US Centers for Dis-
ease Control and Prevention [CDC]). In case study (b), we consider the relationship between age-related macular degener-
ation (AMD) and several genetic loci identified by a large population-based genome-wide association study, and summary
statistics for disease prevalence by age from the US CDC are used for bias reduction. Comparative gold standard results
from International AMD Genomics Consortium data are available for benchmarking different bias reduction approaches.

In Section 2, we introduce the observational database with individual-level EHR data used for our analysis. Section 3
provides an overview of the bias-correction strategies proposed in Beesley and Mukherjee.5 In Sections 4-5, we apply these
methods to obtain corrected point estimates and standard errors for the two case studies. We conclude with a discussion in
Section 6. Through this paper, our goal is to illustrate a valuable set of tools in the EHR data analysis toolkit and highlight
important considerations to facilitate their implementation.

2 CASE STUDIES AND THE MICHIGAN GENOMICS INITIATIVE
DATABASE

The Michigan Genomics Initiative (MGI) is an EHR-linked biorepository within Michigan Medicine containing
over 75 000 patients with both genotype and phenotype information available.7 Time-stamped ICD (International
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Classification of Disease) diagnosis data are available for each patient. A rich ecosystem of additional information is
available for each patient, including lifestyle and behavioral risk factors, lab and medication data, geocoded residential
information, socioeconomic metrics, and other patient-level, census tract-level, and provider-level characteristics.

We want to use MGI data to study the association between disease status D and predictors Z and generalize to the target
US adult population or a subset. Here, the predictor set Z may also contain additional adjustment factors that are not of
primary interest. The process by which data are accumulated and the systematic differences between MGI patients and our
target population must be considered to achieve this goal. Supplementary Material Figure A.1 provides a visualization of
mechanisms by which patients are included in MGI. Patients are recruited among perioperative patients seen at Michigan
Medicine, with targeted recruitment primarily through the Department of Anesthesiology. This naturally results in strong
enrichment for diseases associated with surgical intervention, such as cancer.8

We illustrate how we can address this lack of representativeness relative to the US adult population through two
case studies. Case study (a) explores the relationship between gender and cancer diagnosis. Given the strong enrichment
for cancer in MGI, the method for handling selection bias for this case study may have a strong impact on resulting
inference. In case study (b), we investigate the relationship between age-related macular degeneration (AMD) diagnosis
and 43 genetic loci previously identified as risk factors for AMD. We expect AMD diagnosis to be weakly associated with
inclusion in MGI after adjusting for age and other comorbidities, and we may expect that our choices regarding handling
of selection bias may be less impactful. These case studies are summarized in Table 1.

In case studies (a) and (b), we consider a subset of MGI participants (enrolled 2012 and later). We first characterize
some differences between this MGI dataset and our target population. We define the target population as all US adults
for case (a) and as US adults aged 50+ of recent European ancestry for case (b). Using these data, we define observed
disease variables for several phenotypes of interest (cancer, macular degeneration, coronary artery disease, and diabetes)
based on whether or not patients received particular diagnosis codes during follow-up in the Michigan Medicine EHR.
Supplementary Material Table A.1 provides descriptives for the patients used in our analysis and compares these in par-
allel to available summary statistics from the US adult population. Supplementary Material Table A.2 details the sources
used to obtain these population summary statistics. We also provide descriptives for adults interviewed and examined
for NHANES in 2017-2018, which represents an external probability sample from the US adult population. We generally
find that MGI patients tend to be older and have a greater burden of disease compared to patients in NHANES and the
US adult population. This is expected in a hospital-based perioperative cohort. In modeling disease risk, therefore, we
need to carefully address potential relationships between patient characteristics (W) and inclusion in MGI if we want to
use these results to make inference about the US adult population. We will address selection bias by leveraging external
summary statistics and also some individual-level data from NHANES.

We are also concerned about the potential for bias due to misclassification in our EHR-derived phenotypes. Of the
MGI patients considered, nearly 10% of patients were seen for less than 6 months and nearly 9% were seen for fewer than
10 visits. We may have little confidence in saying a person does not have a given disease if they were seen for very few visits
or a very short window of time. Instead, we may have just missed the disease. Therefore, misclassification of our derived
phenotypes is a strong concern, particularly given the short follow-up and small number of visits for some MGI patients.

3 BRIEF OVERVIEW OF METHODS

Notation

In this section, we summarize some of the methods presented in Beesley and Mukherjee and implemented in this paper.5
Let binary D represent a patient’s true disease status and suppose we are interested in the relationship between D and
person-level information, Z. We call this the disease model. Let D∗ denote the EHR-derived disease phenotype, which we
will assume is binary. D∗ is a potentially misclassified version of D with corresponding sensitivity and specificity. Unless
otherwise noted, we will assume specificity = 1, so D∗ is assumed to be misclassified only through missed diseases. We
call the mechanism generating D∗ given D = 1 the sensitivity model and let X denote patient and provider-level predictors
related to sensitivity. For example, X may contain factors such as patient age, length of follow-up, and number of hospital
visits. We suppose we model both D|Z and D∗|X ,D = 1 using logistic regressions as follows:

Disease model ∶ logit(P(D = 1|Z; 𝜃)) = 𝜃0 + 𝜃ZZ, (1)
Sensitivity model ∶ logit(P(D∗ = 1|D = 1, S = 1,X; 𝛽)) = 𝛽0 + 𝛽X X ,
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T A B L E 1 Descriptions of two case studies
Case study (a): Cancer
and gender

Case study (b): Age-related
macular degeneration and SNPs

Data sources

Internal data Michigan Genomics Initiative Unrelated Michigan Genomics Initiative
patients aged 50+ of recent European
descent

External data US 2000 Census, SEER 1975-2018,
NHANES 2017-18a

US 2000 Census, NIH National Eye
Institute 2010a

Goal of analysis

Estimand Association between cancer and gender Association between age-related macular
degeneration and genetic loci

Target population All adults in US US adults aged 50+ of recent European
descent

Gold standard 𝜃Z US SEERa prevalences IAMDGC GWASb

Key properties Large potential for selection bias and
lower anticipated underreporting due
to strong disease enrichment in MGI

Large potential for under-reporting and
comparatively low anticipated selection
bias after covariate adjustment

Notation and modeling

(Internal data) n 43 339 30 041

D Presence of cancer Presence of AMD

D∗ Receipt of cancer code RECEIPT of macular degeneration code

Z Gender Genotype (0/1/2) for 43 SNPs, age,
genotype PCs 1-4, gender, batch

Cases, (% of n) 23 587 (54.4%) 1781 (5.9%)

Sensitivity model (X) Age, number of visits, length of
follow-up

Age, number of visits, length of follow-up

Selection model (W and D) Age, cancer diagnosis, diabetes
diagnosis, coronary artery disease
diagnosis, smoking, body mass index

AGE, AMD diagnosis, cancer diagnosis,
diabetes diagnosis, coronary artery
disease diagnosis

aDetails can be found in Supplementary Material Table A.2.
bInternational Age-Related Macular Degeneration Genomics Consortium.

where S is an indicator denoting inclusion in the EHR database and where the probability of inclusion is assumed to be
a function of D and additional covariates, W .

Assumptions and transportability

Our interest is in using the EHR data to make inference about a defined target population (eg, the US adult population
between ages 50-65). This population may differ from the source population (eg, people in the catchment area of the
health system, Supplementary Material Figure A.1). When the target population contains individuals not in the source
population (eg, due to study eligibility), we need to make assumptions about transportability between the source and tar-
get populations.9 Transportability is a common challenge in the domain of causal inference, and we clarify that our goal
is to make statements about the association between D and Z; we do not aim to make causal claims. In Supplementary
Material Section C, we explore settings in which we have transportability for the D|Z association between distinct or over-
lapping source and target populations, where the source population may be poorly defined. Figures 1 and 2 summarizes
those assumptions. In practice, these source population assumptions are difficult to verify unless detailed information is
available for the source population.
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F I G U R E 1 Assumptions for making inference about target population different than study source population. Additional details and
motivation for these assumptions provided in Supplementary Material Section C. Diagnostics for assessing transportability in practice are
discussed in Degtiar and Rose.10 When interest is in 𝜃Z but not 𝜃0, we may ignore Assumption 3 if W†

⊥Z|D in both populations. This is
motivated by logistic regression model properties as discussed in Neuhaus13

It is not enough, however, to have transportability between the source and target populations. In addition, we must
have transportability for the D given Z association between our EHR data and the target population. A lack of trans-
portability can be viewed in terms of selection bias, where we pretend that the EHR dataset is a non-probability sample
directly from the target population. A common strategy for addressing selection bias is to construct weights accounting
for the lack of representativeness and to perform a weighted analysis using our internal data. In doing so, we make a
final transportability assumption that the constructed weights are “good enough” to recover the target population quan-
tity of interest. The benchmark of “good enough” is intentionally vague and should be determined based on the scientific
question and bias tolerance.

While source population transportability assumptions are usually difficult to verify, there are some data diagnostics
available to explore the quality of the constructed selection weights.10 One approach detailed in Degtiar and Rose10 is com-
pare summary statistics for D and W calculated from the weighted internal dataset with population summary statistics.
In our case studies, we apply several strategies to estimate inverse probability of selection (IPW) or poststratification
weights for selection bias adjustment, and we compare a variety of estimated summaries (eg, mean age) in the internal
sample with values for the target population (Supplementary Material Section C.1). When an external probability sam-
ple from the target population is also available, a wider variety of diagnostics can be used to assess the reasonableness of
transportability, including comparison of constructed weights or propensity scores in the internal and external data.10,11

Methods and estimation

Under 1 and assuming the transportability assumptions in Figure 1 hold, Beesley and Mukherjee5 observes that

log
[

P(D∗ = 1|Z, S = 1)
c(Z) − P(D∗ = 1|Z, S = 1)

]

= 𝜃0 + 𝜃ZZ + log [r(Z)] ,

where c(Z) and r(Z) are defined as follows;

ctrue(X) = expit (𝛽0 + 𝛽X X) c(Z) = ∫ ctrue(X)f (X†|Z,D = 1, S = 1)dX†
,

r(Z) =
∫ P(S = 1|D = 1,W ;𝜙)f (W†|Z,D = 1)dW†

∫ P(S = 1|D = 0,W ;𝜙)f (W†|Z,D = 0)dW†
, (2)

and where X† and W† represent the elements in X and W not included in Z, respectively. The term c(Z) represents sensi-
tivity as a function of Z. r(Z) is the sampling ratio capturing the enrichment of disease in the EHR data as a function of Z,
relative to the target population. These two terms will rarely be known in practice, and Beesley and Mukherjee5 proposes
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F I G U R E 2 Flowchart of sensitivity and disease model parameter estimation methods. X†: predictors in X (sensitivity model) not
included in Z (disease model). c(Z): sensitivity ctrue(X) integrated over the distribution of X† given D = 1 and Z. Sext: indicator of inclusion in
external probability sample. For Step 3© inverse probability of selection weighting, pjk can be estimated using logistic (no patients overlap
between internal/external data) or multinomial logistic (overlap between internal/external data) regression in the merged internal and
external data. When only sampling weights are available for the external dataset, P(Sext = 1|W) can be estimated using beta regression as
proposed in Elliot.6 Standard errors for disease model parameters are obtained using Huber-White sandwich estimators as detailed in Beesley
and Mukherjee and implemented in R package SAMBA

a multi-step strategy for estimating disease model parameters accounting for unknown c(Z) and r(Z) as illustrated in
Figure 2. We summarize these steps as follows:

• Step 1©: Fix marginal sampling ratio. r̃ = P(S = 1|D = 1)∕P(S = 1|D = 0). This quantity will not be known, but we will
fix it to a reasonable value. Analysis can then be repeated for multiple plausible r̃ values.
• Step 2©: Estimate sensitivity. If c(Z) is plausibly constant, we estimate sensitivity c̃ using method 2a in Figure 2. Otherwise,
we approximate c(Z) using an estimate of ctrue(X) = expit(𝛽0 + 𝛽X X) via method 2b.
• Step 3©: Estimate weights𝜔 for selection bias adjustment. When we have individual-level data for D and W in a probability
sample from the target population, we can estimate inverse probability of selection weights. When we have summary



BEESLEY and MUKHERJEE 5507

statistics of D and W in the target population, we can obtain poststratification weights. In practice, W may not be available,
and we will use available elements of W to reduce selection bias. In settings where we assume ignorable patient selection,
we set 𝜔 = 1.
• Step 4©: Estimate disease model parameter 𝜃Z. Figure 2 describes two strategies for estimating 𝜃Z under different assump-
tions. When sensitivity is assumed constant as a function of Z, we apply a simple method approximating the distribution
of D∗|Z (method 4a). Method 4b (called the non-logistic link function method) allows us to estimate disease model param-
eters, allowing for covariate-related sensitivity. For weighted analysis, standard errors can be obtained using Huber-White
sandwich estimators as detailed in Beesley and Mukherjee.5

4 CASE STUDY (A): ASSOCIATION BETWEEN CANCER AND GENDER
USING MGI

Goals of analysis

In the first case study, we suppose we want to use data from MGI to make inference about the relationship between cancer
(D) and gender (Z) in the US adult target population. The association between cancer and gender is a convenient estimand
to study, since the direction of the association is well-understood. SEER data indicate lower lifetime cancer risk (any site,
available at https://seer.cancer.gov/csr/previous.html) among women relative to men, with corresponding log-odds ratios
of −0.24 (2008-2010), −0.19 (2010-2012), −0.08 (2012-2014), and −0.07 (2014-2016). This known result provides us with
the opportunity to benchmark different bias reduction strategies based on the direction of the resulting cancer-gender
association estimates.

This case study provides an example of a setting where selection bias could be substantial and where missed diagnoses
may be of less concern. MGI is enriched for cancer diagnosis (53% in MGI vs a lifetime risk of 39.5% for US adults [SEER
2017]), and factors such as age, BMI, and smoking status are expected to be related both to cancer diagnosis, gender, and
selection into MGI through other comorbidities. There is a strong potential for selection bias, and bias-adjusted results may
be highly sensitive to the adjustment method. In contrast, we expect the impact of misclassification to be comparatively
small, since cancer history may be routinely recorded/reported and this EHR dataset is already highly enriched for cancer
diagnoses.

In addressing potential bias due to selection and misclassification in this example, we follow the four-step procedure
outlined in Figure 2 and Section 3. Table 1 provides a detailed characterization of the various assumptions made and data
used in this analysis. Here, we describe how each of these estimation steps is carried out, incorporating external summary
statistics from SEER and individual-level data from NHANES.

Fixing the marginal sampling ratio, r̃

First, we specify a value for the marginal sampling ratio, r̃ = P(S=1|D=1)
P(S=1|D=0)

, which we can view as a kind of tuning parameter
roughly capturing the (unknown) degree of cancer enrichment in the study sample relative to the target population. We
can use observed relationships in the data and known disease prevalence in the target population to explore plausible
values of r̃ using the equation in Figure 2 as shown in Supplementary Material Figure B.1. To capture many potential
scenarios for r̃ compatible with the data, we perform our analysis multiple times using the following fixed values of r̃: 1, 2,
5, 10, 25, 50, and 100. At the extremes, 1 corresponds to no outcome enrichment in the EHR sample, and 100 corresponds
to very strong enrichment, with the probability of being included in the study sample being 100x for patients with cancer
compared to patients without cancer.

Estimating sensitivity

Fixing r̃, we estimate the sensitivity of the derived cancer phenotype D∗ using method 2a (assuming constant sensitiv-
ity for all patients) and then using method 2b (assuming sensitivity varies across patients). For method 2b, we define
sensitivity model covariates (X) to include age, the length of EHR follow-up, and the log-number of doctor’s visits per
follow-up year. For method 2a, we assume P(D = 1) = 0.395. Method 2b requires us to specify P(D = 1|X) for the target

https://seer.cancer.gov/csr/previous.html
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F I G U R E 3 Estimated sensitivities and selection adjustment weights [Case studies (a) and (b)]. (A) Estimated sensitivities,
(b) estimated weights for selection adjustment. Corrected weights using r̃ = 25 are shown. All weights were trimmed at 10. Horizontal black
lines correspond to the 25th, 50th, and 75th quantiles

population. We do not know this relationship, but we use SEER summary statistics for the relationship between age
and cancer prevalence to approximate P(D = 1|X) ≈ P(D = 1|age) as well as we can. For some values of r̃, the method in
Figure 2 will provide no solution. As discussed in, Beesley and Mukheree,5 this method results in no solution when the
assumed values for r̃ are incompatible with the observed data. Therefore, we can focus our attention on values of r̃ with
estimable ctrue(X).5

Figure 3A shows the distributions of estimated ctrue(X) in MGI. Median sensitivity estimates for the cancer phenotype
are between 0.93 for r̃ = 25 to 0.68 for r̃ = 100. Estimated sensitivities are somewhat variable across different choices of r̃
and P(D = 1|X) (not known), indicating a need to consider several possible values when the magnitude of the sensitivity
estimates themselves are of primary interest. Previous work suggests that the downstream impact of choices for r̃ and
P(D = 1|X) on estimated disease model parameters, however, is often small.5 Supplementary Material Figure B.3 provides
the estimates of 𝛽 associated with X in the sensitivity model. We estimate higher sensitivity with longer follow-up (years)
in the EHR (log-odds ratio: 0.14, 95% CI [0.12, 0.16]) and more visits per follow-up time (log-odds ratio: 1.04, 95% CI [0.95,
1.12]).

Handling selection bias

We use two different strategies to address selection bias given estimated sensitivity. In the first strategy, we use summary
statistics from SEER, the US Census, and the US CDC to construct poststratification weights. In the second strategy, we
use publicly-available data from the NHANES (2017-2018) to construct inverse probability of selection weights. Through
these weights, our goal is to account for some of the systematic differences between patients in MGI and patients in
the US adult population. In Supplementary Material Table A.1, we demonstrate that MGI is enriched for patients with
more comorbidities (eg, diagnosis of coronary artery disease [CAD] or diabetes), and MGI patients tend to be older than
the average US adult. This information is incorporated into our weights through W . In this section, we detail how these
weights were estimated.

Pulling summary statistics described in Supplementary Material Table A.2, we define three varieties of poststratifica-
tion weights. Since the joint distribution of disease diagnoses given age is not readily available for the target population,
we incorporate multiple diseases assuming independence given age. We define weights ignoring the cancer outcome as
follows:‘

𝜔0 ∝
f (Diabetes|Age)f (CAD|Age)f (Age)

f (Diabetes|Age, S = 1)f (CAD|Age, S = 1)f (Age|S = 1)
, (3)
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where “Diabetes”, for example, corresponds to whether the patient received a diabetes diagnosis. Distributions in the
numerator come from population summary statistics, and distributions in the denominator are estimated using MGI data.
We then incorporate cancer diagnosis into weight estimation while correcting for misclassification as follows:

𝜔 ∝
[
sens × P(D = 1|Age)

]D∗[
1 − sens × P(D = 1|Age)

]1−D∗

[
P(D∗ = 1|Age, S = 1)

]D∗[
1 − P(D∗ = 1|Age, S = 1)

]1−D∗ × 𝜔0, (4)

where sens is estimated sensitivity (c̃ or ctrue(X)). We substitute population summary statistics (numerator) and MGI
estimates (denominator) to obtain these weights. For comparison, we also obtain weights ignoring misclassification by
setting sens = 1.

To compare weights estimated using different external data sources, we also obtain inverse probability of selection
weights using individual-level data from NHANES, incorporating additional information about smoking status, body
mass index (BMI), and ethnicity/race (non-Hispanic White, yes/no). Let Sext = 1 refer to inclusion in NHANES and S = 1
refer to inclusion in our MGI data. We will assume no patients are included in both databases. We first estimate weights
ignoring the cancer outcome as follows:

𝜔0 ∝
1 − P(S = 1|Age,Diabetes,CAD,BMI, Smoking,Race, Sext = 1 or S = 1)

P(S = 1|Age,Diabetes,CAD,BMI, Smoking,Race, Sext = 1 or S = 1)

× 1
P(Sext = 1|Age,Diabetes,CAD,BMI, Smoking,Race)

. (5)

The first term accounts for differences between MGI and NHANES and is estimated using logistic regression in the com-
bined MGI and NHANES data. The second term accounts for differences between NHANES and the US adult population.
Since NHANES selection weights are provided (but not the selection models themselves), we model NHANES selec-
tion using beta regression on the inverted NHANES selection weights.6 These logistic and beta regression estimates are
provided in Supplementary Material Table B.1.

To obtain weights that incorporate cancer diagnosis and also account for phenotype misclassification, we multiply 𝜔0
from 5 by the following:

[sens × P(D = 1|Covariates)]D
∗
[1 − sens × P(D = 1|Covariates)]1−D∗

[P(D∗ = 1|Covariates, S = 1)]D∗ [1 − P(D∗ = 1|Covariates, S = 1)]1−D∗ .

We obtain population P(D = 1|Covariates) by fitting a regression model in the NHANES data with covariates age, race,
BMI, and smoking status, weighted using the NHANES sample weights. For comparison, we again obtain weights that
do not correct for misclassification by setting sens = 1.

Estimated poststratification weights and NHANES-based inverse probability of selection weights (after scaling to sum
to the number of patients in MGI) are shown for r̃ = 25 in Figure 3B. Other values of r̃ are similar. We can see substan-
tial differences in the distribution of weights that do and do not incorporate the cancer outcome. Additionally, weights
obtained using NHANES and using SEER/US Census summary statistics tend to be fairly similar in terms of their overall
distributions. Weights obtained using these two methods, however, can sometimes differ substantially within individual
patients.

A common alternative to weighting used in the survey sampling literature is propensity matching, where the parallel
in this scenario would be to match based on probability of being female given other covariates. To compare the results
from weights that use external summary information to this internal data-based matching strategy, we construct 1:1
matched sets of males/females using the MGI data. We used nearest neighbor matching, where controls were matched
without replacement based propensity score nearest neighbors with a caliper of 0.1. Two matched datasets were con-
structed, where propensity scores for the first set were based on age, BMI, smoking status, diabetes and CAD diagnosis,
while the second set of scores did not adjust for BMI or smoking status. We emphasize that this matching strategy is not
designed to obtain inference for a specified target population; rather, this matching strategy is a causal inference-type
approach that can address selection bias for estimating 𝜃Z indirectly by balancing the association between gender and
other covariates (eg, age) related to both cancer diagnosis and selection. Therefore, results from this approach do not
directly correspond to our estimand of interest, the marginal association between cancer and gender in the US adult
population.
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F I G U R E 4 Cancer-gender log-odds ratio after applying proposed selection weighting and misclassification adjustment methods
(reference = male) [Case study (a)]. Results using a marginal sampling ratio of 25 are shown. Results for sampling ratios of 50 and 100 are
similar. The horizontal shaded region corresponds to the range of SEER estimates using data between 2008 and 2016. “Approx. D∗|Z" and
“Non-logistic Link" correspond to methods 4a and 4b in Figure 2, respectively. The log-odds ratio estimate is printed near each plotted
confidence interval

Estimating disease model parameters

Given estimated sensitivity and selection weights, we apply the methods in Figure 2 to estimate the association between
cancer and gender (reference=male). Results are shown in Figure 4 and Supplementary Material Table B.2. Uncorrected
analysis results in an estimated log odds ratio of −0.10 (95% CI −0.14, −0.06). When we account for misclassification but
not selection, we see little qualitative differences in point estimates across methods. This may be due to the fairly high
estimated sensitivities for the EHR-derived cancer outcome. Additionally, it may be reasonable to assume that gender
(Z) is independent of X given D, so sensitivity c(Z) may be viewed as constant in Z. Assumptions for all three misclassi-
fication adjustment methods are satisfied in that case. Interestingly, estimated confidence intervals are narrower for the
non-logistic link method (patient-varying sensitivity, interval width: 0.086) than for the approximation method (marginal
sensitivity, interval width: 0.115) when we only account for misclassification. This small efficiency gain comes from
incorporating covariates X related to D into sensitivity estimation.

We see large differences in the estimated log-odds ratios when we use different strategies to account for selection
bias. In particular, weights excluding the cancer diagnosis outcome produce point estimates in entirely the “wrong”
direction (eg, a log-odds ratio of 0.14, 95% CI: [0.09,0.19]), reflecting the strong need to incorporate the direct impact
of cancer diagnosis on selection when specifying the weights. When we incorporate the cancer outcome in construct-
ing the weights, the resulting point estimates are in the “right" direction (indicating lower rates of cancer diagnosis
in women compared to men) for both the NHANES and poststratification weighting strategies (eg, −0.18, 95% CI:
[−0.24,−0.13] for NHANES IPW and −0.18, 95% CI: [−0.22,−0.13] for poststratification under approximation method).
Additionally, we obtain narrower confidence intervals when we account for selection bias using weights that incorpo-
rate the outcome relative to weights that do not incorporate the outcome (eg, widths 0.106 vs 0.093 for poststratification
weighting without misclassification adjustment). In this example, we see little impact of correcting for phenotype mis-
classification in weight development, perhaps due to the high estimated sensitivities for the cancer phenotype. The
estimated log odds ratios differ somewhat for weights obtained using poststratification vs NHANES, where poststrati-
fication produced stronger cancer-gender associations. In contrast, matching produced very similar point estimates to
uncorrected analysis, with little difference observed between matching that did and did not account for BMI and smoking
status.
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To evaluate whether the differences between NHANES and poststratification weights excluding cancer is due to inclu-
sion of smoking status, BMI, and ethnicity in the NHANES weight construction, we also obtained NHANES weights using
only age, diabetes status, and CHD status as predictors. The “Weighting Only" estimate of the cancer-gender log-odds ratio
was 0.05, 95% CI: [0.01, 0.10] for weights that did not incorporate cancer. Corresponding weights incorporating cancer
diagnosis gave a log-odds ratio of −0.15, 95% CI: [−0.19, −0.11]. Large differences across different weight specifications
provide a cautionary tale against ignoring the outcome when estimating selection bias adjustment weights when the out-
come is strongly related to selection. Additionally, we get somewhat different results when selection is addressed using
different external data sources, and researchers may want to compare results using several different sources in practice. In
this example, we may trust results from NHANES over poststratification, since NHANES weights adjust for more patient
characteristics and do not assume marginal independence between disease diagnoses.

In Supplementary Material Section C.1, we compare the weighted and unweighted estimates using MGI data with
those from the target population for a variety of estimands (eg, mean age). The goal of this analysis is to assess the degree
to which the constructed weights can recover target population associations. We find that the IPW weights incorporating
the cancer outcome often do a good job at recovering population estimates, while the poststratification weights sometimes
perform poorly. This further supports the conclusion that the poststratification weights constructed ignoring the joint
distribution between variables may perform poorly for addressing selection bias for these data.

5 CASE STUDY (B): ASSOCIATION BETWEEN MACULAR
DEGENERATION AND GENETIC LOCI USING MGI

Goals of analysis

In case study (b), we want to estimate associations between previously identified genetic loci and age-related macular
degeneration (AMD) diagnosis using MGI data, adjusting for age at last visit, gender, and principal components of the
genotype data. We define our target population as the US adult population aged 50+ of recent European ancestry (Table 1).
AMD is weakly enriched in MGI relative to adults aged 50+ in the US population (Supplementary Material Figure A.2),
and we may expect individual genetic loci in Z to be at most weakly associated with selection. Therefore, we may be less
concerned with handling of selection bias in this example compared to case study (a). Additionally, we hypothesize that
underreporting of disease may be a bigger challenge for case study (b), since we may expect many patients are treated
for AMD through local health care providers, and consequently a large number of AMD diagnoses may be missed in
the Michigan Medicine EHR. These missed diagnoses may strongly impact estimation of genetic associations. In this
second example, we focus on 43 independent genetic loci identified with small P-values (< 5 × 10−8) in a genome-wide
association study of over 16 000 advanced AMD cases and 18 000 controls using International AMD Genomics Consortium
(IAMDGC) data.12 Across these 43 loci, MGI and IAMDGC GWAS log-odds ratio point estimates have a Lin’s concordance
correlation coefficient (CCC) of only 0.61, and uncorrected MGI point estimates generally tend to be closer to the null
compared to the IAMDGC estimates (Supplementary Material Figure B.6). The “winner’s curse” resulting in inflated
IAMDGC point estimates explains some differences, but bias due to selection and misclassification in MGI may also
contribute. Below, we apply our methods to explore the extent to which systematic differences in GWAS results between
these two studies may be corrected by addressing phenotype misclassification and potential selection bias.

Estimating sensitivity

As with case study (a), we will implement the estimation procedure outlined in Figure 2. Fixing r̃ to different values
between 1 and 100, we estimate constant sensitivity and sensitivity as a function of patient-level covariates as in case
study (a), restricted to unrelated MGI patients of recent European ancestry. Results are shown in Figure 3A. Sensitiv-
ity of the macular degeneration phenotype is estimated to be generally much lower than in case (a) across all values
of r̃, with median sensitivity ranging between 0.37 for r̃ = 10 and 0.06 for r̃ = 100. Higher sensitivities for the cancer
phenotype may be related to a more complete disease history for cancer diagnoses relative to macular degeneration
diagnoses as entered into the EHR through diagnosis codes. For AMD, there may be some degree of over-diagnosis.
Sensitivity estimates assuming imperfect specificity were lower (Supplementary Material Figure B.4) then for perfect
specificity.
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Handling selection bias

We use summary statistics from SEER, the US Census, and the US CDC to construct poststratification weights. We
define weights as if the target population were all US adults of recent European descent. Our analysis then uses data and
rescaled weights from patients aged 50+. We obtain three varieties of poststratification weights for the AMD outcome.
First, we define weights 𝜔0 ignoring the AMD outcome as in Equation (3) except this time we also incorporate the asso-
ciation between cancer diagnosis and age into both the numerator and denominator. We include cancer diagnosis in the
weight definition to account for the strong association between cancer diagnosis and inclusion in MGI, but we do not
account for misclassification of the cancer phenotype for this analysis. We then define weights that incorporate the AMD
outcome using 4, where this time D and D∗ correspond to the AMD outcome and sens is either the estimated sensitiv-
ity (correcting for misclassification) or sens = 1 (ignoring misclassification). Resulting weights are shown in Figure 3B
for r̃ = 25. Other values of r̃ are similar. Unlike case study (a), weights that do and do not incorporate the AMD out-
come tend to have similar distributions, reflecting a comparatively small impact of AMD on the probability of inclusion
in MGI.

Estimating disease model parameters

We then apply the methods in Figure 2 to obtain bias-corrected point estimates relating macular degeneration diagno-
sis to 43 genetic loci in MGI. The differences between IAMDGC and MGI point estimates across loci are characterized
using three metrics: (i) average absolute difference across 43 pairs of estimates, (ii) Lin’s concordance correlation, and
(iii) the average absolute percent difference between the MGI and the IAMDGC estimate, relative to the IAMDGC esti-
mate (denoted MAPE; mean absolute percentage error). We also present the average estimated MGI standard errors
relative to IAMDGC. Results for the best-performing methods are summarized in Figure 5A. Results for other methods
can be found in Supplementary Material Table B.3. We present results using r̃ = 25, but other r̃ values with estimable
sensitivity (10, 50, 100) are similar. When we correct for selection or misclassification, Lin’s concordance correlation
measure increases from 0.61 (uncorrected) to 0.73 (corrected) or higher. Correcting for both misclassification and selec-
tion bias did produce some additional improvement for this metric (Lin’s of 0.85). Analyses that accounted for selection
(with or without misclassification bias adjustment) resulted in increased (worse) MAPE relative to uncorrected analysis
(range 0.85-1.1 vs uncorrected MAPE of 0.81). Unweighted analyses accounting for misclassification but not selection
produced similar or better MAPE compared to uncorrected analysis. All bias-correction strategies shown in Figure 5A
result in point estimates that are closer to IAMDGC point estimates than in uncorrected analysis on average. Over-
all, the method approximating the D∗|Z distribution with no selection bias adjustment performs the best among the
methods considered in terms of similarity between bias-corrected estimates and IAMDGC estimates. Since selection
seems to be at most weakly associated with AMD diagnosis, it is not surprising that methods without selection adjust-
ment generally perform well. Analyses incorporating selection weights had larger standard errors without much gain
in terms of bias adjustment, suggesting that selection weighting did not improve inference. In an additional explo-
ration, we calculated these same performance metrics for disease model parameters estimated assuming imperfect
specificity as well as imperfect sensitivity. Results for the Approx D∗|Z method without weighting are shown in Sup-
plementary Material Figure B.7. We find that performance improves slightly for specificity set at 0.97 or 0.96 rather
than 1, and we see greater and greater discrepancies between MGI and IAMDGC estimates as assumed specificity gets
lower.

Figure 5B compares the ranked P-values for each of the 43 genetic loci after bias adjustment to the ranking in IAMDGC.
Among the top 5 associations in IAMDGC, the majority are also identified as top associations in MGI. P-values pro-
duced by bias correction methods accounting only for misclassification but not selection (no weighting) tend to produce
P-values very close or even identical to uncorrected analysis. In Beesley and Mukherjee,5 we demonstrate that P-values
from the non-logistic link function method (ignoring selection) will only differ substantially from uncorrected analysis
when X†, representing the factors driving sensitivity not adjusted-for in the disease model, is associated with Z given D.
We may be less concerned about the impact of misclassification on P-values when these terms are at most weakly associ-
ated (as in this case study). Once selection bias adjustment is incorporated, however, the resulting P-values are impacted,
as seen in Figure 5B. In general, selection may often be ignorable when estimating associations with genetic loci. How-
ever, we recommend comparing analyses with and without weighting in settings when selection may be more strongly
related to Z.
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F I G U R E 5 Bias-adjusted AMD log-odds ratios across 43 genetic loci and corresponding P-values [Case study (b)]. (A) Log-odds ratio
summary metrics across 43 genetic loci. (B) − log10(P-values) and P-value rankings for each locus. For Approx. D∗|Z [method 4a] and
Non-logistic link function [method 4c] strategies, sensitivity is estimated assuming r̃ = 25. Methods with weighting used weights ignoring the
AMD outcome. Bolded values indicate the best performing methods. Average absolute deviation, average absolute difference between MGI
and IAMDGC point estimates (lower is better); Lin’s concordance correlation, estimated concordance between MGI and IAMDGC point
estimates (higher is better); MAPE (mean absolute percentage error), average absolute difference between 1 and the ratio of MGI and
IAMDGC point estimates (lower is better); Avg. relative standard error, ratio of standard errors for MGI and IAMDGC point estimates
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6 DISCUSSION

Many statistical challenges arise in the analysis of electronic health record (EHR) data, including limitations in data
quality (ie, measurement error, missing data, etc.), lack of representativeness (ie, who is in the study?), and generalizability
(ie, what do results say about my target population?). In Beesley and Mukherjee,5 we proposed a suite of statistical tools for
addressing measurement error and selection bias in disease modeling using EHR data. That work (which can be viewed
as an extension of many leading methods in this area)1,3,4,6 demonstrated good performance of the proposed methods
when key factors related to selection and measurement error are observed, but these driving factors may be unknown
or only partially measured in practice. In this paper, we illustrate how these statistical bias-correction and inference
strategies can be applied in real-world data analysis through two EHR data analysis case studies, and we evaluate their
performance.

We consider data from the Michigan Genomics Initiative, a longitudinal EHR-linked biorepository effort within Michi-
gan Medicine. For both of these case studies, comparative gold standard disease associations were used to benchmark
the performance of various bias reduction strategies. In case study (a), bias-corrected point estimates for the association
between cancer and gender were consistent with associations reported by SEER as long as the cancer outcome was incor-
porated into development of selection weights. In case study (b), these bias reduction methods resulted in point estimates
closer on average to previously identified associations than uncorrected analysis.12 These case studies demonstrate that
the bias correction and inference strategies from Beesley and Mukherjee5 and others may be useful for reducing bias in
EHR-based studies even when factors related to selection and misclassification are not well-understood or fully measured.

We emphasize that the goal of unbiased estimation in EHR data analysis may be unrealistic given limitations in data
availability and many competing sources of bias. Instead, our goal in implementing these methods is to produce less
biased inference, where here bias is a function of our estimand, the data provenance, and the target population. Given the
varying results observed as a function of the analytical approach, these examples highlight the need to tailor the statisti-
cal approach to the problem at hand (ie, the same EHR sample may have selection bias in one analysis but not another)
and illustrate settings where disease model inference can be sensitive to our strategy for handling bias adjustment. When
traversing the rocky terrain of observational data analysis using EHR data, analysts must combine nuanced and thoughtful
analysis with knowledge of the scientific context and interpret results from EHR-based health research with an appropri-
ate dose of skepticism. While methods in Beesley and Mukherjee and elsewhere can help account for bias in EHR data
analysis, even careful implementation of these will ultimately be limited by the data that are available. In some settings,
existing design-based strategies for evaluating and addressing selection biases may outperform sophisticated weighting
strategies when high-quality data on key factors related to selection/testing in untested patients are unavailable.

Case study (a) demonstrates a problem that may often arise in analyses comparing different types of selection weights:
what do you do when the weights give different conclusions? While we cannot know which adjustment strategy pro-
duces the “better” results without knowing the true association, we may trust weights constructed based on adjusted
individual-level data more because they may be able to better capture the complex relationships between key variables
related to the outcome and/or related to selection. Restated, we may trust the weights constructed using the most reason-
able assumptions. In case study (a), we hypothesize that the differences in estimated cancer-gender associations could
be the result of two different factors: (1) NHANES weights adjust for smoking status (and body mass index/ethnicity),
which may be related to both selection (eg, smokers may be more likely to go to the hospital and be included in MGI)
and the cancer outcome of interest and (2) post-stratification assumes independence between the disease diagnoses
given age while the NHANES modeling allows us to model the adjusted relationship between disease diagnoses directly
and also condition on age, smoking status, and race. Large differences between poststratification and NHANES weights
were seen when the weights did not condition on cancer status, but the differences between the data sources were
much smaller when weights were constructed conditioning on the outcome. In general, disparate results across weights
provide some sense of robustness (or lack thereof) of the disease model estimates to different attempts to account for
selection bias. In Supplementary Material Section C.1, we implement several diagnostics for assessing the reasonable-
ness of transportability assumptions as discussed in Degtiar and Rose.10 Poststratification weights constructed for MGI
in both case studies did a poor job of recovering target population summary statistics, while the NHANES-based IPW
weights performed comparatively well. When combined with an understanding of the scientific context and bias tol-
erance, such diagnostics may prove useful for evaluating the reasonableness of weights constructed for selection bias
adjustment.

This work provides a roadmap for practical implementation of the methods for handling phenotype misclassifica-
tion and selection bias in EHR data analysis proposed in Beesley and Mukherjee.5 These methods are summarized
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in Figure 2 and can be implemented in R using package SAMBA available at https://cran.r-project.org/web/packages/
SAMBA/index.html. Example code is provided as Supplementary Material. These methods rely on an assumed logis-
tic regression structure for the distribution of D∗ given D = 1 and X , but more general model structures could also
be used.5 When potential X has large dimension, penalization methods could aid in estimation of 𝛽. However, we
require an estimate of P(D = 1|X), and simulations in Beesley and Mukherjee demonstrating robustness of disease
model estimates to misspecification of P(D = 1|X) were performed for the small-dimensional X . Similar strategies
could also be used to incorporate a larger number of predictors or more complicated covariate relationships (eg,
interactions) in the disease model. Estimation of selection weights (Step 3) presents a harder problem, and several
strategies are highlighted in Figure 2. When individual-level data from the target population are available, inclusion
in the EHR sample can be directly modeled. In case study (a), we use logistic regression to model this selection
probability in the merged internal and external datasets, but more sophisticated modeling strategies, penalization,
and so on can also be used. Additional strategies for handling multi-stage sampling, overlapping EHR and external
probability samples, and use of probability samples from a different target population can be found in Beesley and
Mukherjee.5
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