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Abstract

Background: Undirected graphical models or Markov random fields have been a popular class of models for
representing conditional dependence relationships between nodes. In particular, Markov networks help us to
understand complex interactions between genes in biological processes of a cell. Local Poisson models seem to be
promising in modeling positive as well as negative dependencies for count data. Furthermore, when zero counts are
more frequent than are expected, excess zeros should be considered in the model.

Methods: We present a penalized Poisson graphical model for zero inflated count data and derive an expectation-
maximization (EM) algorithm built on coordinate descent. Our method is shown to be effective through simulated
and real data analysis.

Results: Results from the simulated data indicate that our method outperforms the local Poisson graphical model in
the presence of excess zeros. In an application to a RNA sequencing data, we also investigate the gender effect by
comparing the estimated networks according to different genders. Our method may help us in identifying biological
pathways linked to sex hormone regulation and thus understanding underlyingmechanisms of the gender differences.

Conclusions: We have presented a penalized version of zero inflated spatial Poisson regression and derive an
efficient EM algorithm built on coordinate descent. We discuss possible improvements of our method as well as
potential research directions associated with our findings from the RNA sequencing data.
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Background
Graphical models help us to explore relationships between
nodes in graphs. Undirected graphical models or Markov
random fields have been a popular class of models for rep-
resenting conditional dependence relationships between
nodes. Examples include Gaussian graphical models for
continuous data, Ising model for binary data, and multi-
nomial graphical models. These Markov networks help us
to understand complex interactions between genes in bio-
logical processes of a cell and have been well studied in
bioinformatics. Examples of Markov networks in learning
the network structure from microarray and next genera-
tion sequencing data include [1–4]. For more details on
Markov network inference, see those and the references
therein.
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The main focus of this study is to infer the network
structure for a count data. The auto-Poisson model in [5]
is a natural extension of univariate Poisson distribution.
However it can model only negative dependencies, so that
the conditional distributions define a unique joint distri-
bution consistently. Yang et al. [6] propose variants of the
auto-Poissonmodel such as truncated, quadratic, and sub-
linear Poisson graphical models(PGM). However none of
them provide a satisfactory answer to the question of how
to specify a consistent joint graphical model for count data
capturing both positive and negative dependencies. Allen
and Liu [4] consider a local PGM (LPGM). The LPGM
does not have a consistent joint graphical model, but it
has the local Markov property and thus the zero coeffi-
cient of an edge weight between two nodes implies the
conditional independence of the two nodes given the oth-
ers. Žitnik and Zupan [7] consider a latent factor Poisson
model and [8] propose to learn conditional dependence
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structures for binary and Poisson data via marginal loss
functions. Also a semiparametric Guassian copula, called
the nonparanormal graphical model (NPGM), has been
proposed [9].
In practice, zero counts are sometimes more frequent

than are expected under a univariate Poisson distribution.
In such cases, a zero-inflated Poisson (ZIP) distribution is
often adopted. Applications of ZIP models include mod-
eling of defects in quality control [10] and alcoholism
and substance abuse in medicine [11]. Extensions of a
ZIP model in different frameworks are well-studied in
the literature. Dobbie and Welsh [12] extend the two
component approach in [13] for serially correlated count
data exhibiting extra zeros. Monod [14] develops a zero-
inflated spatial Poisson (ZISP) model. Buu et al. [11]
study variable selection methods such as LASSO and
one-step SCAD for ZIP regression models. For compu-
tation, a local linear approximation (LLA) is adopted.
The LLA algorithm fails to converge particularly with
small sample sizes because it requires fitting unpenalized
ZIP regression models. Wang et al. [15] propose an expec-
tation maximization (EM) algorithm [16] for a penalized
ZIP regression model built on coordinate descent algo-
rithms. The EM algorithm seems to have some advantages
over the LLA algorithm in numerical convergence and
tuning.
In this paper, we are interested in the construction of

graphical models for count data, particularly, with exces-
sive zeros. To this end, we propose a penalized version
the ZISP model in [14] called zero inflated local Poisson
graphical model (ZILPGM) and derive an EM algorithm
built on coordinate descent as in [15]. We show the effec-
tiveness of our method on simulated and real data. In
an application to a RNA sequencing data, we investigate
the gender effect by comparing the estimated networks
according to different genders. It has been well noted that
gender is one of the major contributors in the differen-
tiation of gene expression profiles [17, 18] and various
sexually dimorphic phenotypes, most of which result from
hormonal differences [19]. It was reported that transcrip-
tome study could be predicted to represent a different
promising approach for the identification of biological
pathways linked to sex hormone regulation and the analy-
sis of associated gene regulatory networks [20]. However,
the elucidation of underlying mechanisms of the gen-
der differences is still an area of interest and intense
investigation.
The paper is organized as follows. In “Methods” section,

we propose a new graph learning method based on ZISP
and provide an efficient EM type numerical algorithm.
In “Results” section, we compare performances of our
method with LPGM on simulated and real data sets.
Some discussions and concluding remarks are given in
“Conclusions” section.

Methods
In this section, we present our graph learning method
based on a penalization of the ZISP in [14] and derive an
efficient EM algorithm for its computation.

Zero inflated local Poisson graphical model
Let N denote the number of observations and p denote
the number of variables or nodes. Denote G = (V ,E),
where V = {1, . . . , p} is the set of vertices or nodes and
E is the set of edges. We use uppercase letters such as
X and Z when we refer to random variables. Observa-
tions are written in lowercase. For example, xi denote ith
observation of X. Vectors and matrices are represented
by boldface and blackboard boldface letters, respectively.
Define X = (xij)N×p, where xij is generated from two
latent components with zero and Poisson states. Let zij
be a latent variable such that zij = 1 if xij is from zero
state and zij = 0 if xij is from Poisson state. zij follows a
Bernoulli distribution with πj. Let I(·) denotes an indica-
tor function. Then the ZISP model in [14] is defined by

P
(
Xj = xj|Xk =xk , k �= j

)= πjI(xj = 0)+(
1 − πj

) e−μjμ
xj
j

xj!
,

(1)

where μj = exp
(
βj + ∑

k �=j βjkxk
)
, βj is an intercept

adjusting for Xj, and βjk is the parameter accounting for
the conditional relation between Xj and Xk .
Due to the zero inflation term in the conditional prob-

ability, the situation becomes more complicated in our
case than in LPGM. Because the important part is the
pairwise interaction term in the pairwise-only depen-
dency models, the situation is basically similar. In order
to have a valid joint distribution, the coefficient for the
interaction term βjk should be non-positive. As in the
LPGM, we do not solve the issue of negative parameters
in the Poisson graphical model. Note that any existing
approaches (e.g. in [6]) do not succeed in giving a satis-
factory answer to the consistency issue. Rather, we focus
not on the consistency issue but on the practical issue
of estimating positive as well as negative dependencies as
in LPGM.
In order to learn graph structures, we consider the min-

imization of the penalized pseudo log-likelihood of (1) in
the general weighted LASSO form:

− 1
N

N∑

i=1

p∑

j=1
log

(

πjI(xij = 0) + (
1 − πj

) e−μijμ
xij
ij

xij!

)

+ λ

p∑

j=1

∑

k �=j
wjk|βjk|, (2)
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where μij = exp
(
βj + ∑

k �=j βjkxik
)
, λ ≥ 0 is the penalty

parameter, and wjk ≥ 0 is an appropriate weight. As in
[4], we can select the tuning parameter using the sta-
bility selection criterion in [21]. More specifically, we
select the optimal λ is selected from 30 equal-spaced
grid points in log scale on [λmax, λmin], where λmax =
maxj∈{1,··· ,p} maxk �=j

1
N

∑N
i=1 xikxij and λmin = λmax ×

10−4. For each j, we fit poisson regression using glmnet.
Then wjk = 1 for covariates with nonzero coefficients.
Otherwise,wjk is set to be sufficiently large value, e.g., 105.
Note that the purpose of the penalization is to select spa-
tial neighbors. If βjk = 0, then Xj and Xk is declared to be
conditionally independent of the other variables.
The penalized pseudo log-likelihood in (2) is separable

with respect to the coordinate index. Hence minimizing
(2) is equivalent to separately minimizing the p coordinate
functions:

− 1
N

N∑

i=1
log

(

πjI(xij = 0) + (
1 − πj

) e−μijμ
xij
ij

xij!

)

+ λ
∑

k �=j
wjk|βjk| , j = 1, . . . , p. (3)

Details on the algorithm is discussed later in this
section. Once we solve (3), we can estimate the graph
structure from the estimated set of edges: Ê = {(j, k) :
β̂jk �= 0 or β̂kj �= 0, j �= k}. We devise an EM algorithm as
in [15] to minimize (3).

Computational algorithm
Let Oj = {i : xij = 0} and Pj = {i : xij �= 0}. The negative
log-likelihood function in (2) is the sum of

lj = −
N∑

i=1
log

(

πjI(xij = 0) + (
1 − πj

) e−μijμ
xij
ij

xij!

)

= −
∑

i∈Oj

log
(

πj +
(
1 − πj

)
e−μij

)

−
∑

i∈Pj

log
(

(
1 − πj

) e−μijμ
xij
ij

xij!

)

= −
∑

i∈Oj

log
(

πj

1 − πj
+ e−μij

)
−

N∑

i=1
log

(
1 − πj

)

+
∑

i∈Pj

(
μij − xij logμij

) +
∑

i∈Pj

log xij!

for j = 1, . . . , p. However, it is difficult to maxi-
mize this likelihood directly because the score func-
tion of − ∑

i∈Oj log
(
πj/

(
1 − πj

) + e−μij
)

cannot be
simplified [14, 22].
Instead of a direct optimization of the likelihood func-

tion, we express the likelihood function as a mixture

distribution by introducing a latent variable and derive an
EM algorithm.

Define β−j = (
β0, (βk)k �=j

))T
and xi,−j =

(1, (xik)k �=j))
T . The log-likelihood function with respect

to complete data can be written as

lcj = −
N∑

i=1
zij logπj −

N∑

i=1

(
1 − zij

)

×
(
xijxTi,−jβ−j − exp

(
xTi,−jβ−j

)
− log xij!

)

≡ lc1j + lc2j .

The decomposed likelihood function in the above can
be easily maximized via an EM algorithm alternating
between the expectation of the complete data likelihood
over the latent variable zij and the maximization of the
likelihood given zij’s.
Define the responsibility of zero state for jth variable on

ith observation at mth step as z(m)
ij = E

(
zij|xij,β(m)

−j

)
and

the probability of zero state atmth step as

π
(m)
j = 1

n

n∑

i=1

(
I
(
xij = 0

) − I
(
xij = 0

) (
1 − z(m)

ij

))
.

Our EM algorithm alternates the following steps until
convergence.

• E-step: Estimate zij by its conditional mean z(m)
ij given

data and parameters from the previous step.

z(m)
ij =

⎧
⎨

⎩

π
(m)
j

π
(m)
j +

(
1−π

(m)
j

)
exp

(
−μ

(m)
ij

) if xij = 0,

0, if xij = 1, 2, . . .

• M-step : Estimate β
(m)
−j .

Here we set the initial values for our EM iteration as
π

(0)
j = the number of zeros of jth variable/n for j =

1, · · · , p and β
(0)
−j = 0.

Now let us discuss the estimation of β
(m)
−j in detail. For

each variable, we use the Majorize-Minimization (MM)
algorithm in [23], which extends the central idea of EM
algorithms to situations not necessarily involving missing
data nor evenmaximum likelihood estimation. A function
g(θ |θm) is said to majorize a function f (θ) at θm provided
that f (θm) = g(θm|θm) and f (θ) ≤ g(θ |θm) for θ �= θm.
The key idea is that the surrogate majorizing function
g(θ |θm) is minimized iteratively, instead of the original
objective function f (θ) with the nonquadratic log likeli-
hood and the nondifferentiable sparsity inducing penalty
[23]. The MM algorithm starts from an initial guess, θ0.
Let θm+1 denote the minimizer of the surrogate g(θ |θm).
Then the following inequalities hold:

f (θm+1) ≤ g(θm+1|θm) ≤ g(θm|θm) = f (θm).
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The above inequality can easily be shown by defi-
nition of θm+1 and the majorization conditions. The
descent property makes the MM algorithm numerically
stable [24].
The objective to maximize is lc2j = − ∑N

i=1
(
1 − zij

)
(
xijxTi,−jβ−j − exp

(
xTi,−jβ−j

)
− log xij!

)
whose first and

second derivatives with respect to β−j are

∂lc
∂β−j

= −
N∑

i=1

(
1 − zij

) (
xij − μij

)
xi,−j,

∂lc
∂β−j∂βT−j

=
N∑

i=1
(1 − zij)μijxi,−jxTi,−j.

Let X−j = (
x1,−j, . . . , xN ,−j

)T . Define b(m) =((
1 − z1j

) (
x1j − μ

(m)
1j

)
, . . . ,

(
1 − zNj

) (
xNj − μ

(m)
Nj

))
and

E(m) = XT−jdiag
((
1 − z1j

)
μ

(m)
1j , . . . ,

(
1 − zNj

)
μ

(m)
Nj

)
X−j.

If we ignore additive constants, the quadratic approxima-
tion of the objective function at β̂

(m)
−j yields

lc2j ≈ 1
2

(
β−j − β̂

(m)

−j

)T
E(m)

(
β−j − β̂

(m)

−j

)

−
(
b(m)

)T
X−j

(
β−j − β̂

(m)

−j

)

≤ σ (m)

2

(
β−j − β̂

(m)

−j

)T
XT−jX−j

(
β−j − β̂

(m)

−j

)

−
(
b(m)

)T
X−j

(
β−j − β̂

(m)

−j

)

for an appropriate σ (m). To find an appropriate
upper bound, we may set σ (m) as the maximum of(
1 − z(m)

ij

)
μ

(m)
ij for i = 1, . . . ,N . We can easily show that

σ (m)XT−jX−j − E(m)

is a positive definite matrix. The upper bound can be
expressed as

lc2j ≤ σ (m)

2
‖w(m)

−j − X−jβ−j‖22,

where w(m)
−j = X−jβ̂

(m)

−j + σ (m)−1b(m). The majorized
problem is written as

min
β−j∈Rp

⎛

⎝1
2

∥
∥
∥w(m)

−j − X−jβ−j

∥
∥
∥
2

2
+ λ

σ (m)

∑

k �=j
wjk|βk|

⎞

⎠ . (4)

Up to a constant depending not on β−j but on β̂
(m)
−j , the

function in the minimization problem (4) majorizes lc2j .
Hence we achieve the property, guaranteeing the conver-
gence of the algorithm for β

(m)
−j in M-step.

Results
In this section, we illustrate that our method is effective
through a simulation study by comparing the perfor-
mances of our method, LPGM, and NPGM on simulated
data. Then we apply our method to a RNA sequencing
data. Also we investigate the gender effect by comparing
the estimated networks according to different genders.

Simulation
To simulate data from a Poisson network with excess
zeros, we modify the data generation scheme in [4]
slightly. Let X ∈ {0, 1, · · · ,∞}N×p denote n independent
observations from a Poisson network with p nodes. The
data generation model is given as

X = YB + E,

where Y is aN×(p+pC2)matrix with Yij
iid∼ Poisson(λtrue)

and E is a N × p matrix with Eij
iid∼ Poisson(λnoise). The

coefficient matrix B encoding the true underlying graph
structure denoted by the adjacency matrix A ∈ {0, 1}p×p

is defined as

B =
[
Ip;P �

(
1ptri(A)T

)]T
,

where P is the p × pC2 pairwise permutation matrix, �
denotes the element-wise product, and tri(A) is the pC2 ×
1 vectorized upper triangular portion of the adjacency
matrix. Each of off-diagonal elements in A is randomly
generated from Bernoulli(ρ), where ρ is the sparsity
parameter for the network defined as the number of active
edges in A divided by the number of all possible edges
between the nodes. In order to make Xij’s to have excess
zeros, we multiply each of Xij by a random variate from
Bernoulli(π) for i = 1, . . . ,N and j = 1, . . . , p. As an abuse
of notation, we denote the final matrix containing zero
inflated Poisson counts as X.
The Poisson rates were set as λtrue = 1.5 and

λnoise = 0.5. And we have experimented at different levels
of N(= 50, 100, 150), p(= 10, 20, 30), π(= 0%, 10%, 20%),
and ρ(= .2, .3, .4). At each experimental condition, we
generated data according to the above scheme and com-
pared the areas under the curve (AUC) from ZILPGM,
LPGM, and NPGM. AUC can be obtained in this way. If
we regard active and in-active edges in A as positive and
negative examples in a binary classification, then we can
compute true positive rate (TPR) as the fraction of edges
found by a method that are in the true underlying network
structure A. False positive rate (FPR) can obtained analo-
gously. Receiver operating characteristic (ROC) curve and
AUC can be obtained from TPR and FPR. To assess the
variabilities, we replicated the process of generating data
and computing AUC’s 100 times. In Tables 1 and 2, aver-
age AUC’s of ZILPGM and LPGM with their standard
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Table 1 Average AUCs for ZILPGM, LPGM, and NPGM on simulated data with their standard errors in parentheses

π 0% 10% 20%

p N ρ ZILPGM LPGM NPGM ZILPGM LPGM NPGM ZILPGM LPGM NPGM

.2 .9945 .9944 .9826 .8657 .8454 .8040 .7852 .7476 .6871

(.0009) (.0009) (.0026) (.0079) (.0090) (.0095) (.0092) (.0100) (.0104)

50 .3 .8972 .8974 .8880 .7619 .7244 .6894 .6820 .6374 .5862

(.0053) (.0053) (.0061) (.0073) (.0087) (.0092) (.0085) (.0090) (.0094)

.4 .7748 .7749 .7534 .6948 .6526 .5919 .6428 .6105 .5342

(.0075) (.0076) (.0083) (.0089) (.0089) (.0092) (.0077) (.0079) (.0083)

.2 .9948 .9948 .9949 .9491 .9379 .9316 .8744 .8487 .8222

(.0013) (.0013) (.0012) (.0050) (.0056) (.0058) (.0080) (.0087) (.0093)

10 100 .3 .9342 .9341 .9284 .8337 .7759 .7341 .7575 .6864 .6283

(.0043) (.0043) (.0049) (.0055) (.0067) (.0075) (.0070) (.0084) (.0088)

.4 .8188 .8188 .8182 .7255 .6522 .6207 .6589 .5992 .5600

(.0064) (.0065) (.0067) (.0070) (.0086) (.0090) (.0093) (.0085) (.0089)

.2 .9974 .9974 .9919 .9765 .9586 .9088 .9331 .8893 .7897

(.0004) (.0004) (.0011) (.0024) (.0037) (.0059) (.0043) (.0061) (.0086)

150 .3 .9762 .9762 .9618 .9546 .9103 .8330 .9008 .8361 .7196

(.0027) (.0027) (.0036) (.0034) (.0052) (.0068) (.0047) (.0064) (.0083)

.4 .9217 .9216 .9158 .8454 .7646 .6939 .7846 .7046 .6129

(.0039) (.0039) (.0044) (.0057) (.0069) (.0077) (.0061) (.0080) (.0088)

.2 .8183 .8182 .7778 .7146 .6847 .6098 .6701 .6368 .5432

(.0042) (.0042) (.0045) (.0048) (.0052) (.0055) (.0043) (.0053) (.0054)

50 .3 .7088 .7091 .6608 .6602 .6318 .5426 .6374 .6188 .5190

(.0041) (.0041) (.0047) (.0044) (.0045) (.0047) (.0039) (.0043) (.0046)

.4 .6237 .6239 .5902 .6071 .5881 .5206 .5883 .5811 .5071

(.0040) (.0040) (.0045) (.0040) (.0038) (.0037) (.0039) (.0043) (.0045)

.2 .9530 .9527 .9191 .8511 .8048 .7091 .7824 .7297 .6052

(.0019) (.0019) (.0026) (.0037) (.0046) (.0056) (.0043) (.0052) (.0063)

20 100 .3 .8043 .8043 .7666 .7050 .6555 .5738 .6575 .6241 .5270

(.0034) (.0034) (.0038) (.0038) (.0039) (.0042) (.0041) (.0041) (.0046)

.4 .7146 .7147 .6982 .6298 .5876 .5406 .5932 .5651 .5093

(.0039) (.0039) (.0042) (.0039) (.0041) (.0042) (.0039) (.0041) (.0043)

.2 .9440 .9440 .9239 .8163 .7430 .6929 .7387 .6634 .5996

(.0019) (.0019) (.0024) (.0038) (.0047) (.0049) (.0042) (.0049) (.0055)

150 .3 .8230 .8229 .8200 .6820 .6019 .5821 .6224 .5603 .5360

(.0032) (.0032) (.0035) (.0042) (.0043) (.0045) (.0039) (.0042) (.0041)

.4 .7237 .7239 .7215 .6256 .5634 .5411 .5939 .5443 .5155

(.0039) (.0039) (.0039) (.0039) (.0039) (.0041) (.0043) (.0038) (.0039)

.2 .6931 .6932 .6494 .6389 .6198 .5385 .6124 .6067 .5123

(.0031) (.0031) (.0033) (.0032) (.0031) (.0033) (.0028) (.0028) (.0031)

50 .3 .5875 .5874 .5716 .5580 .5443 .5069 .5494 .5436 .5014

(.0029) (.0029) (.0031) (.0025) (.0027) (.0031) (.0025) (.0027) (.0028)

.4 .5623 .5624 .5420 .5578 .5467 .5013 .5537 .5517 .5009

(.0028) (.0028) (.0029) (.0025) (.0027) (.0030) (.0026) (.0028) (.0030)
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Table 1 Average AUCs for ZILPGM, LPGM, and NPGM on simulated data with their standard errors in parentheses (Continued)

π 0% 10% 20%

.2 .8050 .8051 .7651 .6949 .6447 .5675 .6506 .6214 .5295

(.0029) (.0029) (.0030) (.0029) (.0032) (.0036) (.0031) (.0032) (.0033)

30 100 .3 .7015 .7016 .6675 .6289 .5910 .5191 .6025 .5900 .5096

(.0028) (.0028) (.0030) (.0025) (.0030) (.0031) (.0027) (.0031) (.0032)

.4 .6180 .6183 .5975 .5758 .5564 .5071 .5649 .5551 .5007

(.0029) (.0029) (.0030) (.0026) (.0026) (.0027) (.0025) (.0028) (.0029)

.2 .8316 .8315 .8151 .6811 .6130 .5775 .6306 .5688 .5246

(.0026) (.0026) (.0028) (.0031) (.0033) (.0035) (.0032) (.0032) (.0033)

150 .3 .7112 .7114 .6965 .6151 .5672 .5269 .5919 .5526 .5056

(.0029) (.0028) (.0030) (.0027) (.0029) (.0031) (.0024) (.0027) (.0027)

.4 .6287 .6288 .6211 .5735 .5359 .5058 .5557 .5329 .5002

(.0026) (.0026) (.0027) (.0028) (.0027) (.0028) (.0026) (.0026) (.0026)

Sparsity means the network sparsity, i.e., the number of edges divided by the number of all possible pairs of nodes

errors in parentheses and p-value from the paired sign
rank test on AUC’s over 100 replications are reported.
Let us consider the effects of each factor with the

other factors held fixed. As ρ increased (or the network
became dense), AUC’s of all the compared methods have
decreased. Similarly, as the dimension p grew larger, their
AUCs became smaller. As the sample sizeN grows, AUC’s
tends to improve. However the tendency is sometimes
not so clear. Now consider the effect of excess zeros.
When there is no zero inflation (π = 0), AUC’s from
ZILPGM, LPGM, and NPGM were not significantly dif-
ferent. When we have zero inflations (π = 0.1, 0.2),
ZILPGM seems to significantly outperform LPGM and
NPGM. NPGM seems to be outperformed by LPGM. The
gaps between AUC’s from ZILPGM and LPGMwhen π =
0.2 was not necessarily larger than that when π = 0.1.
A potential explanation for this phenomenon follows. As
π increases, we have more zero counts in the data and
thus the estimation accuracy for themixing parameter will
improve.Meanwhile, the estimation accuracy for the Pois-
son parameters can degrade because Poisson parameters
are learned from nonzero counts. The tradeoff between
these two estimation errors may occur at a certain
level of π .

Chromosome data
To investigate the validity of the proposed method, we
applied it to the RNA sequencing data in the form of a
count matrix that contains the number of mapped reads
for 60 normal individuals in [25]. We selected 899 genes
in the sex chromosomes, i.e., X and Y, first. Each of 899
genes has many zero counts. For a gene with almost all
the counts equal to zero, its mixing parameter is estimated
as one. To reduce the computation, we have reduced the
original data to a data of dimension n = 60, p = 360 by

keeping genes with the number of non-zero counts less
than or equal to one.
Figure 1 shows the estimate for the network structure

from our method. While 49 genes are clustered together,
the other genes remain isolated. Top ranked genes are
shown in Table 3 according to their degrees. Note that
the degree of a gene is the number of edges being inci-
dent upon the gene. We further identified the function of
genes with large degree. By GO-BP annotation, NDUFA1
and NDUFB11 are involved in mitochondrial electron
transport chain (especially complex I), which affects the
capacity for the production of ATP through oxidative
phosphorylation. GO annotations related to MID1IP1
and PIM2 are protein C-terminus binding and trans-
ferase activity, respectively. Proteins with these functions
should highly interact with other proteins to control reg-
ulation process in cells. Meanwhile, genes with small
degrees, SYAP1 and P2RY10, involved in PI3K/Akt sig-
naling and G-protein coupled receptor (GPCR) activity,
respectively [26]. GPCR activate the PI3K/Akt signal-
ing pathway involved in the cellular responses including
metabolism, proliferation, apoptosis, and survival [27].
Now let us investigate the effect of gender. In order to

compare the networks for different gender groups with
27 males and 33 females, we applied our method to each
of gender groups separately. The estimated networks for
male and female groups are shown in Figs. 2 and 3. The
differentially expressed genes in each group are listed in
Table 4. Originally, a differentially expressed gene in a
treatment and control groups is a gene with mean expres-
sion levels in those groups are significantly different.
Although our method is not explicitly related to a hypoth-
esis testing for comparing mean levels, it is implicitly
related to a hypothesis testing for conditional indepen-
dence of counts between genes through a regularized
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Table 2 Comparison of ZILPGM, LPGM, and NPGM on simulated data

π 0% 10% 20%

ZILPGM ZILPGM LPGM ZILPGM ZILPGM LPGM ZILPGM ZILPGM LPGM

p N ρ vs. vs. vs. vs. vs. vs. vs. vs. vs.

LPGM NPGM NPGM LPGM NPGM NPGM LPGM NPGM NPGM

.2 0.518 0.000 0.000 0.055 0.000 0.001 0.004 0.000 0.000

50 .3 0.509 0.156 0.152 0.001 0.000 0.004 0.000 0.000 0.000

.4 0.507 0.043 0.042 0.000 0.000 0.000 0.002 0.000 0.000

.2 0.497 0.481 0.483 0.079 0.011 0.186 0.011 0.000 0.012

10 100 .3 0.499 0.306 0.308 0.000 0.000 0.000 0.000 0.000 0.000

.4 0.503 0.473 0.462 0.000 0.000 0.004 0.000 0.000 0.001

.2 0.518 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

150 .3 0.493 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

.4 0.488 0.208 0.214 0.000 0.000 0.000 0.000 0.000 0.000

.2 0.480 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

50 .3 0.517 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000

.4 0.511 0.000 0.000 0.001 0.000 0.000 0.129 0.000 0.000

.2 0.445 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

20 100 .3 0.484 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

.4 0.492 0.004 0.004 0.000 0.000 0.000 0.000 0.000 0.000

.2 0.491 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

150 .3 0.458 0.364 0.371 0.000 0.000 0.001 0.000 0.000 0.000

.4 0.505 0.401 0.383 0.000 0.000 0.000 0.000 0.000 0.000

.2 0.488 0.000 0.000 0.000 0.000 0.000 0.060 0.000 0.000

50 .3 0.488 0.000 0.000 0.000 0.000 0.000 0.099 0.000 0.000

.4 0.514 0.000 0.000 0.002 0.000 0.000 0.325 0.000 0.000

.2 0.490 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

30 100 .3 0.508 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

.4 0.538 0.000 0.000 0.000 0.000 0.000 0.005 0.000 0.000

.2 0.474 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

150 .3 0.517 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

.4 0.513 0.016 0.015 0.000 0.000 0.000 0.000 0.000 0.000

The p-value has been obtained from the sign rank test on AUC’s from ZILPGM, LPGM, and NPGM over 100 replications

graph learning method on count data. So, in this sense,
we call a gene differentially expressed in male and female
groups if it appears only one of the the estimated networks
for male or female groups. For example, ARMCX1 was
selected as a node in the network of the male group and
CLIC2 was selected in the network of the female group.
The ARMCX1 gene encodes a member of the ALEX

family of proteins and is located on the X chromosome.
It was reported that downregulated ARMCX1 transcripts
have been found to be significantly reduced prostate can-
cer and may play a role of tumor suppressor gene [28, 29].
CLIC2, a member of the glutathione S-transferase struc-
tural family and a suppressor of cardiac ryanodine recep-
tor (RyR2) Ca2+ channels located in the membrane of the

sarcoplasmic reticulum, is controlled by redox-dependent
processes and would allow to limit cellular damage in
terms of oxidative stress [30]. Above mentioned cellular
oxidant detoxification and glutathione metabolic process
could inhibit age-related deterioration, protect the human
neuronal cells, and regulate the expression of many genes
primarily involved during immune system activities and
inflammatory responses [31].
Following GO functional enrichment analysis, genes

differentially expressed in the male group included
SLC9A7, PLP2, MAGT1, COX7B, STK26, CYBB,
MMGT1, BCAP31, and SLC9A6, whereas genes differ-
entially expressed in the female group were RAB33A and
UBQLN2. The differentially expressed genes in the male
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Fig. 1 Estimated chromosome network

group are involved in the ion transport-related pathways,
whereas the differentially expressed genes in the female
group are involved in the regulation of autophagosome
assembly.
It has been implicated that ion transport pathways may

play a key role in the male reproductive potential, such
as capacitation and the acrosome reaction, which are crit-
ical steps in sperm physiology preparing for fertilization

[32]. On the other hand, it has been investigated on the
formation of an autophagosome stimulated by oxidative
or metabolic stress taking into account the sex/gender
disparities in terms of immunity and inflammation
[33–35]. Furthermore, these advantages of women in
immunity and inflammation have been well known and
these phenotypic differences in immune responses from
males result from direct genetic differences [34, 36].

Discussion
In this paper, we propose a penalized version of zero
inflated spatial Poisson regression and derive an efficient
EM algorithm built on coordinate descent. On simulated
data, our method was shown to yield competitive perfor-
mances in terms of AUC. Particularly, in the presence of
excess zeros, our method outperformed LPGM, which is a
state of art method in learning graph structures for count
data. Note that one may apply the likelihood ratio test for
non-nested hypotheses in [37] in order to test for excess
zeros on each node. Also we have applied our method
to the chromosome data to infer its network structure.
Constructing the networks for different genders, we iden-
tified the genes differentially expressed in the male and
female groups.
There are several issues we have not addressed in this

paper. First, one may study the properties our estimators.
For Guassian graphical models, asymptotic properties of
the estimators are rather well studied in the literature. For
example, [38] study asymptotic normality and optimalities
in the estimation of Gaussian graphical models. Monod

Table 3 Top ranked genes with their degrees for chromosome data

ID Gene Degree ID Gene Degree ID Gene Degree

g144 MID1IP1 44 g634 PBDC1 14 g163 OTUD5 8

g149 NDUFA1 31 g714 STS 14 g148 NSDHL 7

g580 MSN 31 g180 RAB33A 12 g292 APEX2 7

g150 NDUFB11 30 g471 HSD17B10 12 g512 MAGT1 7

g721 SYN1 29 g520 MMGT1 12 g673 RNF113A 7

g766 UBQLN2 29 g799 ZBTB33 12 g390 COX7B 6

g460 GPC4 28 g314 BEX3 11 g614 PNPLA4 6

g179 PIM2 22 g451 GLUD2 11 g693 SLC10A3 6

g677 SEPT6 22 g472 HPRT1 11 g87 GPKOW 5

g853 RPS4Y1 22 g642 PGRMC1 11 g407 EBP 5

g196 ARHGEF6 20 g654 PLP2 11 g468 HCCS 5

g241 TSR2 20 g701 SLC9A6 11 g658 P2RY10 5

g28 CXCR3 17 g205 SASH3 10 g139 MAGEH1 4

g207 SH3BGRL 17 g53 ELK1 9 g21 BCAP31 3

g351 XCorf21 17 g105 LAGE3 9 g720 SYAP1 3

g185 RAB9A 16 g315 BEX4 9

g338 CHST7 14 g54 ERCC6L 8
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Fig. 2 Estimated chromosome network for male group

[14] provides sufficient conditions for the consistency of
the MLE for ZISP model and discusses some properties
such as asymptotic normality and efficiency of the MLE.
Because our model is based on a penalization of ZISP
model, the results in [14] will provide a starting point for
studying properties of the estimators. Particularly, in our
case, the properties of the estimators for the incidence
matrix rather than the coefficients are of interest. Second,
our method can be applied to construct biological net-
works as well as other networks for count data with excess

Fig. 3 Estimated chromosome network for female group

Table 4 Genes differential expressed in male and female groups

Only male Only female

g295 (ARMCX1) g346 (CLIC2)

g448 (GRPR) g491 (KLHL34)

g893 (TMSB4Y)

zeros. Examples include user-ratings, spatial incidence of
a disease or crime, word-document counts, and others.
Third, one may also extend our model to Poisson graphi-
cal models with multiple-inflations as in [39]. Still another
direction is to generalize our model to other distributions
such as negative binomial and gamma distributions.

Conclusions
In the present study, expression of ARMCX1 and CLIC2
turned out to be different according to gender. Very lit-
tle is known about the functional properties of these two
genes, this could make ARMCX1 and CLIC2 the possible
candidates of medical relevance, such as prostate can-
cer in male [28, 29] and oxidative stress-related diseases
for female [40]. Therefore, further evidences seem to be
necessary for identifying gene expression patterns and val-
idating its diagnostic potential that differentiated patients
with relevant diseases from healthy controls in each sex
in the population-based cohorts and, afterwards, it will be
translated to clinical practice with its diagnostic impact.
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