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Abstract: Demand for indoor navigation systems has been rapidly increasing with regard to
location-based services. As a cost-effective choice, inertial measurement unit (IMU)-based pedestrian
dead reckoning (PDR) systems have been developed for years because they do not require external devices
to be installed in the environment. In this paper, we propose a PDR system based on a chest-mounted
IMU as a novel installation position for body-suit-type systems. Since the IMU is mounted on a part
of the upper body, the framework of the zero-velocity update cannot be applied because there are no
periodical moments of zero velocity. Therefore, we propose a novel regression model for estimating step
lengths only with accelerations to correctly compute step displacement by using the IMU data acquired
at the chest. In addition, we integrated the idea of an efficient map-matching algorithm based on particle
filtering into our system to improve positioning and heading accuracy. Since our system was designed
for 3D navigation, which can estimate position in a multifloor building, we used a barometer to update
pedestrian altitude, and the components of our map are designed to explicitly represent building-floor
information. With our complete PDR system, we were awarded second place in 10 teams for the IPIN
2018 Competition Track 2, achieving a mean error of 5.2 m after the 800 m walking event.

Keywords: pedestrian dead reckoning; inertial navigation; accelerometers; gyroscopes; barometers; map
matching; particle filters

1. Introduction

In outdoor positioning systems, GPS and magnetometers are assembled to estimate the position and
orientation of a system with respect to Earth’s frame. With a standard GPS on mobile, positioning error
can be around 10 m in well-conditioned outdoor environments, such as an open-space area. However,
accuracy largely becomes less reliable in indoor environments because not only do the walls of the building
block the GPS signals, but also additional magnetic fields from electrical devices produce noises. Therefore,
localization using such devices generally works only in outdoor situations.

Nowadays, demand for indoor navigation systems has been rapidly increasing for location-based
services, such as navigation to shops, and advertisements. From a technical point of view, indoor navigation
systems can be separated into two categories: infrastructure-based systems, and infrastructure-free ones.
The first category requires to install devices in the environment, and the position of the pedestrian is
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computed by using those devices. Radio wave-based systems, such as radio-frequency identification
(RFID) [1,2], bluetooth low energy (BLE) [3], and WiFi [4,5], belong in this category. These normally
need many resources to calibrate the devices so that all device positions are known. The second
category, which does not require any additional hardware to be installed, can be more cost-effective.
Camera-based simultaneous localization and mapping (SLAM) and inertial measurement unit (IMU)-based
pedestrian dead reckoning (PDR) [6] systems belong in this class, and can provide the relative pose from a
starting location. Compared with the first category, they need the initial pose be known by other means,
whereas both the sampling rate and the accuracy of the relative pose estimation are quite high. With
the recent advances of cameras and SLAM algorithms, SLAM-based navigation systems can work in
real time. However, a drawback of camera-based systems is requiring both bright illumination and a
static environment, which sometimes cannot be fulfilled in a real environment, such as a shopping mall.
Although accuracy is not as high as the SLAM systems, IMU-based PDR systems have no impact on the
environment, and have been researched for years.

In the literature of the IMU-based PDR, the IMU can be mounted on different body parts to adapt to
various conditions. As the most accurate way, the IMU was mounted on a foot to utilize the framework
of the zero-velocity update (ZUPT) [7,8]. The velocity computed by sequentially integrating acceleration
normally drifts away from actual value over time due to the accumulation of sensor noise. The ZUPT was
proposed to reduce this error as follows. While walking, the velocity of a foot can be considered as zero
when the foot is attached on the ground. By detecting these periods and resetting the velocity to zero, the
error on the velocity can be suppressed. However, the ZUPT cannot be used for other body parts because
there is normally no periodical zero-velocity moment.

A specific motion model was normally proposed according to the body installation position of the
IMU. For example, handheld IMU-based systems can be implemented in smartphones [9]. Head-mounted
systems can be implemented in smartglasses [10]. Some systems can also recognize where the IMU is
mounted and apply different processes according to positions [11,12]. However, it is not easy to accurately
compute walking displacement from the IMU attached onto such body parts because there are many
unexpected movements in addition to pure walking movement, such as head rotation and hand shaking.
Unexpected movements can obviously introduce errors and decrease positioning accuracy.

In this paper, we propose an indoor positioning system that uses a chest-mounted IMU with an
efficient map-matching algorithm for multifloor navigation tasks. We propose to select the chest as a
novel installation position because the chest has the fewest unexpected movements in the upper body
while walking. In other words, the chest has lower degrees of freedom for movement compared with
other parts, such that it normally faces the moving direction. Therefore, our motivation is to create
a body-suit-type PDR system to achieve navigation in a multifloor building. The input data of our
system are the temporal sequence of acceleration, angular velocity, and barometric pressure from the
IMU, and the floor map for map matching. As a device, we used NGIMU (http://x-io.co.uk/ngimu/),
of which the specifications are listed in Table 1, to develop a prototype system, and attached it at the
chest with a stretching band, as illustrated in Figure 1. To adapt the PDR system to the chest-mounted
IMU, we propose a novel regression model based on step-length estimation. Different from methods
for other upper-body-based PDR, our approach can accurately compute not only step length but also
step direction. To reduce error accumulation on the position and heading of the pedestrian in the
building, we integrated the idea of an efficient map-matching algorithm based on particle filtering into our
system. The components of our map were carefully designed, and can explicitly represent building-floor
information. As onsite performance evaluation, we were awarded second place in 10 teams for the IPIN
2018 Competition (http://ipin2018.ifsttar.fr/competition/about/) Track 2, achieving a mean error of 5.2 m
after walking 800 m.

http://x-io.co.uk/ngimu/
http://ipin2018.ifsttar.fr/competition/about/
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In summary, the contribution of our paper is threefold as follows.

• A novel chest-mounted IMU-based PDR for body-suit-type systems is proposed.
• Step-length estimation for a chest-mounted IMU is proposed.
• A complete system for multifloor navigation tasks was implemented and the code is open

(https://github.com/rairyuu/PDR-with-Map-Matching).

Table 1. NGIMU specifications.

Range Resolution Sampling Rate

Accelerometer ±16 g 490 µg 400 Hz
Gyroscope ±2000◦/s 0.06◦/s 400 Hz
Barometer 30 ∼ 110 kPa 0.18 Pa 25 Hz

Size 56 × 39 × 18 mm
Weight 46 g

Figure 1. A prototype system of the chest-mounted intertial measurement unit (IMU)-based pedestrian
dead reckoning (PDR).

2. Related Work

The framework of IMU-based PDR systems generally consists of four parts: orientation update, step
detection, step-length estimation, and map matching. Orientation update and map matching are common
techniques in navigation systems [13], while step detection and step-length estimation are dedicated to
human motion because they use the constraints of a pedestrian step. In this section, we review the existing
methods on these three parts.

As the cornerstone of navigation systems, orientation update has been researched for decades.
Orientation accuracy heavily affects positioning accuracy. Generally, IMU orientation is computed from
gyroscope data. Therefore, its accuracy depends on the accuracy of the gyroscope. In practice, the error

https://github.com/rairyuu/PDR-with-Map-Matching
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on gyroscope data consists of two parts, the high-frequency noise and the slow-changing temperature
drift [14]. Many studies have explored methods to reduce noise [15,16]. To suppress the temperature
drift, Shen et al. proposed a model based on a genetic algorithm and the Elman neural network [17].
However, the computation cost of removing sensor noise and the temperature drift is relatively high.
To achieve a fast orientation update, Madgwick et al. proposed an efficient orientation filter that is robust
against the error on sensor data [18]. By utilizing the accelerometer data, the Madgwick filter achieves a
high-accuracy orientation update. Moreover, its computation cost is low. Therefore, in our system, we
used the Madgwick filter to update the orientation.

The input data for standard IMU-based PDR systems are the temporal sequence of acceleration and
angular velocity expressed in the device frame. By computing the gravity direction and using the double
integration of the acceleration with the initial velocity after removing gravity acceleration, it is possible
to compute the displacement on the 2D map. However, the computed displacement is not accurate over
time owing to error accumulation caused by sensor noise. To avoid error accumulation, the process of
step detection was proposed. For foot-mounted IMU-based systems, Ojeda et al. proposed two empirical
rules to separate steps [7,8]. Madgwick et al. proposed a step-detection algorithm based on filtering and
thresholding, which only required the norm of the acceleration [18,19]. For handheld IMU-based systems,
step detection is more difficult because hand motion is not always correlated with step motion. To deal
with this problem, Susi et al. proposed an adaptive algorithm that first recognized the motion type, then
applied a proper method according to the motions [20]. For head-mounted IMU-based systems, a filtering
and thresholding-based algorithm is still a good choice, as implemented by Zhang et al. [10].

Step-length estimation is the process of computing the displacement of each step. Displacement
consists of two parts: length and direction. This means that this process can be classified into two
categories: computing the length and direction, separately or not. The use of a fixed step length
computed from, for instance, body height, may work for computing the displacement of normal walking.
However, it is generally not accurate for other motions such as running or slow steps. To improve
the accuracy, Weinberg et al. proposed an empirical equation to compute the step length with a hip
(or upper-body)-mounted IMU [21]. Step direction can be computed from the IMU poses. For foot-mounted
IMU-based systems, the double integration of the acceleration can produce both length and direction
together. However, this straightforward computation cannot fit all motions. To settle this problem,
Shin et al. proposed an adaptive step-length estimation algorithm [22]. For handheld IMU systems,
Renaudin et al. proposed an adaptive algorithm based on motion mode classification [23]. Yan et al.
proposed a regression model to compute step displacement [11].

Utilizing both step detection and step-length estimation can avoid errors in each step. However,
position and heading errors in the global or world frame still accumulate over time. To solve this problem,
a map-matching algorithm was proposed by making the constraints of the positions in the global map
frame [24–26]. The particle filter-based approach is particularly good for dealing with nonlinear and
non-Gaussian estimation problems [27]. By implementing the particle filter for a map-matching algorithm,
positioning accuracy can be significantly improved. Davidson et al. showed how the particle filter
improved the performance of indoor navigation systems [28]. By combining the backtracking particle filter
with different levels of a 2D building map, Widyawan et al. achieved highly accurate indoor navigation [29].
Bojja et al. proposed a 3D map-matching algorithm in order to navigate the 3D space [30].
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3. Proposed System

As illustrated in Figure 2, our system mainly consists of four parts: orientation update, step detection,
step-length estimation, and map matching. This framework is basically the same as the standard used in
IMU-based PDR systems. Particularly, we propose novel step-length estimation with a chest-mounted
IMU, and we implemented a complete system for multifloor navigation tasks.

In the orientation update, IMU orientation with respect to the world frame, which is the initial IMU
sensor frame, was computed. Step detection is the process of separating sequential data into steps. Once
one step is detected, the displacement of the step is computed in step-length estimation. Since only the PDR
with the IMU contains the positioning and heading errors, consistency between the estimated trajectory
and the map is optimized in map matching. In the remainder of this section, we introduce each process
in detail.

IMU

step detectionorientation update

step length estimation

map matching

output

acceleration

angular velocity
acceleration

orientation step datapressure

displacement

estimated position

Figure 2. System overview.

3.1. Orientation Update

The data acquired from the IMU are expressed in the IMU sensor frame. To compute the current
position in the world frame, we first transform the 3D acceleration data from the sensor frame to the world
frame. Normally, we defined the initial IMU sensor frame as the world frame, as illustrated in Figure 3.
For instance, the z axis can be parallel to the gravity direction when the IMU is placed on the ground at
the beginning of the process. In our system, the world frame is defined as follows: the x axis is the initial
moving direction, the y axis is perpendicular to the x axis, and the z axis is parallel to the gravity direction.
The transformation matrix is simply computed with the algorithm by Madgwick et al. [18], which uses
Quaternion representation for three degrees-of-freedom (DoF) poses. After this process, we can have
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acceleration in the world frame to remove gravitational acceleration on the z axis, and finally have the
acceleration of the device itself.

It should be noted that the orientation computed with the IMU gradually contains errors on
the azimuth angle in the world frame, whereas the elevation angle can be compensated with gravity
acceleration. For instance, the x axis, which is initially defined as the heading, does not match with the
actual heading. To compensate this, we use a map-matching algorithm to correct the heading, as explained
in Section 3.4. Since we additionally parameterize the correction value against the orientation, we can use
any orientation-update method as an external orientation estimator. This means that our system is based
on a loosely coupled approach between the PDR and map matching.

world frame

sensor frame

X

Y

Z

Figure 3. Sensor and world frames.

3.2. Step Detection

To reduce the error accumulation caused by sensor noise, we apply the step-detection method to
separate sequential data into steps so that we can independently process the data of each step. As illustrated
in Figure 4, we propose to use the filtering and thresholding approach for the acceleration norm to detect
steps, similarly to References [18,19] because the peaks in the acceleration-data sequence captured at the
chest has similar tendencies as other body parts.

First, we compute the 3D acceleration norm in the sequence, as illustrated in Figure 4a. To remove
noise, we apply a low-pass filter to the norm sequence. In Figure 4b, the peaks of the result correspond to
the moments when the foot hits the ground, where acceleration is maximum. As illustrated in Figure 5,
we define one step as the interval from one peak to the next one. An example result of the step detection is
illustrated in Figure 4c.
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Acceleration

Time0

(a) Norm of 3D acceleration

Acceleration

Time0

(b) Result of low-pass filtering.

1 Step

Acceleration

Time0

(c) Detected steps

Figure 4. Step-detection process.
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left foot right footbody

1 step

Figure 5. Definition of one step.

3.3. Step-Length Estimation

In the literature of the PDR with an IMU attached on an upper-body part, step-length estimation was
achieved by designing an empirical motion model derived from IMU data [21]. Therefore, we followed
the same way to derive the motion model for a chest-mounted IMU.

By analyzing the relationship between displacement and the IMU data, we empirically formulated
that the displacement of one step can be computed by:

D = K ·
∫∫

a(t) dt dt (1)

where a(t) is the 3D acceleration at time t, the range of the integral is the duration of one step, and K is a
scalar parameter that needs to be calibrated for each user. To avoid drift errors, velocity is not sequentially
computed, and Equation (1) takes the initial zero velocity for distance computation. Since the double
integration of accelerations is used in our approach, both the length and direction of one step can be
computed at the same time.

The motivation of formulating the Equation (1) is as follows. The 2D acceleration data of one step in
the xy co-ordinates of the world frame is illustrated in Figure 6a. In this case, the moving-forward direction
is along the x axis. From the figure, the decelerating phase is obviously more observed than the accelerating
phase. We found that this can be a chest-acceleration characteristic. Therefore, the displacement computed
by the double integration of the sequential 2D accelerations is opposite the forward direction, as illustrated
in Figure 6b. To transform it to correct the direction and length, a user parameter K is required.

As a calibration method, K is computed for each pedestrian by:

K = −
Dg

Dd
(2)

where Dg is a given distance in which the pedestrian is asked to walk straightly, and Dd is the total length
computed from the double integration of accelerations in one step for all of the steps. To decrease the error
on the measurement, we tested five times, and used the mean as the final K. For calibration, the longer
Dg is, the better for accuracy it is. In our experiment, we empirically set Dg to 20 m. For a pedestrian
whose height is about 170 cm, K was normally in the range of [−5.0,−3.0]. After calibration, the error on
step length was generally around 10% in our experiments. This error range is used for map matching, as
described in Section 3.4.
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It should be noted that displacement on the y axis was not zero, as illustrated in Figure 6b. Normally,
steps are alternately made by the left foot and right foot. Therefore, the upper body tends to alternately
lean to the left side and right side. This is the reason why there is side displacement in one step. Since
the step made by the left or right foot is usually followed by a step made by the other foot, the overall
movement is forward.

For PDR systems based on an upper-body-mounted IMU, it is usually difficult to compute the step
direction. Most of the systems require that the step direction is equivalent to the IMU heading. This means
that it is assumed that the IMU heading is equivalent to the moving direction. This constraint makes
the systems inconvenient to use, and it is not valid when unexpected movements occur. In contrast,
our approach does not depend on the actual IMU heading because step displacement is computed from
accelerations in the world frame. Therefore, our system has no restriction on step direction with respect to
the IMU heading, which is more user-friendly and accurate under several motions.

Acceleration

Time0

x y

(a) 2D acceleration

Double integral

Time0

x y

(b) Double integral

Figure 6. Data of one step.

3.4. Map Matching

By applying step detection to the IMU data, the error accumulation caused by the sensor noise can be
suppressed compared with the sequential double integration of the accelerations. However, the positioning
and heading errors in the world frame still grow over time. To improve accuracy, we integrated the idea of
an efficient map-matching algorithm based on particle filtering [24] into our system.

As illustrated in Figure 7, we propose to define six components in our map for a multifloor
building. line corresponds to a wall that cannot be crossed. In zone_no_particle where pedestrians
cannot come into, the existing particles are deleted, and new particles cannot be generated. Only
in zone_update_altitude, where altitude can be changed, such as stairs, escalators, and elevators, will



Sensors 2019, 19, 420 10 of 20

the altitude be updated according to the movement. arrow is used for explicitly describing the direction of
the possible movement at such locations. arrow_up connects to the upper floor, arrow_down connects to
the lower floor, and arrow_both connects to both floors.

arrow_up arrow_down arrow_both

line

zone_no_particle

zone_update_altitude

Figure 7. Map components.

In our map-matching algorithm, each particle has three parameters: position Pi, scale si, and heading
correction hi for the i-th particle. Scale si is a scalar value to have error tolerance of the step length, which
is randomized from the range [1.0− r, 1.0 + r], where r controls the range. r can be determined with the
possible error range from preliminary calibration experiments. For instance, r = 0.1 when error is up to
10%, as described in Section 3.3. Since the heading in the world frame may drift away from its actual value,
as discussed in Section 3.1, we propose to parameterize heading correction hi as a rotation angle to rectify
the current heading computed from the IMU orientation into the actual heading in the xy co-ordinate
system, as illustrated in Figure 8.

�

�

�

�

heading correction ℎ
�

O

Figure 8. Definition of heading correction hi.

For each particle, position Pi is updated by:

Pt+1
i = Pt

i + R(Dt · si, hi) (3)
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where Dt is the 2D displacement of one current step computed from the IMU, R(X, y) is a function that
rotates vector X with angle y on the xy co-ordinates. hi and si are determined and fixed once a new particle
is generated. Final position P and heading correction h of the pedestrian are finally computed by:

P =
1
n
·

n

∑
i=1

Pi (4)

h =
1
n
·

n

∑
i=1

hi (5)

where n is the number of particles.
The procedure of generating new particles is as follows. After updating Pi with Equation (3) at every

step, our system applies collision detection with the map to the particles. For instance, if the line from Pt
i to

Pt+1
i intersects with the line, the ith particle is deleted, and our system generates new particles for the next

step, as described in Algorithm 1 and Table 2. The position of NewParticle is randomized from the circle
with center Particle and radius Radius. The heading correction of NewParticle is randomized around final
heading correction h. The scale of NewParticle is randomized from the range of [1.0− r, 1.0 + r]. Once
NewParticle is generated, its heading correction and scale are fixed.

Algorithm 1: Generating new particles.
ParticleNumberMax = 256
TryTimeMax = 8
Radius = 3.0
ParticleNumber = n
while ParticleNumber ≤ ParticleNumberMax:

Particle = SelectRandomParticle()
TryTime = 1
while TryTime ≤ TryTimeMax:

NewParticle = ProposeNewParticle(Particle, Radius)
if BacktrackingTest(NewParticle) == PASS:

AppendParticle(NewParticle)
ParticleNumber = ParticleNumber + 1
break

TryTime = TryTime + 1

Table 2. Definition of variables and functions in Algorithm 1.

ParticleNumberMax Maximal number of particles in our system.
ParticleNumber Number of current existing particles.
n Number of existing particles before generating new particles.
TryTimeMax Maximal trying time on proposing a new particle.
TryTime Counter of trying time on proposing a new particle.
Particle Randomly selected particle.
Radius Second input parameter of function ProposeNewParticle.
SelectRandomParticle() Randomly select one particle from existing particles and return it.
ProposeNewParticle(_particle, _radius) Propose a new particle around _particle and return it.
BacktrackingTest(_particle) Apply backtracking test to _particle. Return PASS if _particle passed the test.
AppendParticle(_particle) Append _particle to existing particles.



Sensors 2019, 19, 420 12 of 20

When generating new particles, the particles may be generated in inappropriate positions.
This problem decreases positioning accuracy, and sometimes even crashes the map-matching module.
Therefore, inspired by the backtracking particle filter proposed by Widyawan et al. [31], we applied a
backtracking test to new particles to select only appropriate particles. In Figure 9, blue arrows correspond
to recent steps. First, new particles are randomly proposed around a randomly selected particle. Then, new
particles go back recent steps and apply collision detection to the particles, as illustrated in Figure 9c.
If a particle hits the wall, it is deleted. As illustrated in Figure 9d, only particles that pass this test are left.
By using the backtracking test, most new particles are produced around the correct position. This algorithm
largely allows our system to achieve higher accuracy. Moreover, this algorithm could be used when map
matching failed to track the user. By applying the backtracking test to randomly selected points around
the last estimated position, it is possible to find the correct current position and restore the system. In our
experiment, considering real-time processing and accuracy, we used the 32 most recent steps for the
backtracking test.

(a) Randomly selected particle. (b) Propose new particles.

(c) Apply backtracking test. (d) Result.

Figure 9. Process of backtracking test. Blue arrows are recent steps.
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For multifloor-building tasks, we use the barometer to update the altitude of the pedestrian. Delta
altitude ∆a can be computed by:

∆a = ∆p · −0.09 m/Pa (6)

where ∆p is the delta pressure. As illustrated in Figure 10, pressure decreases when going upstairs.
However, barometric pressure varies over time even in indoor situations. To correctly update the altitude,
we propose to use zone_update_altitude as a component of the map. Only in this zone can the altitude be
updated. All arrows are defined in this zone. Since the pedestrian does not stay in this zone for a long
time, this approach usually works accurately enough. When delta altitude ∆a is closed to the floor height,
our system matches the current position to the export of the nearest arrow, and produces new particles.
Every time the floor changes, the positioning error of our system can be reset.

Time

Pressure (kPa)

0

99.01

98.96

Figure 10. Pressure variations when going upstairs.

3.5. Map Editor

To easily generate the map, we developed a map editor so that the map input to our system can
be manually edited. The input to the editor is the map images, and the output is a set of files that
contain the multifloor-building information. As illustrated in Figure 11, the basic component of our
map is a point. By linking the points, we can create any component. Our map editor is available online
(https://github.com/rairyuu/PDR-with-Map-Matching).

https://github.com/rairyuu/PDR-with-Map-Matching
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(a) Input map image. (b) Create line.

(c) Create arrow. (d) Create zone_update_altitude.

(e) Create zone_no_particle. (f) Output.

Figure 11. Map-editing process.

4. Evaluation

In this section, we present the quantitative-experiment results of our system.

4.1. Evaluation Criterion

We followed the evaluation procedure used in IPIN 2018 Track 2 as follows. In each experiment, the
pedestrian was asked to walk along a given route. Several keypoints, where the positions were measured
in order to be known, were set in the route before the experiment. The pedestrian was asked to slightly
stop at each keypoint so that the estimated position output by our system was recorded.

Error ei of the i-th keypoint is defined by the following equations:

ei = Dxy(Pi
g, Pi

e) + Dz(Pi
g, Pi

e) (7)

Dxy(Pi
g, Pi

e) =
√
(Pi

g.x− Pi
e .x)2 + (Pi

g.y− Pi
e .y)2 (8)

Dz(Pi
g, Pi

e) = |Pi
g.z− Pi

e .z| · pz (9)
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where Pi
g is the ground-truth position, and Pi

e is the estimated position. Pi has three elements, x, y, and z.
x and y are expressed in meters, whereas element z is a scalar that represents the current floor. pz is the
penalty on floor error, which is set to 15.

4.2. System Initialization

In each experiment, the initial position and heading were given to set up the system as follows.

1. Open the IMU, launch our system software, and connect the IMU to the computer.
2. Calibrate the IMU pose with the known initial heading in the world frame of the map, as illustrated

in Figure 12.
3. Attach the IMU on the pedestrian chest, and run the system.

initial heading

�

��

�

��

Figure 12. Calibrate IMU pose with initial heading.

4.3. Lab Experiment

In the first experiment, we evaluated our system in the campus building with different configurations.
As illustrated in Figure 13a, the pedestrian was asked to start at the pink point, go along the orange arrows,
walk around the green route for three times, and finally walk back to the starting point along the blue
arrows. There was no open-space area in the route, and the width of corridors was about 3 m. In this
experiment, we used 256 particles. The travelled distance was 432.22 m. The red points represent the
keypoints for the evaluation. Keypoint positions were given by the map of the building.

The estimated routes of our system are illustrated as Figure 13c,d. At the beginning of the route, the
system without map matching was accurate enough. However, the drift on heading was growing over
time, as can be seen in the figure. Therefore, the result obviously became worse. In our system with map
matching, since the estimated position and heading were calibrated dynamically, the result was much
more accurate and stable. The detailed results are illustrated in Figure 14 and Table 3.
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(a) Experiment route. (b) Input map.

(c) Estimated route without map matching. (d) Estimated route with map matching.

Figure 13. Experiment 1: system evaluation with different configurations.

Key ID

0

1

2

3

4

5

1 3 5 7 9 11 13 15 17 19 21 23 25

Error (m)

Figure 14. Experiment 1: errors at each keypoint.

Table 3. Experiment 1: error distribution.

Travelled distance: 432.22 m

Total number of keypoints: 25

Our system
Mean 0.78 m

Median 0.51 m
75th percent 0.76 m

Standard deviation 0.92 m
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4.4. IPIN 2018 Competition Experiment

In the second experiment, we evaluated our system by participating in the IPIN 2018 Competition
Track 2. The competition was held in a huge shopping mall that contained several open-space areas.
The evaluation route crossed three floors, and consisted of indoor and outdoor spaces. In the indoor-space
areas, the width range of corridors was from 10 to 20 m. In this experiment, we used 512 particles that
were optimized by preliminary experiments. During the competition, the shopping mall was crowded.

The competition route, our estimated result, and the errors are illustrated in Figure 15. The error at
each keypoint is illustrated in Figure 16. In outdoor-space areas, since the map matching cannot work,
our result was not so accurate. When we went into an indoor area, the result improved, where error
was generally less than 5 m. As described in Table 4, the mean error of our system was 5.2 m. The IPIN
competition evaluated the 75th percent error. Therefore, our final score was 5.7 m, which was 0.2 m
worse than the champion. In the 10 teams who participated in this track, we were awarded second
place. The detail of the competition can be found on the IPIN 2018 homepage (http://ipin2018.ifsttar.fr/
competition/about/). We also uploaded a video (https://youtu.be/Ti7w-r3dB2E) that provides a more
detailed result and shows how our map matching worked in the competition.
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Figure 15. Experiment 2: evaluation in IPIN 2018 Competition Track 2.
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Figure 16. Experiment 2: errors at each keypoint.

Table 4. Experiment 2: error distribution.

Travelled distance: 792.49 m

Keypoint number: 70

Our system
Mean 5.2 m

Median 3.6 m
75th percent 5.7 m

Standard deviation 5.0 m

5. Conclusions

In this paper, we proposed a novel indoor positioning system with map matching. In our system,
the IMU is mounted on the chest where movement is simplest and most stable. To reduce error
accumulation on position and heading, we designed an efficient map-matching algorithm based on
particle filtering. Different from most existing algorithms, our map-matching algorithm was designed
for 3D navigation, which can be used in multifloor buildings. With carefully designed components (wall,
stair, escalator, elevator), our map can clearly represent building-floor information. With the proposed
algorithm implemented, our navigation system was awarded second place in the IPIN 2018 Competition
Track 2, achieving a mean error of 5.2 m after 800 m of walking. In our future work, we are improving the
accuracy of the step-length estimation. As mentioned in our motivation, we are also designing a body suit
to support the indoor work.
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