
1 3

Curr Genet (2016) 62:137–141
DOI 10.1007/s00294-015-0527-5

REVIEW

Emerging interactions between matrix components during biofilm 
development

David E. Payne1 · Blaise R. Boles1 

Received: 9 October 2015 / Revised: 13 October 2015 / Accepted: 14 October 2015 / Published online: 29 October 2015 
© The Author(s) 2015. This article is published with open access at Springerlink.com

diverse disciplines. It is clearly evident that many patho-
genic bacteria use the biofilm growth mode to persist in the 
host and avoid clearance by the immune system and anti-
microbial chemotherapies leading to the development of 
persistent infections (Costerton et al. 1999; Mathe and Van 
Dijck 2013; Parsek and Singh 2003). The increasing use of 
implant materials in healthcare settings further exacerbates 
this problem as foreign bodies are known to promote the 
initiation of biofilms (Thurlow et al. 2011; Zimmerli et al. 
2004).

A major area of interest in biofilm research is the com-
position of the substances holding these communities of 
cells together. This polymeric material is usually referred 
to as the “biofilm matrix.” The exact composition, poten-
tial interactions, and the role of the different matrix com-
ponents are not fully understood. There is considerable 
interest in gaining an improved understanding of the bio-
film matrix because bacteria with matrix defects are often 
unable to form a biofilm and treatments that breakdown the 
matrix transition cells to an antimicrobial susceptible state 
(Boles and Horswill 2008, 2011; Lauderdale et  al. 2010; 
Payne et  al. 2013). The exact composition of the biofilm 
matrix can vary greatly between different bacterial species, 
strains, and growth conditions, therefore, it should be noted 
that not all biofilms are equivalent and variation has rou-
tinely been observed between strains of the same species.

In the case of Staphylococcus species, including S. 
aureus, the primary matrix components consist of poly-
saccharides (Cramton et  al. 1999), proteins (Beenken 
et  al. 2010; Cramton et  al. 1999; Lauderdale et  al. 2010; 
Marti et al. 2010; O’Neill et al. 2008; Tsang et al. 2008), 
and extracellular DNA (eDNA) (Izano et al. 2008; Kaplan 
et  al. 2012) (Fig.  1). Though not commonly appreciated 
as matrix components, extracellular teichoic acids have 
been purified from the matrix material of Staphylococcal 
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Biofilms and their matrix

A common strategy employed by bacteria to survive in var-
ied environmental conditions is to develop into an encased 
community of cells called biofilm. The fact that these mul-
ticellular communities can grow on surfaces with diverse 
chemistries, persist in hostile environments, and resist 
clearance by strategies that typically eradicate planktonic 
bacteria is a topic of much interest to researchers from 
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biofilms (Chaignon et  al. 2007) and peptidoglycan has 
been proposed to play an unidentified role in the matrix 
based on observations that exposure to lysostaphin, an 
enzyme capable of degrading the pentaglycine bridge in 
the staphylococcal cell wall, can successfully detach bio-
films (Kokai-Kun et al. 2009). In addition, host factors are 
likely to be incorporated into the biofilm matrix but this is 
largely unstudied and likely varies depending upon infec-
tion site. Below, we attempt to summarize much of what is 
known about these matrix components and their potential 
interactions.

Polysaccharide

Many Staphylococcal species produce a poly-N-acetyl glu-
cosamine (PNAG) polysaccharide, which is also referred 
to as polysaccharide intercellular adhesin (PIA). PNAG is 
synthesized by enzymes encoded by the ica operon and 
deposited on the cell wall surface (Cramton et  al. 1999). 
Many environmental growth conditions likely contribute 
to the role of PNAG in the Staphylococcus biofilm matrix. 
These include anaerobic growth, high temperatures, osmo-
larity, and other environmental stresses including the 
presence of sub-inhibitory concentrations of antibiotics 
(O’Gara 2007). In some animal models of Staphylococcal 
biofilm infections, PNAG has been shown to play a crucial 
role in establishing a biofilm and maintaining a persistent 

infection (Rupp et al. 1999a, b, 2001). Because of this role 
in pathogenesis, efforts have been made to utilize PNAG as 
a vaccine candidate and have been met with mixed results. 
More recent evidence suggests that while some Staphylo-
coccal strains rely on polysaccharides for robust biofilm 
formation, others form polysaccharide-independent bio-
films (Boles et  al. 2010; Izano et  al. 2008; O’Gara 2007; 
Rohde et al. 2007). In cases of polysaccharide-independent 
biofilm formation, proteins and eDNA most likely substi-
tute for PNAG as a structural matrix component.

Proteins

Proteins are another major biofilm matrix component, as 
evidenced by the susceptibility of staphylococcal biofilms 
to proteases (Beenken et  al. 2010; Boles and Horswill 
2008; Marti et al. 2010). Many cell–cell and cell-host tissue 
contacts within a biofilm are mediated by surface proteins. 
Some surface proteins, such as the fibronectin binding pro-
teins (O’Neill et al. 2008), protein A (Merino et al. 2009), 
SasG (Conrady et al. 2008, Corrigan et al. 2007), and bio-
film associated protein (BAP) (Trotonda et al. 2005), have 
been defined as being important in cell–cell and cell–sur-
face interactions occurring during biofilm development. 
It has also been suggested that cytoplasmic proteins play 
a moonlighting role in the matrix where they associate 
with cells upon a drop in pH (Ebner et al. 2015; Foulston 
et  al. 2014). In addition, amyloids have recently emerged 
as an important proteinaceous component of many micro-
bial biofilms, including S. aureus. First identified in human 
neurodegenerative diseases, amyloids are insoluble fibrous 
aggregates of proteins that contain parallel beta sheets. 
The amyloid fibers produced by S. aureus are composed 
of small peptides called phenol-soluble modulins (PSMs) 
(Schwartz et  al. 2010, 2012, 2014). Amyloids are notori-
ous for being relatively resistant to protease digestion and 
insoluble in detergents. Therefore, in the biofilm environ-
ment, these amyloids offer resistance to proteases and sur-
factants capable of degrading biofilms.

eDNA

Extracellular genomic DNA (eDNA) is thought to be an 
important structural component in many bacterial biofilms 
including those formed by S. aureus (Okshevsky and Meyer 
2014, 2015; Vorkapic et al. 2015). The addition of DNase 
to growing or mature biofilms of various bacterial species 
results in inhibition of biofilm formation or disruption of 
the established biofilms. However, DNase-mediated dis-
ruption of established biofilms is dependent upon biofilm 
age with “young” biofilms being more sensitive than “old” 

Fig. 1   Confocal micrograph of a Staphylococcus aureus biofilm 
growing on a catheter. The biofilm was stained with two DNA strains, 
syto-9 (green) and draq-5 (blue). Green cocci are S. aureus cells 
encased in a blue matrix that consists part of eDNA
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biofilms. In S. aureus, autolytic activity from a subpopu-
lation of cells results in the release of genomic DNA that 
contributes to cell adhesion during biofilm maturation (Qin 
et al. 2007). The chemical nature of the long charged DNA 
molecule is thought to modulate the cell surface properties 
and to promote cell-to-cell and cell-to-surface adhesion and 
to serve a structural role in the S. aureus biofilm matrix 
(Mann et al. 2009; Rice et al. 2007).

Matrix interactions

Several recent studies have emerged, suggesting that matrix 
components are capable of interacting and influencing 
biofilm development. Structural analysis revealed that the 
secreted S. aureus protein beta toxin has a three-dimen-
sional structure that resembles nuclease. Although it lacks 
nuclease activity, it is capable of binding to eDNA, and oli-
gomerizing to form higher ordered states. The beta toxin–
eDNA interconnection acts as a skeletal framework of the 
biofilm that is critical for the biofilm matrix during infec-
tion (Huseby et al. 2010). The fact that many clinical iso-
lates possess a phage interrupting the beta toxin gene has 
lead to the thought that this protein is not relevant to infec-
tion in those strains and there may be other eDNA-binding 
proteins that await identification. However, this notion has 
recently been challenged by work showing phage excision 
can occur during infection resulting in active beta toxin 
production (Salgado-Pabon et al. 2014).

Cytoplasmic proteins presumably released via autolysis 
have also recently been shown to interact with eDNA in a 
pH-dependent manner and this inaction offers protection 
from matrix degrading enzymes (Dengler et al. 2015). This 
work suggests that rather than dedicated proteins being 
made to contribute to the biofilm matrix, cytoplasmic pro-
teins may “moonlight” in the matrix environment offering 
interactions between eDNA and cell wall material. Indeed, 
in gram-negative pathogens such as Haemophilus influenza 
and Burkholderia cenocepacia, proteins such as the inte-
gration host factor (IHF) protein have been shown to inter-
act with eDNA and stabilize biofilms. Attempts to remove 
these proteins from biofilms using antisera that block 
protein–DNA interactions have shown promise at reduc-
ing biofilm biomass in  vitro and treating chronic infec-
tions in animal models (Goodman et al. 2011; Jurcisek and 
Bakaletz 2007; Novotny et al. 2013). Considering that IHF 
is a member of the DNABII protein family that includes 
nucleoid-associated proteins like HU, which are present in 
both gram-negative and gram-positive pathogens, this strat-
egy may hold promise at reducing biofilms against a variety 
of bacterial species. Recent work in S. aureus has also sug-
gested that proteins typically thought of as being cytoplas-
mic could have a role in the biofilm matrix (Dengler et al. 

2015; Foulston et al. 2014). The authors found the associa-
tion of eDNA with the biofilm matrix was dependent on 
matrix proteins, some of which seem to have a moonlight-
ing role in the matrix, as they are cytoplasmic proteins only 
released from the cell upon autolysis (Dengler et al. 2015). 
The addition of eDNA to DNase-treated cells could rescue 
biofilm formation/clumping suggesting a role for eDNA in 
facilitating cell-to-cell interactions.

Amyloids have also been shown to interact with other 
matrix components in the biofilm matrixes of S. aureus 
and E. coli (DePas and Chapman 2012). In the case of S. 
aureus, it was found that the presence of eDNA promotes 
the polymerization of amyloidogenic peptides (phenol 
-soluble modulins (PSM)) at concentrations that PSMs 
alone do not readily polymerize (Schwartz et al. 2015). It 
is suggested that this is a result of DNA attracting the posi-
tively charged PSMs and raising the local peptide concen-
tration, therefore resulting in polymerization. In E. coli the 
functional amyloid component, CsgA has been shown to 
bind to DNA, promoting curli amyloid assembly (Fernan-
dez-Tresguerres et al. 2010) and the resulting DNA/amy-
loid complex acts to stimulate autoimmunity (Gallo et al. 
2015).

Interactions between eDNA and polysaccharides have 
also been observed in biofilms. In P. aeruginosa, two main 
biofilm matrix components (eDNA and the polysaccharide 
Psl) cooperate by physically interacting in a biofilm to form 
the web of Psl–eDNA fibers, which functions as a skeleton 
to allow bacteria to adhere and grow (Wang et al. 2015). Psl 
can interact not only with DNA of P. aeruginosa, but also 
the genomic DNA from human neutrophils and S. aureus, 
implying that P. aeruginosa has the ability to use DNA of 
other organisms to form its own communities.

Outlook

Despite the importance of microbial biofilms to human 
health and industrial processes interactions between bio-
film matrix components, remain poorly defined. Emerg-
ing work discussed above is demonstrating several matrix 
interactions (eDNA–protein, eDNA–amyloid and eDNA–
polysaccharide) and there is little doubt that more inter-
actions between matrix components and the mechanism 
underlying these interactions await to be elucidated. Inter-
actions between matrix components within the biofilm are 
likely responsible for creating an adaptable structure dur-
ing adherence, maturation, and dispersal. These findings 
underscore the notion that the formation of biofilm matrix 
is a complex, dynamic process with contribution of mul-
tiple factors, including bacterial cell death, the release of 
eDNA, the secretion of protein and the interaction between 
the matrix components.
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In future work, it will be of interest to understand how 
host factors may be incorporated into bacterial biofilm 
matrixes and how these potential interactions may influ-
ence biofilm development. Considering that the negatively 
charged polymer DNA is central to most known matrix 
interactions, it is tempting to speculate that negatively 
charged host polymers such as hyaluronic acid and heparin 
could play a similar role. Biofilm matrix interactions may 
also provide novel targets for disrupting biofilm formation 
and eradicating established biofilms. Considering the dire 
health consequences many biofilm infections impose, this 
should be an area of emerging interest.
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