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Objectives: Improve models for estimating HIV epidemic trends in sub-Saharan Africa
(SSA).

Design: Mathematical epidemic model fit to national HIV survey and ANC sentinel
surveillance (ANC-SS) data.

Methods: We modified EPP to incorporate age and sex stratification (EPP-ASM) to more
accurately capture the shifting demographics of maturing HIV epidemics. Secondly, we
developed a new functional form for the HIV transmission rate, termed ‘r-hybrid’, which
combines a four-parameter logistic function for the initial epidemic growth, peak, and
decline followed by a first-order random walk for recent trends after epidemic
stabilization. We fitted the r-hybrid model along with previously developed r-spline
and r-trend models to HIV prevalence data from household surveys and ANC-SS in 177
regions in 34 SSA countries. We used leave-one-out cross validation with household
survey HIV prevalence to compare model predictions.

Results: The r-hybrid and r-spline models typically provided similar HIV prevalence
trends, but sometimes qualitatively different assessments of recent incidence
trends because of different structural assumptions about the HIV transmission rate.
The r-hybrid model had the lowest average continuous ranked probability score,
indicating the best model predictions. Coverage of 95% posterior predictive intervals
was 91.5% for the r-hybrid model, versus 87.2 and 85.5% for r-spline and r-trend,
respectively.

Conclusion: The EPP-ASM and r-hybrid models improve consistency of EPP and
Spectrum, improve the epidemiological assumptions underpinning recent HIV inci-
dence estimates, and improve estimates and short-term projections of HIV prevalence
trends. Countries that use general population survey and ANC-SS data to estimate HIV
epidemic trends should consider using these tools.
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Introduction
In sub-Saharan Africa (SSA), key HIV epidemic
indicators are estimated by fitting mathematical models
to HIV prevalence data from sentinel surveillance among
pregnant women attending antenatal care (ANC-SS) and
nationally representative household surveys of the general
adult population. Mathematical models combine epide-
miologic information about natural history of HIV
infection, population data, and the effects of antiretroviral
treatment (ART) programmes to infer HIV incidence
and AIDS mortality consistent with the observed HIV
prevalence trends.

The Estimation and Projection Package (EPP) is a basic HIV
epidemic model implemented within the Spectrum
software for this purpose. EPP has developed incremen-
tally, responding to evolving epidemic dynamics and
context, data available from which to characterize the
epidemic and demands on HIV estimates for policy and
program purposes. EPP was initially conceived as a simple
four-parameter HIV epidemic model capturing the HIV
epidemic growth rate, start time, epidemic peak, and
stabilization following initial decline [1,2]. Parameter
inference from ANC-SS HIV prevalence was initially via
maximum likelihood [3] and subsequently probabilistic
Bayesian inference with hierarchical random-effects for
ANC sentinel sites [4]. Reflecting accumulation of more
heterogeneous HIV prevalence trajectories following the
initial epidemic peak and decline, further developments
of EPP focused on using semiparametric functions to
more flexibly represent changes in the HIV transmission
rate over the course of the epidemic [5–10]. The model
has been updated continuously to capture ART scale-up,
changes in eligibility, and its effects for HIV survival and
transmission [10–13].

Since 2013, the UNAIDS Reference Group has
recommended the ‘r-spline’ model variant for most
countries with multiple years of ANC-SS and national
household surveys [10]. This model uses penalized B-
splines (‘p-spline’) with seven basis functions to flexibly
model the transmission rate r (t) over the course of the
epidemic [7,8]. The model further imposes an ‘equilib-
rium prior’ assumption that, beyond the end of data
observation, the transmission rate will be drawn towards a
value guided by the transmission rate required to maintain
an equilibrium prevalence at current level in the absence
of any effects of ARTon survival or HIV transmission [8].
Beyond the last observed data point, the spline function is
truncated and replaced by a first-order random walk on
the log-scale [8]. The priority guiding this model
specification was to ensure stable and reliable estimates
and short-term projections for HIV prevalence from
relatively sparse ANC-SS and national HIV survey data,
for example, for estimating treatment need and coverage.
However, as noted by Hogan and Salomon [8], the
‘equilibrium’ assumption may now seem incongruous for
estimating HIV incidence trends in an era in which HIV
policy is intensely focused on rapidly reducing new HIV
infections and ART is anticipated to be substantially
affecting both survival and HIV transmission [14].

The other predominant recent transition has been a
dramatic shift in the age profile of the epidemic as people
living with HIV (PLHIV) survive to older ages with the
scale-up of ART and incidence reductions resulting in
lower prevalence amongst young adults than experienced
by previous cohorts. This creates distinct trends in HIV
prevalence observed among pregnant women compared
with the general population [15], and a large and steadily
increasing proportion of PLHIV on ART above age 50
years [10]. Adjustments have been incorporated to
account for these dynamics in EPP [10,13], which
considers the age 15–49-year population as a single
homogenous group. However, an estimation framework
is needed that endogenously captures the shifting
demographics of the epidemic and explicitly simulates
HIV prevalence among pregnant women accounting
for patterns of age-specific fertility, HIV incidence
and disease progression, and effects of HIV on fertility
[16–18].

This article introduces two major updates to EPP 2018
and EPP 2019: the EPP Age-Sex Model (EPP-ASM) to
explicitly capture the demographic dynamics of the HIV
epidemic and the r-hybrid model, a new model for
inferring the HIV transmission rate. We also describe
small updates to the likelihood for directly observed HIV
incidence trends in population surveys.
Methods

The Estimation and Projection Package Age-Sex
Model
The EPP Age-Sex model (EPP-ASM) is a new
framework that integrates the cohort-component demo-
graphic projection model of Spectrum with the basic
infectious disease transmission dynamics of the EPP
model, and the already harmonized representation of
HIV natural history and impacts of ART programmes.
The model represents the adult population aged 15 years
and older by sex, single year of age, and HIV status, and
mirrors the model structure and assumptions of the
Spectrum model [19]. Technical details of the EPP-ASM
model specification are described in Supplementary
Information Section S1, http://links.lww.com/QAD/
B585.

Similar to previous EPP model formulations, the HIV
incidence rate l15–49(t) at time t is determined by the
transmission rate r(t) among untreated HIV-positive
adults, the HIV prevalence r15–49(t) among adults aged
15–49 years, the proportion of HIV-positive adults on
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ART a15–49(t), and the average percentage reduction in
HIV transmission per percentage increase in ART
coverage (v):

l15�49ðtÞ ¼ rðtÞ � r15�49ðtÞ � 1� v � a15�49ðtÞð Þ:

The r-spline, r-trend and the new r-hybrid EPP model
variants for r(t) [13] can be used within the EPP-ASM
framework. The default value for v is 0.7. Although
population surveys consistently find that viral suppression
amongst persons on ART is between 85 and 95% and
studies conclusively demonstrate that persons who are
virally suppressed do not transmit HIV [20], the lower
value of v¼ 0.7 reflects that the average population
impact of an increase in ART coverage is somewhat less.
This because people on ART are likely to be somewhat
older, infected for longer durations, and on average have
lower behavioral risks for onward transmission, attenuat-
ing the expected impact of increasing ART coverage on
reducing incidence.

r-hybrid model
The ‘r-hybrid’ model is a new functional form
introduced in EPP 2019 for modelling the transmission
rate r(t) among untreated adults over the course of the
epidemic. The motivation for the r-hybrid model, and
specifically the ‘hybrid’ moniker, was to combine one
model for the initial stages of the epidemic and another
for more recent trends. During the initial period of the
epidemic, surveillance data were relatively sparse, often a
handful of ANC sentinel sites, but epidemics followed
relatively consistent pattern of exponential growth, peak,
and decline. The r-hybrid model uses a four-parameter
logistic function for these processes from the start of the
epidemic in the 1970s through the mid-2000s:

logrlogisðtÞ ¼ r0 �
r0 � r1

1þ expð�a � ðt � tmidÞÞ
:

The four parameters of the logistic function provide
structure to key stages of the epidemic. The first
parameter r0 is the log of the initial epidemic growth
rate, r1 is the log endemic transmission rate after the
epidemic has stabilized, a> 0 is the rate of decline of the
log transmission rate as the epidemic saturates and tmid is
the inflection point of the logistic function. We specified
diffuse prior distributions for these parameters as normal
densities parameterized via the mean and standard
deviation:

r0 � Normal ðlogð0:35Þ; 0:5Þ
r1 � Normal ðlogð0:09Þ; 0:3Þ
log a � Normal ðlogð0:2Þ; 0:5Þ
tmid � Normal ð1993; 5:0Þ

The prior mean for the log growth rate r0 corresponds to
an initial epidemic doubling time of 2 years with 95% of
prior mass between 0.7 and 5.3 years [21] and the prior
mean for r1 implies an endemic transmission rate of 0.09
per year with 95% of mass between 0.05 and 0.16.

From the mid-2000s, when HIVepidemics had stabilized
to a state of endemic transmission dynamics, we used a
piecewise-linear spline with a first-order random-walk
(RW1) penalty on the spline coefficients to model
changes in log r(t). The piecewise-linear spline allows the
transmission rate to vary with recent epidemic trends,
whereas the RW1 penalty imposes the assumption that
the expected transmission rate remains steady with
linearly increasing variance, rather than being drawn
towards a particular value. Under the r-spline model, a
RW1 process for log r(t) has been used for short-term
epidemic projections past the last data point [9]. Using the
RW1 process for modelling recent trends harmonizes
the epidemiologic assumptions underpinning inference
about recent trends with the assumptions for short-term
projections. Supplementary Information Section S2,
http://links.lww.com/QAD/B585 describes technical
details of the random walk component.

Data and likelihood
The statistical model for inference with the EPP-ASM
and r-hybrid models are the same as for other existing
EPP model variants. EPP utilizes two data sources for
estimating model parameters and inferring epidemic
trends. The first is HIV prevalence, and wherever
available, incidence among the general population aged
15–49 years measured in nationally representative
household surveys [10,13,22]. The second is HIV
prevalence among pregnant women, measured through
ANC sentinel surveillance [3] or routine HIV testing of
pregnant women attending ANC [23]. Technical details
of the likelihood are described Supplementary Informa-
tion Section S3, http://links.lww.com/QAD/B585.

Analysis
We applied the EPP-ASM model to data from 34 SSA
countries that used EPP to create national HIV estimates
submitted to UNAIDS in 2018 (Table 1). Countries
stratify EPP estimation to subnational units reflective of
differences in local epidemiology; we used these
stratifications as defined by country estimate teams
constituting a total of 177 EPP regions. We excluded
countries that used key-population as stratifications (Cape
Verde, Comoros, Madagascar, Mauritania, Mauritius,
Niger, Senegal), with fewer than two household surveys
with reliable HIV serological testing (Nigeria, South
Sudan), and that did not use EPP to estimate HIV
incidence trends (South Africa). We used data from
Spectrum estimates files released by countries through
UNAIDS 2018 HIV estimates with the following
exceptions: we omitted household survey prevalence
data from the Uganda 2011 AIS because of uncertainty
about accuracy of HIV serological testing [24]; substituted
prevalence estimates for the Zambia 2013–2014 DHS
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Table 1. Summary of data used for Estimation and Projection Package model analysis.

UN
region Country

EPP
regionsa

HH surveys
w/ HIVb

ANC-SS
sites

ANC-SS
observations

Site-level
ANC-RT

observations

Years ANC-RT
census

prevalence

Last
data
year

Eastern Burundi 2 4 24 98 57 4 2017
Eritrea 2 1 16 122 2017
Ethiopia 18 3 123 746 376 2017
Kenya 8 4 40 518 192 5 2017
Malawi 3 4 54 249 378 7 2017
Mozambique 11 2 39 263 131 4 2017
Rwanda 2 3 30 169 237 3 2017
Uganda 2 2 43 430 249 6 2017
United Rep. Tanzania 27 4 199 946 484 2017
Zambia 10 4 24 168 144 6 2017
Zimbabwe 10 5 68 250 313 1 2017

Southern Botswana 2 3 24 244 4 2017
Lesotho 2 4 17 108 35 3 2017
Namibia 14 2 40 329 187 2017
Swaziland 4 3 21 100 2016

Middle Angola 2 1 48 192 2016
Cameroon 2 2 79 315 231 2017
Central African Republic 2 2 42 118 2015
Chad 2 1 34 97 34 2017
Congo 2 2c 47 110 6 5 2017
Dem. Rep. Congo 2 2 67 360 2015
Equatorial Guinea 1 3 2 14 5 2017
Gabon 2 1 27 62 57 2 2017

Western Benin 12 2 60 886 333 6 2017
Burkina Faso 2 2 13 233 84 6 2017
Côte d’Ivoire 11 2 74 209 2017
Gambia 2 1 12 120 2017
Ghana 2 2 40 756 12 1 2017
Guinea 2 2 32 101 2015
Guinea-Bissau 2 1 18 69 138 8 2017
Liberia 2 2 33 126 2017
Mali 2 3 31 103 16 4 2017
Sierra Leone 2 4 13 54 2013
Togo 6 2 90 521 97 3 2017

Eastern (11 countries) 95 [93] 36 [35] 660 3959 2561 36
Southern (4 countries) 22 [22] 12 [12] 102 781 222 7
Middle (8 countries) 15 [8] 14 [11] 346 1268 382 12
Western (11 countries) 45 [35] 23 [19] 416 3178 878 28
Total (34 countries) 177 [158] 85 [77] 1524 9186 443 83

ANC-RT, antenatal care routine HIV testing; ANC-SS, antenatal clinic sentinel surveillance; EPP, Estimation and Projection Package; HH,
household.
aCountries with two EPP regions typically stratify EPP estimation by Urban/Rural regions. Countries with greater than two are typically stratified by
first-level administrative units. Number of EPP regions in brackets at the table bottom indicate number of EPP regions represented in leave-one-out
cross validation exercise.
bThe number of household surveys with HIV prevalence observations used in model fitting. Data were used as entered into EPP by countries in the
2018, with the following exceptions: Uganda 2011 AIS survey was removed; estimates from Zambia 2013–2014 DHS were updated based on
results of a Bayesian analysis to account for imperfect assay performance; Zambia 2002 and 2007 DHS and all Tanzania AIS were re-analysed to
reflect current administrative boundaries. Countries with more than one survey were included in leave-one-out cross validation exercise. Number
in brackets at the table bottom indicate number of household surveys represented in leave-one-out cross validation exercise.
cThe first Congo survey was Urban only, therefore only ‘Congo – Urban’ is used in the leave-one-out cross validation exercise.
with adjusted estimates accounting for imperfect immu-
noassay performance through a Bayesian analysis [24];
reanalyzed Tanzania AIS survey and Zambia DHS survey
prevalence according to current regional boundaries used
in EPP; removed ANC-RT census prevalence from
Namibia regions because inputted data were not
calculated at the regional level; and removed artificially
constructed ‘ANC pseudo-site’ prevalence inputs [25].
Fertility rate ratio parameters determining the prevalence
of HIV among pregnant women were updated to default
parameter values in Spectrum 2019.
We fitted the r-hybrid, r-spline, and r-trend versions of
the EPP-ASM model to each of the 177 EPP-ASM
regions. We used the Incremental Mixture Importance
Sampling (IMIS) algorithm to approximately sample from
the posterior distribution [26]. For the IMIS algorithm,
we used 100 000 initial samples for the r-spline model and
10 000 for the r-trend and r-hybrid models, 1000 samples
at each IMIS iteration, optimization steps every five
iterations up to the 25th iteration, and retained 3000
resamples from the joint posterior distribution (see [26]
for details of the IMIS algorithm).
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For model validation and comparison, we conducted
leave-one-out cross-validation using national survey
prevalence estimates. For 158 EPP regions which had
two or more national surveys with HIV prevalence,
we refitted each of the three models (r-hybrid, r-spline,
r-trend) withholding a single national survey prevalence
data point and including all other survey and ANC
prevalence data, a total of 470 fits for each model. We
generated samples from the posterior predictive distribu-
tion for the withheld prevalence data point on the probit
scale by sampling a single value for each sample from the
posterior distribution from a normal distribution with
mean given by the model predicted prevalence in the
given survey year and standard deviation ỹx;t.

We used the continuous ranked probability score (CRPS)
and the expected log predictive density (ELPD) to
compare predictive performance of the three models.
CRPS is a measure of model prediction error analogous
to mean absolute error (MAE) suitable for probabilistic
forecasts [27]. Smaller values indicate a smaller forecasting
error and hence better prediction. CRPS was calculated
on the percentage-point scale using the sample CRPS
approximation implemented in the R scoringRules
package [28]. ELPD is approximated by calculating the
average likelihood over all posterior samples for each
withheld data point, taking the log and summing; higher
values indicate a greater expected likelihood and hence
better prediction [29].

R implementations of the EPP-ASM and r-hybrid models
are available at http://github.com/mrc-ide/eppasm. Com-
puter code for reproducing all analyses is available from:
https://github.com/jeffeaton/eppasm-rhybrid-paper.
Results

Figure 1 illustrates examples of model fits with the r-
hybrid model using the EPP-ASM to four EPP regions
chosen to illustrate different characteristic patterns of how
the transmission rate affects epidemic estimates: Kenya –
Eastern, Malawi – Central Region, Ethiopia – Amhara
Urban, and Mozambique – Maputo Province. Across all
regions, the transmission rate r(t) is high during early
stages of the epidemic when HIV prevalence and
incidence rate are increasing exponentially, then declines
in the 1990s as incidence peaks and declines. HIV
prevalence peaks 4–6 years after incidence, except in
Maputo Province where incidence was estimated to peak
in 2009 and prevalence continues increasing.

Both the r-hybrid and the r-spline models produce
visually similar fits to HIV prevalence from national
surveys and amongst pregnant women. However, in some
cases, the models can produce qualitatively different
trends for HIV incidence, which can be understood
through assumptions about the transmission rate r(t). For
example, in the area labelled ‘Kenya – Eastern’, with the
r-spline model, the transmission rate declines rapidly,
followed by an increase to the assumed equilibrium prior
value. This results in an increasing incidence rate from the
mid-2000s, even while ART coverage is scaling up,
followed by declining incidence in recent years. The r-
hybrid model estimates a similar steep decline in log r(t),
but the transmission rate stabilizes and remains relatively
steady, resulting in steadily declining HIV incidence from
the mid-2000s onward. Both models estimate similar
prevalence at the last survey in 2012, but the lower
incidence estimated by the r-hybrid model results in an
estimate of steadily decreasing prevalence compared with
the stable prevalence trend estimated by the r-spline
model.

In contrast, for ‘Malawi – Central Region’, the r-hybrid
and r-spline model posterior mean estimates are very
similar. The random-walk component of the r-hybrid
model also estimates an increase in the transmission rate to
the anticipated equilibrium prior value. However, rather
than being constrained to this value, the uncertainty range
about r(t) steadily increases in recent years as prevalence data
become less informative about incidence trends. The
relative standard error for the incidence rate in 2017 is 60%
larger with the r-hybrid model than the r-spline model.

The example of ‘Ethiopia – Amhara Urban’ is similar to
Kenya – Eastern with the increase in r(t) to the
equilibrium prior resulting in an apparently flat HIV
incidence trend over the past decade whereas the r-hybrid
model estimates a steady transmission rate and decreasing
incidence as untreated prevalence decreases. Unlike
Kenya – Eastern, recent HIV prevalence estimates are
very similar for both models, guided by the recent
population survey in 2015.

In a final example, in ‘Mozambique – Maputo Province’,
the transmission rate is decreasing during the random-
walk period, but is higher than what would have been
assumed by the equilibrium prior value. Consequently,
the HIV incidence is higher, estimated to have peaked
later, and have much larger uncertainty than with the
r-spline model where the transmission rate is drawn to a
lower level. The HIV prevalence was steadily increasing
over the past decade.

Parameter estimates
Figure 2 illustrates estimates of the posterior means for the
logistic function parameters of the r-hybrid model fitted
to each of the 177 EPP regions relative to the prior
distributions for each parameter. The average value for
r0 was �0.45 with interquartile range (IQR) �0.57 to
�0.36. The average r1 was �2.64 (IQR �2.78 to
�2.48). For log a the average was �1.16 (IQR �1.34
to�0.97). The average tmid was 1994.0 with IQR 1992.7
to 1995.3. In the southern Africa region, the average
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Fig. 1. Examples of r-hybrid model fits (red) compared with r-spline (blue) model fitted using the EPP-ASM model for Kenya –
Eastern (top), Malawi – Central Region, Ethiopia – Amhara Urban, and Mozambique – Maputo Province (bottom). Solid trend
lines indicate posterior means and shaded areas 95% credible ranges estimates. Left panel: illustration of HIV prevalence among
age 15–49 years. Points and vertical ranges indicate household survey prevalence estimates and 95% CIs. Red dashed lines
indicate the proportion of the age 15–49 population on ART. Middle-left panel: illustrates HIV prevalence among pregnant
women. Green squares are ANC-RT census HIV prevalence aggregated for all ANC attendees in the region. Each grey line is data
from one ANC-SS site; triangles are sentinel survey observations and grey circles are observations from ANC-RT at SS sites. ANC-SS
observations have been adjusted on the probit scale by the posterior mean for the ANC-SS bias parameter. Middle-right panel:
illustration of the HIV incidence rate per 1000 person-years among age 15–49 years. Right panel: illustrates the log transmission
rate (r(t)) among untreated adults. The dashed horizontal line indicates the value for the r-spline equilibrium prior, req¼1/(11.5�(1–
prev)), based on the posterior mean prevalence in the last year of data. ART, antiretroviral therapy; ANC-SS, antenatal care sentinel
surveillance; ANC-RT, antenatal care routine HIV testing; CI, confidence interval;
value for the log initial epidemic growth rate r0 was
�0.32, �2.44 for the log endemic transmission rate r1,
and 1996.0 for the inflection point tmid. The higher
growth rate, higher endemic transmission rate, and later
inflection are consistent with the larger epidemics and
later emergence, peak, and decline of HIV epidemics in
the southern Africa region compared to other regions.
Model comparison and validation
Table 2 summarizes results of leave-one-out cross-
validation for 470 household survey prevalence data
points across 158 EPP regions with 2 or more household
surveys. The r-hybrid model had the lowest CPRS and
highest ELPD amongst the three models, indicating
the best performance for out-of-sample prediction.
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Fig. 2. Posterior mean estimates of logistic function parameters for 177 Estimation and Projection Package regions. Each dot
reflects posterior mean from one EPP region. Solid black bars are average of posterior mean estimates for all EPP regions fit for all
regions and by UN region country groupings. The dashed horizontal line reflects the prior mean for each parameter. Dotted
horizontal lines reflect 2.5 and 97.5% quantiles of prior distribution for each parameter. EPP, Estimation and Projection Package.
Aggregating all regions, the difference in the CPRS and
ELPD between the r-hybrid model and the r-spline or r-
trend models was more than twice the standard error for
the difference. The r-hybrid model featured better
predictive interval coverage, with 95% predictive intervals
containing the observed prevalence in 91.5% of cases
compared with only 87.2 and 85.5% for the r-spline and
r-trend models, respectively. Stratifying the comparison
by UN country regions, the r-hybrid model had the
lowest CRPS and highest ELPD in Eastern and Western
Africa countries. The r-trend model had the lowest
CRPS and highest ELPD in Middle and Southern
regions, though the standard errors for the difference was
large. The r-hybrid model had the highest predictive
interval coverage in all regions.

Results were similar when restricting to evaluating out-
of-sample predictions for the most recent prevalence
survey (Table 3), indicative of model performance for
short-term estimates and projections in the years
following survey prevalence. The r-hybrid model had
the lowest CRPS and the highest ELPD. The 95%
predictive interval included the observed prevalence for
92.4% of cases for the r-hybrid model compared with
88.6 and 88.0% for the r-spline and r-trend models.
Discussion

As the dynamics, programmatic response, and data about
the HIV epidemic continue to evolve, the methods and
tools with which the epidemic is characterized necessarily
also continue to develop. We have described two major
updates to the EPP model to improve estimates and short-
term projections of HIV epidemics for countries in sub-
Saharan Africa with general-population HIV epidemics.
The EPP-ASM model, introduced in EPP 2017, captures
the shifting demographics of the HIV epidemic as new
infections reduce among young adults and PLHIV survive
to older ages with availability of ART. The model
endogenously reflects the relationship between HIV
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Table 2. Results of leave-one-out cross-validation for 470 household survey prevalence data points in 158 Estimation and Projection Package
regions.

UN regiona Model CRPSb CRPS difference (SE)b ELPDc ELPD difference (SE)c 80% interval coverage 95% interval coverage

All r-hybrid 0.98 0.0 245.68 0.0 75.1% 91.5%
(470 fits) r-spline 1.05 �0.07 (0.02) 171.52 74.2 (19.8) 70.4% 87.2%

r-trend 1.07 �0.09 (0.03) 162.29 83.4 (19.2) 69.8% 85.5%
Eastern r-hybrid 1.04 0.0 160.57 0.0 75.2% 91.3%
(323 fits) r-spline 1.11 �0.07 (0.03) 123.74 36.8 (11.1) 72.1% 87.9%

r-trend 1.16 �0.12 (0.04) 98.43 62.1 (14.8) 70.0% 86.4%
Middle r-hybrid 0.66 0.0 7.5 0.0 (0.0) 70.6% 82.4%
(17 fits) r-spline 0.72 �0.06 (0.09) 1.81 5.7 (4.2) 47.1% 82.4%

r-trend 0.59 0.07 (0.07) 10.51 �3.0 (2.5) 70.6% 82.4%
Southern r-hybrid 1.54 0.0 35.43 0.0 63.0% 85.2%
(54 fits) r-spline 1.64 �0.09 (0.08) 25.31 10.1 (6.1) 51.9% 81.5%

r-trend 1.47 0.07 (0.08) 40.04 �4.6 (5.9) 64.8% 79.6%
Western r-hybrid 0.38 0.0 42.18 0.0 84.2% 98.7%
(76 fits) r-spline 0.43 �0.05 (0.03) 20.66 21.5 (14.7) 81.6% 89.5%

r-trend 0.52 �0.14 (0.04) 13.31 28.9 (10.2) 72.4% 86.8%

aCountries included in each region are reported in Table 1. All countries with more than one household survey with HIV are included (Eritrea,
Angola, Chad, Gabon, Gambia, and Guinea-Bissau excluded).
bContinuous ranked probability score (CRPS) is measure of the average percentage-point prediction error comparing out-of-sample posterior
predictive distributions for HIV prevalence among age 15–49 years to observed survey prevalence. Lower values indicate smaller predictive errors.
Values in parentheses are estimates of the standard error (SE) for the difference in CRPS between the r-hybrid model and r-spline or r-trend models.
cExpected log predictive density (ELPD) is a measure for the expected log-likelihood for probit-transformed survey prevalence in leave-one-out
cross validation. Higher values indicate more accurate predictions of withheld survey prevalence. Values in parentheses are the estimated standard
error (SE) for the difference in ELPD between the r-hybrid model and r-spline or r-trend models.
trends among pregnant women observed in ANC-based
surveillance and population HIV trends.

The r-hybrid model, introduced in EPP 2019, is a new
way to model the changes in the HIV transmission rate
over the course of the epidemic, the fundamental quantity
estimated by EPP. R-hybrid combines a simple paramet-
ric model to structure the growth, peak, and decline of
the epidemic with a first-order random walk model for
Table 3. Results of leave-one-out cross-validation for most recent househ
Package regions.

UN regiona Model CRPSb CRPS difference (SE) ELPDc ELPD

All r-hybrid 0.98 0.0 80.08
(158 fits) r-spline 1.06 0.08 (0.03) 40.31 �

r-trend 1.08 0.10 (0.04) 54.02 �
Eastern r-hybrid 1.09 0.0 46.91
(93 fits) r-spline 1.17 0.08 (0.04) 33.68 �

r-trend 1.25 0.16 (0.06) 26.06 �
Middle r-hybrid 0.52 0.0 5.21
(8 fits) r-spline 0.53 0.01 (0.08) 2.8

r-trend 0.47 �0.05 (0.09) 6.52
Southern r-hybrid 1.66 0.0 7.85
(22 fits) r-spline 1.83 0.17 (0.13) 0.18

r-trend 1.58 �0.08 (0.14) 11.37
Western r-hybrid 0.35 0.0 20.12
(35 fits) r-spline 0.41 0.06 (0.06) 3.65 �

r-trend 0.43 0.08 (0.04) 10.07 �

SE, standard error.
aCountries included in each region are reported in Table 1. All countries w
Angola, Chad, Gabon, Gambia, and Guinea-Bissau excluded).
bContinuous ranked probability score (CRPS) is measure of the average p
predictive distributions for HIV prevalence among age 15–49 years to observ
Values in parentheses are estimates of the standard error for the difference
cExpected log predictive density (ELPD) is a measure for the expected log-
cross validation. Higher values indicate more accurate predictions of withhe
error for the difference in ELPD between the r-hybrid model and r-spline o
recent trends. The random-walk model allows data-
driven flexibility in recent trends, while exerting the
prior assumption of a steady transmission rate once the
epidemic has stabilized. The r-hybrid model resulted in
more regular patterns for recent HIV incidence trends,
and demonstrated improved performance in out-of-
sample prediction for HIV prevalence. Uncertainty
ranges for HIV prevalence and incidence tended to be
somewhat larger for the r-hybrid model, resulting in
old survey prevalence data points in 158 Estimation and Projection

difference (SE) 80% interval coverage 95% interval coverage

0.0 81.6% 92.4%
39.8 (16.6) 72.2% 88.6%
26.1 (11.5) 72.2% 88.0%
0.0 80.6% 92.5%

13.2 (6.4) 74.2% 90.3%
20.9 (7.3) 69.9% 89.2%
0.0 87.5% 87.5%
�2.4 (2.6) 50.0% 87.5%

1.3 (1.9) 87.5% 87.5%
0.0 72.7% 86.4%
�7.7 (5.2) 50.0% 77.3%

3.5 (5.3) 63.6% 77.3%
0.0 88.6% 97.1%

16.5 (14.3) 85.7% 91.4%
10.0 (6.8) 80.0% 91.4%

ith more than one household survey with HIV are included (Eritrea,

ercentage-point prediction error comparing out-of-sample posterior
ed survey prevalence. Lower values indicate smaller predictive errors.
in CRPS between the r-hybrid model and r-spline or r-trend models.
likelihood for probit-transformed survey prevalence in leave-one-out
ld survey prevalence. Values in parentheses are the estimated standard
r r-trend models.
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improved nominal coverage of posterior predictive
intervals. We recommend that countries in sub-Saharan
Africa with general population HIV surveillance consider
the EPP-ASM and r-hybrid models for developing HIV
epidemic estimates.

The EPP-ASM model improves the consistency of the
EPP model with the Spectrum model, into which EPP
estimates are inputted. Many features of the EPP-ASM
model have long been present in the Thembisa model, an
integrated demographic projection and HIV transmis-
sion-dynamic model for national HIV estimates, projec-
tions, and intervention prioritization in South Africa
[30]. Important differences remain between the Them-
bisa approach and EPP-ASM, most notably the
mechanistic representation of sexual mixing, transmission
dynamics, and impacts of other interventions, such as
condoms and medical male circumcision in Thembisa
compared with the more phenomenological approach of
semiparametrically modelling changes in the average
transmission rate in EPP. Future research should
investigate whether more mechanistic representation of
HIV transmission in EPP can further improve estimates
across other settings.

There are a number of limitations of the models. First, the
models are not yet implemented for key population-
stratified EPP estimation, which is a recommended
practice for applying EPP in concentrated epidemic
settings outside SSA and some low-level epidemics in SSA.
This is a priority area for further development and will
require specification of demographic structure for entry
and exit from key population groups. Second, suboptimal
and unknown data quality, particularly for historical
sentinel surveillance and routine programmatic data,
require incorporation of nonsampling error into statistical
models and limit precise interpretations of observed small
changes in prevalence time series [23,31]. Third, we were
required to fix values for some key model parameters
including the standard deviation of the random component
of the r-hybrid model and the effect of increased ART
coverage on transmission rate as data are insufficient to
make inference about these parameters when fitting EPP
independently to each region. Extensions to hierarchical
model inference across subnational areas and countries and
analysis of trends in population cohort data may improve
characterization of these parameters in future.

However, the most substantial future improvements to
estimates are likely to be derived from more granular
modelling of existing data sources and incorporation of
new data sources into estimates. The EPP-ASM model
structure provides a foundation for this. Inference from
age-stratified survey and sentinel surveillance prevalence
data is a natural extension enabled by the existing model
structure. Precise modelling of the impact of HIV on
age-specific mortality will also facilitate inference about
HIV epidemic trends from AIDS-specific and all-cause
mortality data [32]. Mahiane et al. describe extension of
the EPP-ASM model structure into the Spectrum
CSAVR tool for inference from case surveillance and
vital registration data in concentrated epidemic settings
[33]. Similar data about HIV testing and diagnosis are now
also routinely reported in sub-Saharan Africa. Maheu-
Giroux and colleagues describe an extension of the EPP-
ASM model structure to also estimate HIV testing rates
from over time from survey and routine HIV testing
programme data tracking progress toward the ‘first 90’
HIV knowledge of status targets [34]. Bringing this
approach together with the EPP model to estimate recent
HIV incidence trends from testing and diagnosis data is a
logical next step for more granular and real-time tracking
of epidemic trends and programme impacts.
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