
entropy

Article

Photonic Reservoir Computer with Output Expansion for
Unsupervized Parameter Drift Compensation

Jaël Pauwels 1,2,* , Guy Van der Sande 2 , Guy Verschaffelt 2 and Serge Massar 1

����������
�������

Citation: Pauwels, J.; Van der Sande,

G.; Verschaffelt, G.; Massar, S.

Photonic Reservoir Computer with

Output Expansion for Unsupervized

Parameter Drift Compensation.

Entropy 2021, 23, 955. https://

doi.org/10.3390/e23080955

Academic Editor: Fernando

Morgado-Dias

Received: 25 May 2021

Accepted: 12 July 2021

Published: 26 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Laboratoire d’Information Quantique, Université Libre de Bruxelles, B-1050 Bruxelles, Belgium;
serge.massar@ulb.be

2 Applied Physics Research Group, Vrije Universiteit Brussel, B-1050 Ixelles, Belgium;
guy.van.der.sande@vub.be (G.V.d.S.); guy.verschaffelt@vub.be (G.V.)

* Correspondence: jael.pauwels@vub.be

Abstract: We present a method to improve the performance of a reservoir computer by keeping the
reservoir fixed and increasing the number of output neurons. The additional neurons are nonlinear
functions, typically chosen randomly, of the reservoir neurons. We demonstrate the interest of this
expanded output layer on an experimental opto-electronic system subject to slow parameter drift
which results in loss of performance. We can partially recover the lost performance by using the
output layer expansion. The proposed scheme allows for a trade-off between performance gains and
system complexity.

Keywords: photonic computing; reservoir computing; coherent optical reservoir; output expansion;
readout weight-tuning; unsupervised noise compensation

1. Introduction

Photonic reservoir computing is a neuro-inspired computing scheme which continues
to push the boundary of optical computing towards faster and more energy efficient
computing systems. Designed to exploit transient nonlinear dynamics to perform useful
computation, the reservoir computing framework from [1–3] is applicable to a wide variety
of physical systems. Photonic implementations tap into high bandwidth and versatile
platforms, ranging from free-space optics to fiber-based systems and integrated optical
circuits. Different flavors of electronic, opto-electronic and all-optical reservoirs exist,
including delay-based systems [4–12], network-based systems [13–17] and speckle-based
systems [18–21]; an overview is given in [22]. Noise and parameter variations can affect a
reservoir’s performance in different ways, as was investigated, for example, in [23–25].

To solve computational tasks, reservoir outputs are constructed, which encode the
reservoir’s best approximation to the solution of the computational task. Reservoir out-
puts are typically constructed as linear combinations of the reservoir’s output features.
Typically, the reservoir’s output features correspond directly with the signals provided by
the reservoir’s neurons, and the weights in the linear combinations are called the readout
weights. If the desired output signals are known, linear regression allows the readout
weights to be optimized with little effort.

In this work, we present a method to increase the number of output features to
improve a reservoir’s performance. The reservoir itself remains unchanged with random
and fixed connections between the neurons. Additional output features are obtained as
nonlinear functions of the original reservoir neurons. In the spirit of reservoir computing,
these functions can be random. We show that even with additional output neurons, the
standard training procedure remains applicable. The extended set of output neurons
simply means that an extended set of readout weights has to be optimized with the
same standard methods used for reservoir computers. The proposed scheme allows
one to expand the computational power of a reservoir computer without expanding the

Entropy 2021, 23, 955. https://doi.org/10.3390/e23080955 https://www.mdpi.com/journal/entropy

https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0003-3136-7633
https://orcid.org/0000-0002-6724-2587
https://orcid.org/0000-0002-6291-0646
https://orcid.org/0000-0002-4381-2485
https://doi.org/10.3390/e23080955
https://doi.org/10.3390/e23080955
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/e23080955
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e23080955?type=check_update&version=2

Entropy 2021, 23, 955 2 of 19

recurrent part of the reservoir itself. This allows a trade-off which may be interesting for
experimental implementations.

We demonstrate the interest of this expanded output layer on an experimental pho-
tonic reservoir computing system, following [12], subject to slow parameter drift (i.e., slow
with respect to the timescale of the task-related input data). These unintentional variations
could, for example, be caused by drifts in ambient parameters (such as temperature) and re-
sult in loss of performance. This is because the optimization of the readout weights, which
is based on simple linear regression, can depend strongly on all parameters that affect the
reservoir’s operation. If a reservoir is trained for different but fixed sets of operational
parameters, the resulting optimized readout weights generally differ. Using any of these
optimized sets of weights leads to a suboptimal approximation to the task solution if the
operational parameters are continuously drifting during operation. With the proposed
output expansion scheme, we can partially recover the performance lost due to parameter
fluctuations. We note that the employed scheme is expected to improve the reservoir’s
performance regardless of the presence of parameter drifts. Our focus, however, lies in
performance recovery under the presence of such drifts.

The problem of compensating for parameter drift was investigated previously in [25].
There, a simulated coherent photonic reservoir computer was considered, with slow vari-
ations to the roundtrip phase of the optical cavity that makes up the photonic reservoir.
Auxiliary reservoir outputs were trained to recover these cavity phase variations and were
used to tune the task-related output weights. As will be discussed, this weight-tuning
scheme is in fact equivalent to (and thus an example of) a fixed reservoir with expanded
output layer. This adapted reservoir output scheme was shown to improve robustness to
phase fluctuations. A supervised learning scheme was employed to extract the drifting
parameter from the neural responses, limiting the approach to drift compensation for
parameters which can be readily measured and which entail a corresponding experimental
overhead. We adapt and experimentally verify this method as we switch to an unsuper-
vised method, as described above, to compensate for the drifting parameters in a physical
system. The advantage of an unsupervised method is that it does not require the drifting
parameters to be measured, estimated or even identified.

Firstly, in Section 2 of this paper, we explain the standard mode of operation of a
reservoir computer and the principle of output layer expansion. We then discuss how
dynamic parameter variations are expected to affect the system performance. We sub-
sequently summarize previous efforts to mitigate performance losses due to parameter
fluctuations and explain—in more detail—our solution, which is based on the expansion of
the reservoir’s output layer. The experimental setup that we used to validate the proposed
approach is then presented in detail. Next, in Section 3, we show our analysis of the
information content of the additional reservoir outputs we constructed. Then, we show
how the computational capacity of the system is improved by the proposed scheme, and
we present the benchmark performance of our adapted reservoir computer on a four-level
channel equalization task. Finally, the impact of these findings is discussed, and concluding
remarks are presented in Section 4.

2. Materials and Methods
2.1. Reservoir Computing with Output Layer Expansion

In this section, we cover the reservoir computing basics in terms of operation and
training and discuss the principle of output layer expansion. A reservoir computer consists
of N internal states, also called neurons, here captured in a column vector X(n) as a
function of discrete time n. The system is operated by coupling input data I(n) to these
neurons using different weights. The neurons are randomly interconnected to form a
recurrent neural network. A state update equation describes how the neural states evolve,

Entropy 2021, 23, 955 3 of 19

i.e., how their (typically nonlinear) activation function fact acts (element-wise) on both past
states and newly injected data as

X(n + 1) = fact(X(n), I(n)). (1)

Standard reservoir outputs are constructed through linear combinations of neural
responses with a set of readout weights Wout. In practice, the act of accessing these neural
responses often involves measuring and recording them. The measured responses Xm, with
subscript m, are then obtained by parsing the neural responses with a (possibly nonlinear)
readout function fm acting element-wise; we note Xm = fm(X). In our work, we will
be measuring the optical power of the neural states encoded in the optical field strength,
such that Xm = |X|2. For a standard reservoir output, then, the measured responses form
the set of output features Xout that are combined with output weights Wout to construct
reservoir outputs:

Xout = Xm = |X|2. (2)

Below, we will generalize Equation (2) to a scenario where the output features Xout
are not restricted to equal the measured responses Xm. The number of output features is
denoted N′ (in the case of Equation (2) we have N′ = N).

Multiple parallel reservoir outputs can be created from these output features. Since
all outputs are created in the same way, we focus here on a single scalar output Yout. This
output is constructed by optimizing a row vector of N′ readout weights Wout:

Yout(n) = WoutXout(n). (3)

By combining T timesteps, we construct row vector Yout with Yout(n) as its nth element
and state matrix Xout with Xout(n) as its nth column to rewrite Equation (3) as

Yout = WoutXout. (4)

The readout weights Wout are optimized to minimize the square error with respect to
a target output Ytarget by finding the pseudo inverse X†

out of the state matrix Xout as

Wout = argmin
W
‖Ytarget −WXout‖2

2 = YtargetX†
out. (5)

Typically, the readout weights are optimized over a set of training samples, and the
residual output error is evaluated over a disjunct set of testing samples.

In this work, we consider an adapted readout layer which expands the number of
output features Xout using polynomials of the measured states Xm. In general, such an
adaptation to the readout layer can be described by an output function:

fout : RN → RN′ : Xm(n) 7→ Xout(n) = fout(Xm(n)) (6)

which maps the N dimensional vector Xm(n) of (measured) neural responses to an N′

dimensional vector of output features Xout(n) = fout(Xm(n)). Any readout adaptation
of this form has the advantage that the standard procedure for constructing and training
reservoir outputs given by Equations (3)–(5) remains applicable.

2.2. Output Expansion with First and Second Degree Polynomials

Here, we present an illustrative example of an output feature expansion. This example
will be used below to improve the performance of an experimental photonic reservoir
computing system. It is important, however, to keep in mind that the proposed scheme can
be generalized in many ways (there are many other nonlinear expansions possible). With
this example expansion, we pay special attention to the number of output features. This is
because it allows us to probe the trade-off between system complexity and computational

Entropy 2021, 23, 955 4 of 19

performance, a trade-off which is of great interest to experimental reservoir computing
systems in general.

We have chosen to expand the reservoir’s set of output features with polynomial
functions, limited to first and second degree, of the recorded neural responses. The first
degree contributions correspond with the original recorded responses Xm. The second
degree contributions are obtained by mixing the recorded responses Xm with auxiliary
features. These auxiliary features are signals constructed as linear combinations of the
recorded responses Xm. This process is identical for standard reservoir outputs, which
is why we label these auxiliary features as Y, and we will add a subscript to refer to the
method used to obtain them. In general, the auxiliary features can be constructed through
supervised training or unsupervised training, determined by the availability of a target
signal. Here we focus on an unsupervised method to obtain the auxiliary features because
we want to avoid the need to measure, estimate or even identify all drifting parameters,
and consequently, no target signals are available.

Since parameter drifts and variations are expected to occur slowly with respect to the
input sample spacing, we have tried using slow feature analysis [26] to find linear combina-
tions of the neural responses that vary slowly. Our efforts are outlined in Appendix B. This
method yields useful slow features, i.e., signals that correlate strongly with the slowest
perturbations of the system, which are the parameter drifts. However, we also found that
constructing random auxiliary features YR as linear combinations of the recorded neural
responses Xm with random weights WR is much easier than constructing slow features and
gives the same performance gains and robustness to parameter drifts. For this reason, we
focus on the latter approach.

In general the practical implementation determines the bounds of the distribution
from which the random weights are sampled. Since we evaluate the proposed scheme
by post-processing the recorded experimental data, we have complete liberty. Here, we
choose to sample weights uniformly from [−1, 1] as this could be implemented passively
(i.e., without amplification).

WR ∼ Uniform[−1,+1]. (7)

To obtain P random features, the P× 1 column vector YR(n) is thus constructed with
the P× N matrix WR as

YR(n) = WRXm(n). (8)

We now write the explicit form of the corresponding output expansion fout to clarify
how we obtain the full set of output features Xout. Combining T timesteps, we construct
the N′ × T matrix of output features Xout with N′ = N(P + 1) where the nth column
Xout(n) is constructed as follows: the first N elements correspond with the measured
neural responses Xm(n), the next N elements correspond with Xm(t) multiplied by the
first element of YR(n), the next N elements are Xm(t) multiplied by the second element of
YR(n) and so on. Using the Kronecker product, this can be written as

Xout(n) =
[

Xm(n)
Y>R (n)⊗ Xm(n)

]
. (9)

The output features thus consist of the recorded neural responses directly and these
responses mixed with the random features. The extended set of N′ = N(P + 1) read-
out weights Wout can then be obtained following the standard training procedure of
Equation (5). Note that P ≤ N, as otherwise there will be output features Xout which are
linearly dependent on other output features.

The relation between the task-solving reservoir output Yout and the expanded set of
output features Xout is still given by Equation (3). Additionally, for the specific output

Entropy 2021, 23, 955 5 of 19

expansion discussed here, we can express Yout in terms of the recorded neural responses
Xm directly as

Yout(n) = W(1)
out Xm(n) + X>m (n)W>R W(2)

out Xm(n). (10)

where the W(1)
out is the subset of readout weights in Wout used for first order polynomials

terms in Xm, and the matrix product W>R W(2)
out is the subset used for second order terms.

More formally, vectorizing weights matrix W(2)
out and appending it to weights vector W(1)

out
yields Wout as

Wout =
[
W(1)

out vec(W(2)
out
>)>

]
. (11)

Note that the N × N matrix resulting from the product of W>R and W(2)
out is not neces-

sarily of full rank, depending on the (number of) features used. In an explicit nonlinear
expansion of this degree, this matrix product would be replaced by a single N × N matrix
of full rank. Our approach allows for choosing how many auxiliary features are used,
which offers a trade-off between performance gains and system complexity, as will be
shown in the Results section. This output-expansion scheme is illustrated in Figure 1,
showing 3 neural responses and 1 random feature resulting in 6 output features.

Figure 1. Illustration of the output expansion scheme. In the example shown, 3 neurons are measured
Xm, 1 random feature YR is constructed with random weights WR and this auxiliary feature is mixed
with Xm to obtain a total of 6 output features Xout. These output features are combined with trained
readout weights Wout to form a task-solving reservoir output Yout. This output expansion contains
polynomial functions of Xm of first and second degree. The corresponding subsets of readout weights

are labeled W(1)
out and W(2)

out . Larger numbers of neurons N and auxiliary features P are supported by
the proposed scheme.

2.3. Slow Noise and Feature Dependent Weights

In this section, we discuss slow uncontrolled parameter variations which can affect
the internal dynamics of a reservoir computer in operation and can thus negatively impact

Entropy 2021, 23, 955 6 of 19

its performance. We also touch on the concept of feature-dependent weights and how it
relates to the previously discussed nonlinear output expansion.

Denote by θ the set all parameters and operators describing a reservoir computer’s
operation in Equation (1). Following the spirit of reservoir computing, we avoid micro-
managing the reservoir’s response to changes in θ and instead focus on the optimization of
the readout weights Wout. If θ changes over time due to environmental fluctuations (which
are slow with regard to the input data rate), then the system’s computational capacity can
be negatively affected. The standard reservoir training scheme will automatically try to
capture the reservoir’s dynamics for the range of values θ encountered during training.
This provides a natural robustness during testing, provided that only similar values of θ
occur. However, this robustness obviously comes at a price, since a reservoir trained and
tested on a fixed parameter set θ would work better. Furthermore, even without parameter
drifts or variations, reservoir computing systems can exhibit different performance levels
at different operating points. So even if the system is, in principle, not affected by the
dynamics of the parameter fluctuations, performance variations could still occur due to the
suitability of the instantaneous parameter values.

In [25], several approaches are presented to counter the negative impact of such
variations on the performance of a photonic reservoir computer. There, a simulated
coherent reservoir is perturbed by the variations of a single parameter θ (one-dimensional),
namely the detuning of an optical cavity. An estimation of any uncontrolled variations
in θ is extracted from the reservoir using 2 auxiliary features, Ycos θ and Ysin θ . As their
names suggest, these features are trained to estimate cos θ and sin θ to account for the
periodic nature of the system’s response to changes in θ. These two auxiliary features
are constructed as standard reservoir outputs, i.e., as linear combinations of the neural
responses with readout weights Wcosθ and Wsinθ , respectively. These weights are obtained
through the regular (supervised) reservoir training procedure, Equation (5), since the target
signals (cos θ and sin θ) are known. These features are obtained as

Ycos θ(n) = WcosθXm(n) (12)

Ysin θ(n) = WsinθXm(n) (13)

and thus, omitting the additional filtering that was applied in [25] to clean up these auxiliary
features, this constitutes an example of auxiliary features such as presented previously,
albeit with non-random weights.

Furthermore, in [25], recognizing that fixed readout weights yield suboptimal solu-
tions under varying θ, a weight-tuning scheme is then implemented, changing the output
relation Equation (3) to

Yout(n) = W̃out(n)Xm(n) (14)

with time-dependent readout weights

W̃out(n) = W(1)
out + Ycos θ(n)W(c) + Ysin θ(n)W(s). (15)

This results in an extended set of weights (W̃(1)
out , W̃(c), W̃(s)) that is optimized during

supervised training, using the target output specified for the computational task at hand.
It has successfully been shown that this weight-tuning scheme improves the robustness
to phase fluctuations of the simulated photonic reservoir computer and provides good
performance over a wide range of operational settings. In fact, it does so without taxing the
reservoir’s computational capacity as it is no longer the reservoir’s internal dynamics which
provide the robustness to parameter variations, but rather the readout weight-tuning.

We have identified this weight-tuning scheme to be an alternative perspective on the
nonlinear output expansion with polynomials of first and second degree, as discussed
above, a perspective which is also useful for the optimization of the extended set of readout
weights, as discussed in the next paragraph. In this work we effectively build on this idea,

Entropy 2021, 23, 955 7 of 19

switching to an unsupervised method (in the form of random features as discussed above)
to demonstrate the concept experimentally. We consider a different coherent photonic
reservoir computer but with the same one-dimensional θ, i.e., the detuning of the optical
cavity that makes up the reservoir. This system allows us to compare simulation results
directly with experiments. We employ the same readout layer adaptation, but instead
of constructing estimates of cos θ and sin θ through supervised training, we explore the
applicability of the proposed adapted readout scheme to drifting parameters which cannot
readily be measured. Lacking (and preventing the need for) a measurement of θ, we do
not train the additional outputs with the standard procedure Equation (5). Instead, as
discussed above, we construct random features following Equation (8).

The specific example of a nonlinear output expansion that we presented is, in fact,
equivalent to the same weight-tuning scheme presented in [25]. In our case, the weight-
tuning scheme is expressed as

W̃out(n) = W(1)
out + YR(n)W

(2)
out (16)

which, when combined with the output relation Equation (14), yields

Yout(n) =
(

W(1)
out + YR(n)>W(2)

out

)
Xm(n). (17)

One can verify that Equations (8) and (17) indeed combine to yield Equation (10),
which confirms the equivalence. The weight-tuning scheme is illustrated in Figure 2,
showing 3 measured neural responses Xm which are combined with 3 time-dependent
readout weights W̃out to form 1 task-solving output Yout. It also shows 1 auxiliary random
feature YR which is obtained with random weights WR and used to tune the time-dependent
readout weights W̃out, and it can be compared with Figure 1 to verify that it is an example
of a nonlinear output expansion.

Figure 2. Illustration of the weight-tuning scheme. The example shows 3 measured neural responses
Xm which are combined with 3 time-dependent readout weights W̃out following Equation (16) to
form 1 task-solving output Yout following Equation (17). The example has 1 random auxiliary feature
YR, which is obtained with random weights WR and used to tune W̃out. Larger numbers of neurons
N and auxiliary features P are supported by the proposed scheme. This example is equivalent with
the scheme shown in Figure 1.

2.4. Setup

In this section we discuss the dynamical system on which our reservoir computing
simulations and experiments is based. The reservoir itself is implemented in the all-optical
fiber-ring cavity shown in Figure 3, using standard single-mode fiber. A polarization
controller is used to ensure that the input field Ein excites a polarization eigenmode of

Entropy 2021, 23, 955 8 of 19

the fiber-ring cavity. A fiber coupler, characterized by its power transmission coefficient
T = 50%, couples light in and out of the cavity. Ignoring dispersion, the fiber-ring is char-
acterized by the roundtrip length L = 10 m (or roundtrip time tR = 50 ns), the propagation
loss α (taken here 0.18 dB km−1), the fiber nonlinear coefficient γKerr = 2.6 mrad m−1 W−1

and the cavity detuning θ, i.e., the difference between the roundtrip phase and the nearest
resonance (multiple of 2π). Without active stabilization, the cavity detuning is an uncon-
trolled parameter susceptible to slow (sub-MHz) variations. This low-finesse cavity is
operated off-resonance, with a maximal input power of 50 mW (17 dBm). A network of
time-multiplexed virtual neurons is encoded in the cavity field envelope, with neuron
spacing ∆τ.

We use the physical model constructed in [12]. In this mean-field model, the temporal
evolution of the electric field envelope is described by E(n)(z, τ), which represents the
cavity field envelope measured at position z from the coupler at time τ during the n-th
roundtrip. The longitudinal coordinate of the fiber ring cavity is bound by the cavity
length 0 < z < L, and similarly, the time variable is bound by the cavity roundtrip
time 0 < τ < tR, since other values are covered by the expressions of other roundtrips
(with different n). A nonlinear propagation model is combined with the cavity boundary
conditions to transform the input field E(n)

in (τ) into the output field E(n)
out(τ), following the

equations

E(n)(L, τ) = E(n)(0, τ) exp
(

iγ|E(n)(0, τ)|2Le f f − αL
)

(18)

E(n+1)(0, τ) =
√

TE(n+1)
in (τ) +

√
1− TeiθE(n)(L, τ) (19)

E(n+1)
out (τ) =

√
1− TE(n+1)

in (τ) +
√

TeiθE(n)(L, τ) (20)

where the effective cavity length that describes the accumulation of nonlinear Kerr phase is
Le f f = (2α)−1(1− exp(−2αL)). In this model, the cavity phase is the only drifting/noisy
parameter and is therefore denoted θ(n). Variations in θ are caused by drift in the frequency
of the pump laser and mechanical/thermal fluctuations affecting the cavity.

Scope

Laser

PD

coupler
50/50

Isolator

Polarization
controller

FIBER
CAVITY

MZM

input

RESERVOIR

Digital computer
output expansion

Figure 3. Schematic of the fiber-ring cavity of length L used to implement an optical reservoir. In the
input layer, a polarization controller maps the input polarization onto a polarization eigenmode of
the cavity. Data is injected by means of a Mach–Zehnder modulator (MZM). A coupler with power

transmission coefficient T = 50% couples the input field E(n)
in (τ) to the cavity field E(n)(z, τ) and

couples to the output field E(n)
out(τ), where n is the roundtrip index, τ is time (with 0 < τ < tR) and z

is the longitudinal position in the ring cavity. A photodetector (PD) records the neural responses to
be processed by a digital computer where the output expansion is realized.

The input field Ein is generated by using a Mach–Zehnder modulator (MZM) to
modulate a CW optical pump following [7]. Here the input signal u(n) (∈ [−1, 1]) is first
mixed with the input masks bk and mk (with neuron index k):

ũk(n) = bk + mku(n) (21)

Entropy 2021, 23, 955 9 of 19

and then used to drive the MZM. The input coupled to the k-th neuron is thus expressed as

Ik(n) =
√

P0 cos(β0 + β1ũk(n)) (22)

where P0 represents the pump power, β0 ≈ π/2 represents the setpoint and β1 ≈ π/4
represents the modulation range. The bias mask values bk allow the masked input values
ũk(n) to exploit the full modulation range and affect the reservoir’s ability to recover phase
information from its neural responses. These inputs then couple to all neurons through
time-multiplexing, as the amplitude-modulated input field becomes

E(n)
in ((k− 1)∆τ < τ < k∆τ) = Ik(n). (23)

The neuron spacing ∆τ is set with respect to the cavity roundtrip time tR and the
number of neurons N as

∆τ =
tR

N + 1
. (24)

This deviation from the synchronized scenario (∆τ = tR/N) yields a ring-like coupling
topology between the neurons, following [9].

The output field Eout is sent to the readout layer where the neural responses are
demultiplexed. In the readout layer, a photodetector (PD) measures the optical power of
the neural responses |Eout|2. More specifically, the measured value of the k-th neuron is

Xm,k(n) =
1

∆τ

∫ ntR+k∆τ

ntR+(k−1)∆τ
|E(n)

out(τ)|
2dτ. (25)

The expansion of the reservoir’s output layer will be achieved by digitally post-
processing the experimentally recorded neural responses.

It is known that the MZM and PD can act nonlinearly on the input and output signals
and can thus affect the RC system’s performance [9]. The implications for a coherent
nonlinear reservoir have been investigated in [12].

With high optical power levels and small neuron spacing (meaning fast modulation of
the input signal), dynamical and nonlinear effects other than the Kerr nonlinearity may
appear, such as photon–phonon interactions causing Brillouin and Raman scattering and
bandwidth limitations caused by the driving and readout equipment. These effects are
not included in our numerical model, and our experiments are designed to avoid them.
Combined with the memory limitations of the oscilloscope, we therefore limit our reservoir
to 20 neurons, with a maximal input power of 50 mW.

We remark a particular symmetry to this system. The Equations (18)–(20) admit a
solution of the form E(n)

out(τ) = F(γ, L, θ, E(n)
in (τ), E(n−1)

in (τ), · · ·) for some function F which
can be computed iteratively. With a real-valued input signal Ein, the complex conjugate of
Eout is given by the same function, with opposite signs for θ and γ. Thus, neglecting the
relatively weak influence of γ and following Equation (25), the recorded neural responses
Xm are an even function of θ.

In Appendix A, we consider a discrete time version of a linearized system model, and
we investigate how θ(n) affects the recorded neural responses (and linear combinations
thereof, such as our random features). When averaged over times which are long compared
to the cavity roundtrip time tR but short compared to the time over which θ(n) varies and
when the input bias bk is non-zero, the system response depends on cos〈θ〉n and its powers.
These are even functions of θ, as expected on account of the mentioned symmetry.

3. Results
3.1. Ability of Random Features to Capture Parameter Variations

In the envisioned scenario, we deal with losses in RC performance due to ambient
parameter fluctuations. To understand how random auxiliary features can recover and

Entropy 2021, 23, 955 10 of 19

boost performance when used to tune task-related readout weights, it is important to
investigate what information is contained within these features. Hence, in this section
we will use the setup outlined in Section 2.4 to investigate whether the random features
correlate with the variations in the cavity roundtrip phase θ or detuning, which constitutes
the uncontrolled parameter. To investigate whether the random features contain useful
information about θ, we calculate the correlations between these features and cos θ.

In the experiment, we do not have direct access to a measure of the cavity phase. To
obtain an estimate, we performed several iterations of the experiment, and the input data
in each iteration were preceded by a series of well-timed pulses. We then analyze the
interference between pulses that reflect off the optical cavity and pulses which exit the
cavity after a roundtrip within the cavity. This scheme allowed us to periodically probe
the cavity roundtrip phase between iterations of the experiment. More specifically, we
recover an experimental estimate of cos θ every ∼1 s. In Figure 4, we show the estimated
phase variations which are slow (sub-Hz), owing to our efforts to shield the setup from
mechanical vibrations and temperature variations during these experiments. We also show
the best approximation using a linear combination of all random features YR, obtained
through linear regression following Equations (2), (4) and (5), which is seen to correctly
capture the slow trends.

0 20 40 60 80 100 120
iteration (~1s)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

co
s

measured phase
estimated phase

Figure 4. Example of experimental phase variations over different iterations of the experiment. The
solid line is the measured phase, based on the pulse interference, and the dots represent the estimated
phase using a linear combination of all 20 random features. The iterations take place approximately
every second. The experiment is carefully shielded so that θ varies slowly.

We also want to explore whether our approach can deal with faster phase fluctuations
(up to ∼kHz). Thus, in further experiments we make no efforts to shield the setup from
mechanical vibrations and temperature variations, which will allow us to investigate the
system’s robustness to parameter changes within each experimental run. For this reason,
we purposely perturb our simulations with random phase variations of the full 2π range
and kHz bandwidth, to allow for significant variations within individual experiments,
which last ∼1 ms. In Figure 5, we show an example of the simulated phase variations. We
also show the best approximation using a linear combination of all random features. This
approximation captures the correct slow trends, but fast variations at the timescale of the
input data can also be observed. Indeed, from the point of view of measuring cos θ, the
input signal is unwanted noise.

To determine how many random features are needed to obtain reliable information
about θ, we try to reconstruct the phase variations with linear combinations of the P
random features. The reservoir encodes N = 20 neurons, and the random features are
constructed as linear combinations of the (measured) neural responses. We therefore limit

Entropy 2021, 23, 955 11 of 19

the number P of random features to 20. Additional features are not expected to contain
any new information.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
time [ms]

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

co
s

true phase
estimated phase

Figure 5. Example of simulated phase variations within 1 iteration of the simulated experiment. The
full line represents the true phase variations, covering the full 2π range and with kHz bandwidth,
and the dots represent the estimated phase, obtained using a linear combination of all 20 random
features.

We have quantified the accuracy in reconstructing cos θ when using an increasing
number of features (P). In Figure 6, we show the Pearson correlation coefficient between
the experimental estimates or simulated values of cos θ and the best approximation using
subsets of the extracted features. The error bars are obtained by averaging the results over
multiple sets of random features. Both in the experiment and simulation, at least four
features are needed to obtain consistent correlation results above 50%, and correlation
coefficients up to 90% can be reached when using more features.

0 5 10 15 20
random features used (P)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

experiment
simulation

Figure 6. Correlation coefficients obtained when mapping increasing sets of random features to cos θ

using linear regression. For the experimental comparison, an estimate of cos θ is used, whereas in sim-
ulation, the known value of cos θ is used. Error bars are obtained by running experiments/simulations
for several iterations and using different sets of random weights for the construction of the ran-
dom features.

Entropy 2021, 23, 955 12 of 19

3.2. Memory Capacity

In this section, we evaluate how the adapted reservoir readout layer outlined in
Section 2.2 improves the reservoir’s computational capacity or memory capacity when
exploiting random features. The evaluation framework used here allows the system’s total
information processing capacity to be quantified and is based on the reservoir’s capacity to
reconstruct a large set of polynomial functions, following [27,28]. For this experiment, the
input data consists of random samples drawn from a uniform distribution over the interval
[−1, 1]. The reservoir computer is then trained to reconstruct both linear and nonlinear
polynomial functions of past inputs.

The polynomial functions are constructed by combining Legendre polynomials, which
are orthogonal over the distribution of the input data and, as such, yield independent
pieces of information about the system’s total memory capacity. The reservoir’s ability to
reconstruct each function is evaluated by comparing the trained output y with the target ŷ
for previously unseen input samples. This yields a memory capacity C between 0 and 1, as

C = 1− 〈(ŷ− y)2〉t
〈ŷ2〉t

. (26)

These capacities are typically grouped by the degree of the corresponding polynomial
functions. After summing over all memory capacities of an equal degree, we can quantify
the contributions of individual degrees to the total memory capacity of the RC, which is
the sum over all degrees.

By this evaluation scheme, we gain insight into the reservoir’s linear memory capacity,
i.e., the ability to retain past input samples, and its nonlinear memory capacity, i.e., the
ability to apply nonlinear transformations to the retained information. By combining both
linear and nonlinear memory capacities, we find the total memory capacity. With fading
capacities of increasing degree, this total capacity has an upper bound given by the number
of dynamical variables in the system: here, the number of virtual neurons. In practice, the
total memory capacity is degraded by the presence of readout noise. Furthermore, there is
a trade-off between linear and nonlinear memory capacity, depending on the operating
regime of the dynamical system. In our system, the linear memory capacity corresponds
with degrees 1 and 2 due to the photodetector in the reservoir’s readout layer, which
effectively performs a squaring operation when measuring optical power levels instead
of optical field amplitudes [12]. The nonlinear memory capacity is captured by higher
degrees.

When evaluating memory capacities on finite data sets, there is a risk of overesti-
mating the capacities C, whose estimator Equation (26) is plagued by a positive bias.
Following [28], we employ a cutoff capacity Cco ≈ 0.02 for 5000 test samples, and we
discard capacity estimates below this cutoff.

We have investigated and present here the effects of the expanded output layer on the
system’s computational capacity. The goal is not to achieve state-of-the-art performance, but
rather to demonstrate that the performance can be improved through this output expansion.
In our particular example of such an expansion, we exploit random combinations of
neural responses, which we have shown in Section 3.1 to contain information about the
uncontrolled variations in the cavity phase. We apply the standard reservoir computing
training approach to the expanded set of output features, as we project them onto the
target solution following Equation (5). We expect to achieve a higher accuracy, i.e., larger
memory capacities, as we increase the number of random features used for the reservoir’s
output expansion.

We have performed simulations with the stable cavity phase (not shown), which
have yielded total memory capacities between 16 and 150 as we vary the number of
features used from 0 to 20. As expected, without phase noise and with the standard
reservoir output layer (0 features used), the obtained total memory capacity of 16 is close
to the theoretical maximum given by the number of observed independent variables [28]:

Entropy 2021, 23, 955 13 of 19

here, the number of neurons N = 20. The expanded sets of output features now contain
additional independent output variables. With N = 20 independent neural responses
Xm, the number of independent second order monomials in Xm is N(N + 1)/2 = 210,
for a total of up to 230 independent variables. This number sets the new upper bound
on the total memory capacity and thus allows it to exceed 20, as observed. These results
demonstrate that expanding the reservoir’s output layer can significantly improve its
computational capacity.

We have then performed both simulations and experiments with varying cavity
phase. Indeed, as shown in Figure 7, both the simulated and experimental results show a
significant increase in the reservoir’s total memory capacity as we increase the number of
random features that are used to tune the memory-task-related readout weights. Not using
any features to tune the readout weights’ case corresponds with the standard reservoir
output scheme and yields the lowest total memory capacity of approximately 2. This is
considerably lower than the theoretical upper bound. The discrepancy demonstrates the
performance degradation caused by the phase fluctuations. When all 20 features are used
in the expanded output, the memory capacity increases to approximately 8.

0 1 2 5 10 20 0 1 2 5 10 20
number of features used

0

1

2

3

4

5

6

7

8

9

cu
m

ul
at

iv
e

m
em

or
y

ca
pa

ci
ty

 p
er

 d
eg

re
e experiment simulation

Figure 7. Experimental and simulated memory capacity of the reservoir computer when the number
of random output features used is increased from 0 to 20. The stacked vertical bars are color-coded
to represent (from the bottom up) the total memory capacities of degrees 1 (dark blue), 2 (red), 3
(orange), 4 (purple) and 5 (green) and all higher degrees combined (light blue). As such, the total
height represents the total memory capacity of the system.

Both the simulated and experimental results show a smooth transition as we increase
the number of features used to tune the readout weights of the memory tasks. The growing
total memory capacity seems to show a linear trend, but the results are not plotted on a
linear horizontal axis. On closer observation, it becomes apparent that a larger number of
features yields diminishing returns. In fact, more than half of the achievable increase in
total memory capacity can be obtained with as few as five random features. These results
demonstrate that the presented output expansion can be exploited to partially recover the
computational capacity of a reservoir affected by uncontrolled parameter variations.

Given the diminishing returns on increasing the number of random features used in
the output expansion, the feature-based output expansion presented in this work allows
for a powerful trade-off between system complexity and performance gains. This scala-
bility is especially relevant to practical implementations, where the system size and the
number of parameters (readout weights) that have to be optimized for task-solving are
typically constrained.

In the experiment, we observe a larger contribution of the system’s nonlinear memory
capacity to its overall memory capacity. We have previously demonstrated [12] that this

Entropy 2021, 23, 955 14 of 19

setup’s linear and nonlinear memory capacity is very sensitive to operational parameters
(such as β0, for example), whereas the total memory capacity is largely unaffected. Because
longer experimental runs were required for the topic at hand, the results can be affected by
fluctuations in other experimental parameters not accounted for in the simulation. This
could explain the discrepancy between simulated and experimental relative contributions
of linear and nonlinear memory capacities.

3.3. Nonlinear Channel Equalization Task

In this section, we apply the same expanded output to improve the reservoir’s per-
formance on a benchmark test inspired by telecommunications. This four-level channel
equalization task, first introduced to the reservoir computing community in [2], consists
of equalizing a noisy and nonlinear communication channel. The transmitted signal has
the form d(n) ∈ {−3,−1, 1, 3} and propagates through a communication channel whose
output u(n) is modeled by

q(n) =0.08d(n + 2)− 0.12d(n + 1) + d(n) + 0.18d(n− 1)

− 0.1d(n− 2) + 0.091d(n− 3)− 0.05d(n− 4) (27)

+ 0.04d(n− 5) + 0.03d(n− 6) + 0.01d(n + 7)

u(n) =0.036q2(n)− 0.011q3(n) + ν(n) (28)

where ν(n) is Gaussian white noise, scaled to achieve a signal to noise ratio of 32 dB. The
signal u(n) serves as the input signal to the reservoir which is then trained to reconstruct
d(n). We have used increasing subsets of extracted features to tune the weights for the
reservoir output involved in solving this task. Due to the digital nature of the four-level
target signal, the symbol error rate (SER) is used to quantify the reservoir’s performance
on this task.

We have first evaluated the system’s performance when the cavity phase is stable. We
have performed several experiments without active cavity stabilization and have selected
a small subset of experiments with very few fluctuations of the cavity phase. For these
experiments, an average SER of 3.7% is observed using the standard reservoir output
(without expansion). In simulations with a stable phase, however, symbol error rates
below 0.1% are observed with the standard RC output scheme. The difference between the
simulated and experimental results suggests that the selected subset of experiments (with
3.7% SER) is not entirely free of phase fluctuations. When averaging over all experiments,
a higher SER of 4.4% is reported (without output expansion). We can thus conclude that
the experimental phase fluctuations cause an increase in the SER of at least 0.7%.

We have then investigated the ability to recover lost performance by expanding the
reservoir’s output layer using random auxiliary features. The experimental and simulated
results are shown in Figure 8. We observe that the experimental SER decreases smoothly
from 4.4 to 2.7% and the simulated SER decreases smoothly from 5.2 to 1.7% when the
number of features used for weight-tuning is increased from 0 to 20. As these results
are plotted on a linear horizontal axis, it can be readily seen that a larger number of
features yields diminishing returns. Both experimental and simulated results show the
same trend, although the performance gains are smaller in the experiment compared to
the simulation. Interestingly the experimental and simulated results cross over, which
could be explained using the memory capacities obtained in Section 3.2. The experimental
system has a larger nonlinear computational capacity, which is why it outperforms the
simulated systems without feature-based weight-tuning. Naturally, then, it also gains less
from the nonlinearity introduced by the feature-based weight-tuning scheme. By the same
reasoning, the simulated system which owes most of its nonlinear memory capacity to the
weight-tuning scheme sees more significant performance gains.

Entropy 2021, 23, 955 15 of 19

Figure 8. Experimental and simulated results on the 4-level channel equalization benchmark task. The
symbol error rate is reported as a function of the number of random features that are used to tune the
task-related readout weights. Error bars are obtained by running experiments/simulations for several
iterations and using different sets of random weights for the construction of the random features.

We have then investigated what happens when the reservoir’s output is expanded
through a (full-rank) polynomial expansion of the same degree (i.e., 2) as our feature-based
approach, as outlined in the paragraph discussing Equation (10). In this case, an SER
as low as 1.8% is observed in the simulation and 2.8% in the experiment. As expected,
these symbol error rates are comparable to the results obtained when using all 20 random
features in the feature-based output expansion.

Considering all experimental results, we have shown that the output expansion can
improve the SER of a perturbed system (4.4%) to below (2.7%) the average SER of the most
stable subset of experiments (3.7%). Since this subset does not perfectly represent constant
system parameters, we may have overestimated the SER of a perfectly stable experimental
system. The ensemble of all simulation results indeed suggests that the output expansion
can bring the SER of a perturbed system (5.2%) significantly closer (1.7%) to that of an
unperturbed system (<0.1%) but not surpass it.

We conclude that our example of a reservoir output expansion allows for the recovery,
at least partially, of performance lost due to uncontrolled parameter variations. We also
observe the same trend of diminishing returns on increasing the number of random
features used in the output expansion, as was observed when evaluating the reservoir’s
computational capacity.

Finally, we have investigated in simulation how the proposed output expansion affects
systems with different numbers of neurons N. In Figure 9, we plot the SER for systems
with N ranging from 10 to 40, noting that N = 20 in all previously shown results. For a fair
comparison, the horizontal axis shows the total number of readout weights N′ that must
be optimized (on a logarithmic scale). For all systems, we vary the number of random
features P used in the output expansion as 0, 1, 2, 5 and 10 from left to right. The number
of readout weights is affected as N′ = N(P + 1).

The results from Figure 9 indicate that expanding the readout layer as proposed helps
improve performance for all reservoir sizes (N) considered, with consistent scaling of
the performance versus the increase in complexity (N′). However, it is not as efficient as
expanding the reservoir itself. The proposed output expansion should thus be of particular
use for experimental systems where expanding the output is easier than expanding the
reservoir itself.

The variations in reservoir computing performance for different sets of random
weights WR are captured by the error bars in Figures 8 and 9. The observed variations are
smaller than the performance gains when the system’s output is expanded with at least
five random features. In that case, random feature weights WR can thus be expected to
improve performance with great confidence.

Entropy 2021, 23, 955 16 of 19

Figure 9. Additional simulated results on the 4-level channel equalization benchmark task. The
symbol error rate is reported as a function of the total number of readout weights N′ that must be
optimized. Different curves represent reservoirs with different numbers of neurons N, ranging from
10 to 40. For each system, the number P of random features that are used in the output expansion is
varied as 0, 1, 2, 5 and 10 from left to right, which affects N′ = N(P + 1). Error bars are obtained by
running experiments/simulations for several iterations and using different sets of random weights
for the construction of the random features.

4. Conclusions

We have investigated an unsupervised and scalable method to expand a reservoir’s
output layer, and we have successfully exploited it to deal with slow and uncontrolled
parameter variations that perturb the operation of a reservoir computer, thereby negatively
affecting its computational capacity. This investigation was performed on a delay-based
photonic reservoir computer built around an all-fiber cavity. An output expansion was pro-
posed where, as an example, the set of output features was expanded through polynomial
functions (of degree 1 and 2) of the neural responses. In the spirit of reservoir computing,
this was implemented by mixing the neural responses with various numbers of random
auxiliary features, which themselves are untrained combinations of neural responses.

We found that the random auxiliary features contain information about the drifting
parameter and can be used to expand the set of output features on which a reservoir relies
to construct its task-solving outputs. We have shown that large performance gains can
be achieved with just a small set of auxiliary random features. Both our numerical and
experimental results showed that the negative performance impact due to the parameter
drifts can at least partially be mitigated through this feature-based output expansion. We
accredit the performance gains/recovery to both the additional output complexity and the
feature’s capacity to capture information about the uncontrolled parameter variations.

Compared to previous work on this topic, we have presented the first experimental
demonstration of the feature-based output expansion on a coherent photonic reservoir
and also introduced non-supervised methods for the construction of the auxiliary fea-
tures. Choosing the number of features allows for the exploitation of a smooth and quasi-
continuous trade-off between system complexity and RC performance gains, all without
complicating the training procedure. Both the application of non-supervised methods and
the scalability of the system’s size and complexity offer clear advantages over our previous
work and can aid with the design of physical implementations. Although our work only
handles variations of a single parameter in a very specific photonic system, the proposed
scheme can, in principle, also be applied to multiple independent drifting parameters and
to other types of systems based on different hardware platforms.

Author Contributions: Conceptualization, S.M.; methodology, S.M. and J.P.; investigation, J.P.;
supervision, S.M., G.V.d.S. and G.V.; writing—original draft preparation, J.P.; writing—review and
editing, S.M., G.V.d.S. and G.V. All authors have read and agreed to the published version of
the manuscript.

Entropy 2021, 23, 955 17 of 19

Funding: This research was funded by Fonds de la Recherche Scientifique (FRS-FNRS) and the
Research Foundation Flanders (FWO) under grants 11C9818N, G028618N, G029519N and G006020N.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript or
in the decision to publish the results.

Appendix A. Analysis of Phase-Drift in Simple Delay-Based Reservoir Computer

In this section we consider a simplified model describing a coherently driven delay-
based passive linear cavity with ring topology to investigate how slow variations of the
detuning affect the cavity dynamics and the neural responses. This helps shed light on
how this information may be extracted from the responses. Following [9], the state update
equation for the k-th neuron is given by

Xk(n + 1) = αeiφ(n)Xk−1(n) + mku(n) + bk (A1)

with cavity roundtrip loss α, cavity detuning φ(n), real-valued input mask values mk and
bias mask values bk. Note that this neuron index k should be evaluated modulo N due to
the ring topology of this delay-based reservoir. The real input data u(n) are zero mean and
unit covariance

〈u(n)〉n = 0

〈u(n)u(n− r)〉n = δr (A2)

using Kronecker delta notation. Because the reservoir described by Equation (A1) is linear,
one can determine the general form of the dependence on slow phase variations φ(n). We
start by applying this state update equation recursively through the neuron index k, using
Equation (A1) to replace Xk−1(n) for an expression containing Xk−2(n − 1), and so on.
We obtain

Xk(n + 1) =
∞

∑
r=0

αrei ∑r
s=1 φ(n−s)(mk−ru(n− 1− r) + bk−r). (A3)

Assuming all phase variations occur slowly with respect to variations in the input
data, we can consider a time interval large enough such that Equation (A2) is satisfied, yet
small enough such that we can approximate

αrei ∑r
s=1 φ(n−s) =

(
αei〈φ〉n

)r
(A4)

with 〈φ〉n the average value of quasi-constant phase φ(n) within the interval. From
Equation (A3), it then follows that the temporal mean of the neural response filters out the
input variations and retains the important phase information

〈Xk〉n =
∞

∑
r=0

bk−r

(
αei〈φ〉n

)r
. (A5)

In the case of a quadratic readout (i.e., a photodectector), we similarly find

〈|Xk|2〉n =
∞

∑
r=0

ηkr cos(r〈φ〉n) (A6)

with constants

ηkr =

{
∑∞

s=0 |αsbk−s|2 + ∑∞
s=0 |αsmk−s|2 r = 0

∑∞
s=r 2bk−sbk−s+rα2s−r r > 0.

(A7)

Entropy 2021, 23, 955 18 of 19

This analysis shows that, owing to the presence of an input bias bk, the reservoir
can exploit its fading memory property to access different combinations of the functions
cos(r〈φ〉n) with positive integer r. The slowest (non-trivial) feature that can be extracted
has r = 1 and could probably be constructed by combining the neural responses with
weights wslow

k , such that ∑N
k=1 wslow

k ηkr is maximized for r = 1 and minimized for r 6= 1.

Appendix B. Construction of Slow Features

Besides the use of random features, another meaningful way to construct the auxiliary
features is to exploit an autonomous feature extraction process called slow feature analysis
(SFA) [26]. As the name suggests, this process focuses on extracting signals with slow
temporal profiles. Under the assumption that all parameter variations occur slowly with
respect to the rate of change in all input data, these slow features should thus primarily
contain information about the drifting parameters. Slow feature analysis constitutes
a procedure to minimize the temporal average of each individual feature’s temporal
derivatives under a small set of constraints to eliminate constant features as trivial solutions.
Although more advanced versions of SFA exist, compatibility with the proposed readout
scheme requires the following three step version. Step 1: the neural states are normalized,
i.e., shifted to zero mean and scaled to unit variance. Step 2: the normalized data are
sphered. This means that principal component analysis (PCA) is applied to transform the
N normalized neural signals into N linear combinations which are mutually orthogonal.
Additionally these signals are rescaled to have unit covariance. Step 3: PCA is applied to
the temporal derivatives of the sphered data. The resulting eigenvalues contain information
about temporal variations in the sphered data, where lower means slower. The resulting
eigenvectors are effectively the sets of weights which we can use to combine the sphered
data into slow features. By selecting the eigenvectors with the lowest corresponding
eigenvalues, the slowest features are extracted. To capture the slow parameter variations,
one would have to focus on the slowest extracted features, which are found in the subset
of extracted features with the lowest corresponding eigenvalues in Step 3 of the extraction
process. We have found that the slow features extracted using this simple but compatible
version of SFA also yield RC performance gains, but this technique never outperformed
the random features, which are easier to construct.

References
1. Maass, W.; Natschläger, T.; Markram, H. Real-time computing without stable states: A new framework for neural computation

based on perturbations. Neural Comput. 2002, 14, 2531–2560. [CrossRef] [PubMed]
2. Jaeger, H.; Haas, H. Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication. Science

2004, 304, 78–80. [CrossRef]
3. Verstraeten, D.; Schrauwen, B.; d’Haene, M.; Stroobandt, D. An experimental unification of reservoir computing methods. Neural

Netw. 2007, 20, 391–403. [CrossRef] [PubMed]
4. Appeltant, L.; Soriano, M.C.; Van der Sande, G.; Danckaert, J.; Massar, S.; Dambre, J.; Schrauwen, B.; Mirasso, C.R.; Fischer, I.

Information processing using a single dynamical node as complex system. Nat. Commun. 2011, 2, 468. [CrossRef]
5. Paquot, Y.; Duport, F.; Smerieri, A.; Dambre, J.; Schrauwen, B.; Haelterman, M.; Massar, S. Optoelectronic reservoir computing.

Sci. Rep. 2012, 2, 287. [CrossRef] [PubMed]
6. Larger, L.; Soriano, M.C.; Brunner, D.; Appeltant, L.; Gutiérrez, J.M.; Pesquera, L.; Mirasso, C.R.; Fischer, I. Photonic information

processing beyond Turing: an optoelectronic implementation of reservoir computing. Opt. Express 2012, 20, 3241–3249. [CrossRef]
[PubMed]

7. Duport, F.; Schneider, B.; Smerieri, A.; Haelterman, M.; Massar, S. All-optical reservoir computing. Opt. Express 2012,
20, 22783–22795. [CrossRef] [PubMed]

8. Brunner, D.; Soriano, M.C.; Mirasso, C.R.; Fischer, I. Parallel photonic information processing at gigabyte per second data rates
using transient states. Nat. Commun. 2013, 4, 1364. [CrossRef] [PubMed]

9. Vinckier, Q.; Duport, F.; Smerieri, A.; Vandoorne, K.; Bienstman, P.; Haelterman, M.; Massar, S. High-performance photonic
reservoir computer based on a coherently driven passive cavity. Optica 2015, 2, 438–446. [CrossRef]

10. Duport, F.; Smerieri, A.; Akrout, A.; Haelterman, M.; Massar, S. Fully analogue photonic reservoir computer. Sci. Rep. 2016,
6, 22381. [CrossRef]

http://doi.org/10.1162/089976602760407955
http://www.ncbi.nlm.nih.gov/pubmed/12433288
http://dx.doi.org/10.1126/science.1091277
http://dx.doi.org/10.1016/j.neunet.2007.04.003
http://www.ncbi.nlm.nih.gov/pubmed/17517492
http://dx.doi.org/10.1038/ncomms1476
http://dx.doi.org/10.1038/srep00287
http://www.ncbi.nlm.nih.gov/pubmed/22371825
http://dx.doi.org/10.1364/OE.20.003241
http://www.ncbi.nlm.nih.gov/pubmed/22330562
http://dx.doi.org/10.1364/OE.20.022783
http://www.ncbi.nlm.nih.gov/pubmed/23037429
http://dx.doi.org/10.1038/ncomms2368
http://www.ncbi.nlm.nih.gov/pubmed/23322052
http://dx.doi.org/10.1364/OPTICA.2.000438
http://dx.doi.org/10.1038/srep22381

Entropy 2021, 23, 955 19 of 19

11. Larger, L.; Baylón-Fuentes, A.; Martinenghi, R.; Udaltsov, V.S.; Chembo, Y.K.; Jacquot, M. High-speed photonic reservoir
computing using a time-delay-based architecture: Million words per second classification. Phys. Rev. X 2017, 7, 011015.
[CrossRef]

12. Pauwels, J.; Verschaffelt, G.; Massar, S.; Van der Sande, G. Distributed Kerr Non-linearity in a Coherent All-Optical Fiber-Ring
Reservoir Computer. Front. Phys. 2019, 7, 138. [CrossRef]

13. Vandoorne, K.; Dambre, J.; Verstraeten, D.; Schrauwen, B.; Bienstman, P. Parallel reservoir computing using optical amplifiers.
IEEE Trans. Neural Netw. 2011, 22, 1469–1481. [CrossRef]

14. Vandoorne, K.; Mechet, P.; Van Vaerenbergh, T.; Fiers, M.; Morthier, G.; Verstraeten, D.; Schrauwen, B.; Dambre, J.; Bienstman,
P. Experimental demonstration of reservoir computing on a silicon photonics chip. Nat. Commun. 2014, 5, 3541. [CrossRef]
[PubMed]

15. Bueno, J.; Maktoobi, S.; Froehly, L.; Fischer, I.; Jacquot, M.; Larger, L.; Brunner, D. Reinforcement learning in a large-scale photonic
recurrent neural network. Optica 2018, 5, 756–760. [CrossRef]

16. Katumba, A.; Heyvaert, J.; Schneider, B.; Uvin, S.; Dambre, J.; Bienstman, P. Low-loss photonic reservoir computing with
multimode photonic integrated circuits. Sci. Rep. 2018, 8, 2653. [CrossRef] [PubMed]

17. Harkhoe, K.; Van der Sande, G. Dual-mode semiconductor lasers in reservoir computing. In Neuro-Inspired Photonic Computing;
International Society for Optics and Photonics: Bellingham, WA, USA, 2018; Volume 10689, p. 106890B.

18. Mesaritakis, C.; Syvridis, D. Reservoir computing based on transverse modes in a single optical waveguide. Opt. Lett. 2019,
44, 1218–1221. [CrossRef]

19. Sunada, S.; Kanno, K.; Uchida, A. Using multidimensional speckle dynamics for high-speed, large-scale, parallel photonic
computing. Opt. Express 2020, 28, 30349–30361. [CrossRef]

20. Paudel, U.; Luengo-Kovac, M.; Shaw, T.J.; Valley, G.C. Optical reservoir computer using speckle in a multimode waveguide.
In AI and Optical Data Sciences; Jalali, B., Kitayama, K., Eds.; International Society for Optics and Photonics, SPIE: Bellingham, WA,
USA, 2020; Volume 11299, pp. 19–24. [CrossRef]

21. Rafayelyan, M.; Dong, J.; Tan, Y.; Krzakala, F.; Gigan, S. Large-scale optical reservoir computing for spatiotemporal chaotic
systems prediction. Phys. Rev. X 2020, 10, 041037.

22. Van der Sande, G.; Brunner, D.; Soriano, M.C. Advances in photonic reservoir computing. Nanophotonics 2017, 6, 561–576.
[CrossRef]

23. Wyffels, F.; Schrauwen, B.; Stroobandt, D. Stable output feedback in reservoir computing using ridge regression. In International
Conference on Artificial Neural Networks; Springer: Berlin/Heidelberg, Germany, 2008; pp. 808–817.

24. Soriano, M.C.; Ortín, S.; Brunner, D.; Larger, L.; Mirasso, C.R.; Fischer, I.; Pesquera, L. Optoelectronic reservoir computing:
Tackling noise-induced performance degradation. Opt. Express 2013, 21, 12–20. [CrossRef] [PubMed]

25. Alata, R.; Pauwels, J.; Haelterman, M.; Massar, S. Phase noise robustness of a coherent spatially parallel optical reservoir. IEEE J.
Sel. Top. Quantum Electron. 2019, 26, 1–10. [CrossRef]

26. Wiskott, L.; Sejnowski, T.J. Slow feature analysis: Unsupervised learning of invariances. Neural Comput. 2002, 14, 715–770.
[CrossRef] [PubMed]

27. Jaeger, H. Short Term Memory in Echo State Networks; GMD-Forschungszentrum Informationstechnik: 2001; Volume 5. Available
online: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.720.3974 (accessed on 15 July 2021).

28. Dambre, J.; Verstraeten, D.; Schrauwen, B.; Massar, S. Information processing capacity of dynamical systems. Sci. Rep. 2012,
2, 514. [CrossRef] [PubMed]

http://dx.doi.org/10.1103/PhysRevX.7.011015
http://dx.doi.org/10.3389/fphy.2019.00138
http://dx.doi.org/10.1109/TNN.2011.2161771
http://dx.doi.org/10.1038/ncomms4541
http://www.ncbi.nlm.nih.gov/pubmed/24662967
http://dx.doi.org/10.1364/OPTICA.5.000756
http://dx.doi.org/10.1038/s41598-018-21011-x
http://www.ncbi.nlm.nih.gov/pubmed/29422504
http://dx.doi.org/10.1364/OL.44.001218
http://dx.doi.org/10.1364/OE.399495
http://dx.doi.org/10.1117/12.2543220
http://dx.doi.org/10.1515/nanoph-2016-0132
http://dx.doi.org/10.1364/OE.21.000012
http://www.ncbi.nlm.nih.gov/pubmed/23388891
http://dx.doi.org/10.1109/JSTQE.2019.2929181
http://dx.doi.org/10.1162/089976602317318938
http://www.ncbi.nlm.nih.gov/pubmed/11936959
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.720.3974
http://dx.doi.org/10.1038/srep00514
http://www.ncbi.nlm.nih.gov/pubmed/22816038

	Introduction
	Materials and Methods
	Reservoir Computing with Output Layer Expansion
	Output Expansion with First and Second Degree Polynomials
	Slow Noise and Feature Dependent Weights
	Setup

	Results
	Ability of Random Features to Capture Parameter Variations
	Memory Capacity
	Nonlinear Channel Equalization Task

	Conclusions
	Analysis of Phase-Drift in Simple Delay-Based Reservoir Computer
	Construction of Slow Features
	References

