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Impairment in spatial navigation (SN) and structural network topology is not limited to
patients with Alzheimer’s disease (AD) dementia and can be detected earlier in patients
with mild cognitive impairment (MCI). We recruited 32 MCI patients (65.91± 11.33 years
old) and 28 normal cognition patients (NC; 69.68 ± 10.79 years old), all of whom
underwent a computer-based battery of SN tests evaluating egocentric, allocentric,
and mixed SN strategies and diffusion-weighted and T1-weighted Magnetic Resonance
Imaging (MRI). To evaluate the topological features of the structural connectivity network,
we calculated its measures such as the global efficiency, local efficiency, clustering
coefficient, and shortest path length with GRETNA. We determined the correlation
between SN accuracy and network topological properties. Compared to NC, MCI
subjects demonstrated a lower egocentric navigation accuracy. Compared with NC,
MCI subjects showed significantly decreased clustering coefficients in the left middle
frontal gyrus, right rectus, right superior parietal gyrus, and right inferior parietal
gyrus and decreased shortest path length in the left paracentral lobule. We observed
significant positive correlations of the shortest path length in the left paracentral lobule
with both the mixed allocentric–egocentric and the allocentric accuracy measured by the
average total errors. A decreased clustering coefficient in the right inferior parietal gyrus
was associated with a larger allocentric navigation error. White matter hyperintensities
(WMH) did not affect the correlation between network properties and SN accuracy.
This study demonstrated that structural connectivity network abnormalities, especially
in the frontal and parietal gyri, are associated with a lower SN accuracy, independently
of WMH, providing a new insight into the brain mechanisms associated with SN
impairment in MCI.
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INTRODUCTION

There is growing evidence that the human brain is a large-
scale complex network (Seeley et al., 2009; Betzel et al., 2012).
A network is represented as nodes that are connected by edges
in the graph theory. A node is a brain region, and an edge is
constructed by anatomical tracts or functional correlations. The
structural network topological properties include the network
efficiency properties (local efficiency and global efficiency),
clustering coefficient (Cp), local shortest path length (Lp), and the
node degree and betweenness centrality for the node properties.
The global efficiency of a network (Eg) is measured by how
information is exchanged over the network, meaning that how
efficient the communication is between one brain region to
another, and the local efficiency (Eloc) reflects the average
efficiency of each local cluster of the network. Cp reflects that
regions that are connected to the same region tend to be
also connected to each other. Lp describes how many steps is
needed for one brain region to be connected to another. The
detailed definition of these properties coincided with several
previous studies (Watts and Strogatz, 1998; Latora and Marchiori,
2001). The white matter structural networks in the healthy
human brain usually exhibit a small-world character, which
can optimally balance information segregation and integration,
resulting in efficient organization that not only reduces the cost
of maintaining many connections but also allows for efficient
information movement (Gong et al., 2009). In contrast, patients
with Alzheimer’s disease (AD) dementia and mild cognitive
impairment (MCI) showed abnormal properties of cortical
networks and loss of small-world characteristics in previous
studies that reported either local or global structural connectivity
disruptions in these patients (Shu et al., 2012).

Spatial navigation (SN) is a complex domain that refers to the
process of determining and maintaining a trajectory from one
place to another (Lithfous et al., 2013). Specifically, there are two
basic subtypes of SN: egocentric navigation (body-centered) and
allocentric navigation (world-centered) (Nedelska et al., 2012).
Impairment in both subtypes of SN is frequently reported in both
AD dementia and MCI patients. Previous studies have indicated
that these SN impairments are related to the degeneration in
several brain regions, such as the hippocampus, caudate nucleus,
and medial temporal lobe (Wegman et al., 2014). However, given
the complexity of the human brain SN system, the structural
connectivity networks that integrate these regions may also play
critical roles in the SN process, and it would be beneficial
to investigate their possible impairment in AD dementia and
MCI. However, to the best of our knowledge, few studies
have investigated the influence of structural network topological
properties on SN.

In this study, we aimed to identify (1) which structural
network topological properties show the greatest differences
between MCI patients and normal controls (NCs) and (2)
how these network properties of specific brain regions
affect egocentric and allocentric SN accuracy in MCIs. We
hypothesized that patients with MCI would demonstrate
abnormalities in brain network topology and that these
topological properties (e.g., global efficiency, clustering

coefficient, and shortest path length) derived from the brain
structural network could influence SN, which might provide a
new insight into the structural basis of SN in the brain.

MATERIALS AND METHODS

Subjects
A total of 60 participants, 32 MCI patients and 28 NCs, were
recruited from the Department of Neurology of the Affiliated
Drum Tower Hospital of Nanjing University Medical School
from May 2015 to June 2017. All subjects gave written informed
consent to participate in the study, which was approved by the
hospital ethics committee.

Exclusion criteria for NCs were the presence of
cognitive complaints and neurological or psychiatric
disorders. All participants were right-handed and underwent
neuropsychological tests, including the Mini-Mental State
Examination (MMSE) and Montreal Cognitive Assessment
(MoCA). Patients with MCI met the clinical criteria established
by Petersen (2004). The threshold for memory impairment was
derived from the same literature and designated as scoring > 1.5
SD below the mean of age- and education-adjusted norms
on a memory test.

Spatial Navigation Tests
Spatial navigation accuracy was tested by the PC test AMUNET
(NeuroScios GmbH, Austria) that represents a human analog
of the Morris water maze (MWM) task screen, which used the
hidden goal task similar to previous studies (Weniger et al.,
2009; Nedelska et al., 2012; Laczó et al., 2014). It is designed
to distinguish two different strategies of navigation, egocentric
(“Ego”) representations concerning self-centered navigation and
encoding spatial information from the viewpoint of the navigator,
whereas allocentric (“Allo”) strategies are centered on the object
rather than on the observer (Lithfous et al., 2013). The AMUNET
SN test battery was administered using three SN subtasks. Each
subtask involved eight trials, hence 24 trials all together. The tasks
were performed in a fixed order with increasing demanded. First,
the Allo–Ego mixed subtask was first performed. A large circle
representing the overhead view of the task arena was shown on
the screen (280 pixels in diameter on a screen with a resolution of
640 × 480 pixels) (Qing et al., 2017). Participants were required
to locate the goal point using its spatial relationship with both
the starting position and the two distal orientation cues on the
circle. Next, the Ego subtask was performed, which required the
participants to use only the starting position to locate the goal
when distal orientation cues were not displayed. Finally, in the
Allo subtask, the participant was only allowed to use solely two
distal orientation cues on the arena wall during SN to the goal,
whereas the start position was randomly regenerated in each trial
and was therefore unrelated to the correct goal position. The
positions of the goal point were stable relative to (1) the positions
of the starting location and orientation cues in the mixed Allo–
Ego subtask, (2) the positions of the start location in the Ego
subtask, and (3) the positions of orientation cues in the Allo
task. The accuracy of the task was automatically recorded as
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the distance error between the participants’ final position and
the actual goal location in millimeters. The SN performance
from eight attempts per each subtask was averaged into the
average total error per task (Chen et al., 2021). The time was
unlimited to avoid the effect of individual differences in sensory
and physical functioning.

MRI Techniques
Whole-brain MRI scans were obtained using an eight-channel
phased array coil (Achieva 3.0T TX, Philips Medical Systems,
Best, Netherlands). A three-dimensional high-resolution sagittal
T1W with turbo fast echo (3D-T1TFE) acquisition was performed
with a repetition time (TR), echo time (TE), and inversion
time (TI) of 9.8, 4.6, and 900 ms, respectively. The other
acquisition parameters were as follows: flip angle, 8◦; matrix size,
256 × 256; field of view (FOV), 256 × 256 × 256 mm; isotropic
resolution, 1.0 mm; slices in the third dimension, 192; and
acquisition time, 6 min 43 s. Diffusion tensor imaging (DTI) was
encoded along 32 independent orientations, and the b-value was
1,000 s/mm2. The imaging parameters were as follows: TR/TE,
9,154/55 ms; FOV, 224 × 224 mm; slice thickness 2.5 mm; voxel
size 2× 2× 2.5 mm3; and acquisition time, 6 min 27 s.

Network Node and Edge Definition
We used the AAL atlas to parcellate the whole brain into 90
areas (45 regions in each hemisphere), which were defined as
the nodes of the brain graph. The AAL atlas was transformed
from Montreal Neurological Institute (MNI) space to T1 native
space, which was non-linearly registered from the individual
T1-weighted images.

The pre-processing of DTI data was carried out by PANDA
(a pipeline toolbox for analyzing brain diffusion images)
(Cui et al., 2013). The main procedure of PANDA includes
(1) converting DICOM files into Neuroimaging Informatics
Technology Initiative (NIfTI) imaging, (2) estimating the brain
mask by using the bet command of the FMRIB Software Library
(FSL), (3) cropping the raw images to cut off non-brain space in
the raw images, and (4) correcting for the eddy-current effect by
using the flirt and the eddy-correct FSL commands.

Then, we used PANDA to perform deterministic fiber tracking
to obtain the fractional anisotropy (FA) matrix in two steps: (1)
two nodes (regions) were considered to be structurally connected
by an edge when the FA value of fiber tracts located in these
two regions were between 0.2 and 1, and then (2) weighted
structural networks represented by symmetric 90 × 90 matrices
were constructed for each individual.

Network Parameter Analysis
Graph theoretical analysis was performed on the interregional
connectivity matrix by using GRETNA1, a graph theoretical
network analysis toolbox for imaging connectomics. The
weighted network properties were calculated, with a sparsity
range of 0.05–0.4 with a step size of 0.01. Sparsity was
defined as the total number of edges divided by the maximum
possible number of edges. Because there is no gold standard

1https://www.nitrc.org/projects/gretna

to select a single threshold, we calculated the parameters with
different thresholds. Finally, the networks were constructed
at the sparsity of 0.14, which ensured all nodes included
in the networks to present the nodal characteristics of the
networks and ensured the most characteristic small-world
topology. GRETNA was used to calculate the structural
network topological properties, including the network efficiency
properties (local efficiency and global efficiency), local Cp,
global clustering coefficient [M(Cp)], local shortest path length
(Lp), global shortest path length [M(Lp)], and the node degree
and betweenness centrality for the node properties. For each
subject, 1,000 times randomization was applied, and each time
a corresponding random network was generated. Then, the
random distribution of Cp and Lp was used to transform
real Cp and Lp into a Z score by their position in the
random distribution as previous studies (Wang et al., 2015).
The brain networks were visualized with BrainNet Viewer2

(Xia et al., 2013).

Measurement of WMH Volume
The total volume of white matter hyperintensity (WMH)
on 3D-FLAIR images was automatically detected and
quantified using the Wisconsin White Matter Hyperintensities
Segmentation Toolbox (W2 MHS), which is an open-
source toolbox. The major steps involved in WMH volume
detection and measurement are as follows: (1) a pre-
processing module in which SPM12b was used to construct
the white matter (WM) region of interest and partial volume
estimates of the tissues (WM, gray matter, and cerebrospinal
fluid); (2) a segmentation module in which the random
forest-based regression method was used to detect the
WMH; and (3) a quantification module to summarize the
WMH segmentations.

Statistical Analysis
Statistical analysis was performed using SPSS version 23.0
for the demographic data. The between-group differences of
whole-network and nodal properties and differences in SN
accuracy by average total error in each navigational subtask
were evaluated by two-sample t-tests using a threshold of
p < 0.05. For each whole-network topological property showing
a significant difference between MCI patients and NCs, a
general linear regression analysis was performed using two linear
models between each of the network properties with the SN
accuracy of each subtask. In model 1, the network property
was used as an independent variable, and SN accuracy was
used as a dependent variable, with age, sex, and education
as covariates. In model 2, WMH volume was additionally
included as an independent variable. We used a statistical
significance level of p < 0.05 for all these analyses. Similarly,
for each node showing significantly different nodal topological
properties between MCI patients and NCs, the same correlational
analyses were performed between the corresponding property
and the accuracy of each of the three SN subtasks with the
same covariates.

2http://www.nitrc.org/projects/bnv/

Frontiers in Aging Neuroscience | www.frontiersin.org 3 June 2021 | Volume 13 | Article 630677

https://www.nitrc.org/projects/gretna
http://www.nitrc.org/projects/bnv/
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-13-630677 June 3, 2021 Time: 11:51 # 4

Li et al. Network Topology and Spatial Navigation

RESULTS

Demographics and Behavioral Data
In this study, 32 subjects fulfilled the criteria of MCI. No
significant differences in age (p = 0.194), sex (p = 0.196), or
education level (p = 0.134) were detected between MCI patients
and NCs. As expected, pathological alteration led to significant
differences in the MMSE and MoCA scores between MCI patients
and NCs. The full demographic and clinical characteristics of the
subjects are shown in Table 1.

Spatial Navigation and Network
Topology Properties
Our statistical analyses showed significant decreases in the global
clustering coefficient and shortest path length in patients with
MCI (Table 2). Regarding SN accuracy, MCI subjects showed
worse Ego navigation accuracy compared to NCs (Table 2) with
larger average total error. The specific areas of discrepant network
properties of MCI patients and NCs are listed in Table 3 and
Figure 1, including the left middle frontal gyrus, right rectus,
right superior parietal gyrus, right inferior parietal gyrus, and left
paracentral lobule.

The Association Between Nodal Network
Topology Properties and Spatial
Navigation Accuracy
We observed a significantly positive correlation of the shortest
path length in the left paracentral lobule with both the Allo–
Ego average total error and the Allo average total error. There
are no associations between the network topological properties
and Ego average total error. A decreased Cp in the right inferior
parietal gyrus was associated with a larger average total error in
Allo navigation (Table 4).

TABLE 1 | Demographic and clinical characteristics of patients with mild cognitive
impairment (MCI) and control participants.

MCI (n = 32) NCs (n = 28) p

Age (years)

Mean ± SD 65.91 ± 11.33 69.68 ± 10.79 0.194

Sex (%)

Male 16 (50%) 19 (67.9%) 0.196

Female 16 (50%) 9 (32.1%)

Edu (years)

Mean ± SD 13.25 ± 3.46 14.54 ± 3.05 0.134

WMH (volume, mm3)

Mean ± SD 35,017 ± 37,275 38,850 ± 39,794 0.702

MMSE (score)

Mean ± SD 25.97 ± 2.36 28.93 ± 0.97 <0.001*

MoCA (score)

Mean ± SD 21.81 ± 2.13 27.43 ± 2.36 <0.001*

Data are presented as the means ± standard deviations. *p < 0.05.
MCI, mild cognitive impairment; NCs, normal controls; Edu, education; WMH, white
matter hyperintensity; MMSE, Mini-Mental State Examination; MoCA, Montreal
Cognitive Assessment, Beijing Version.

TABLE 2 | Differences in spatial navigation accuracy and the whole-brain network
topology properties of patients with MCI and normal controls.

MCI (n = 32) NCs (n = 28) T p

AEV (mm)

Mean± SD 11.28 ± 9.59 8.67 ± 4.30 −1.32 0.190

EV (mm)

Mean± SD 15.79 ± 9.86 9.73 ± 5.39 −2.89 0.004*

AV (mm)

Mean± SD 12.55 ± 8.05 10.62 ± 5.76 −1.06 0.295

Eg

Mean± SD 0.20 ± 0.03 0.20 ± 0.02 0.12 0.901

Eloc

Mean± SD 0.27 ± 0.03 0.28 ± 0.02 1.14 0.114

M(Cp)

Mean± SD 28.03 ± 5.69 31.58 ± 7.07 2.15 0.035*

M(Lp)

Mean± SD 25.02 ± 7.53 28.91 ± 7.37 2.02 0.048*

Node betweenness

Mean± SD 67.59 ± 11.33 67.52 ± 9.84 −0.02 0.981

Node degree

Mean± SD 4.35 ± 0.95 4.43 ± 0.83 0.341 0.735

Data are presented as the means ± standard deviations. The Eg and Eloc are raw
data and the M(Cp) and M(Lp) are z-score data.
MCI, mild cognitive impairment; NCs, normal controls; AEV,
“allocentric + egocentric” average total error; EV, egocentric average total
error; AV, allocentric average total error; Eg, global efficiency. Eloc, local efficiency;
M(Cp), global clustering coefficient; M(Lp), global shortest path length.
∗p < 0.05.

TABLE 3 | Nodal network topology properties in patients with MCI and
normal controls.

MCI (n = 32) NCs (n = 28) T p

Cp

L-middle frontal gyrus

Mean ± SD 0.27 ± 0.07 0.32 ± 0.10 2.393 0.020*

R-rectus

Mean ± SD 0.22 ± 0.08 0.26 ± 0.04 2.335 0.023*

R-superior parietal gyrus

Mean ± SD 0.28 ± 0.09 0.33 ± 0.09 2.169 0.034*

R-inferior parietal gyrus

Mean ± SD 0.37 ± 0.09 0.43 ± 0.08 2.687 0.009*

Lp

L-paracentral lobule

Mean ± SD 5.55 ± 1.07 5.07 ± 0.86 -2.053 0.045*

Data are presented as the means ± standard deviations.
Cp, local clustering coefficient; Lp, local shortest path length; MCI, mild cognitive
impairment; NCs, normal controls.
∗p < 0.05.

Taking the WMH volume into account, we found that the
associations of the shortest path length in the left paracentral
lobule with both the Allo–Ego average total error and the Allo
average total error were the same as the findings for model 1, as
was the decreased Cp for the right inferior parietal gyrus and Allo
average total error.
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FIGURE 1 | Graphs show differences in the nodal network topological
properties between the patients with MCI and normal controls. (A) The
location of the node with significantly altered nodal network topological
properties in MCI patients, compared with normal controls. (B–E) The nodal
clustering coefficients in the left MFG (p = 0.020), right REC (p = 0.023), right
SPG (p = 0.034), and right IPL (p = 0.009) were significantly different between
the patients with MCI and normal controls. (F) The nodal shortest path length
in the left PCL (p = 0.045) was significantly different between the patients with
MCI and normal controls. NC, normal controls; MCI, mild cognitive
impairment; L, left; R, right; Cp, local clustering coefficient; Lp, local shortest
path length; MFG, middle frontal gyrus; REC, rectus; SPG, superior parietal
gyrus; IPL, inferior parietal gyrus; PCL, paracentral lobule.

DISCUSSION

This study measured the brain network abnormality, SN, and
cognitive impairment in MCI patients. We found a lower
egocentric navigation accuracy in MCI patients compared to
NCs. We showed an abnormal organization in the structural
connectivity networks of MCI patients, reflected by decreased
Cp and decreased Lp. The brain areas of abnormal network
properties were in the left middle frontal gyrus, right rectus,
right superior parietal gyrus, right inferior parietal gyrus, and
left paracentral lobule, therefore predominantly in the frontal
and parietal gyri. Further, the abnormal network properties were
measured in several other brain regions, including the larger
shortest path length in the left paracentral lobule and decreased
Cp in the right inferior parietal gyrus. These abnormal network

properties predicted the SN impairment, irrespective of the white
matter hyperintensities.

Egocentric and allocentric navigation strategies involve
different neurobiological underpinnings. Generally, allocentric
navigation is mainly supported by the hippocampus and
parahippocampus (Muller et al., 1996). On the other hand,
egocentric navigation is supposed to rely on the parietal
lobe and the retrosplenial cortex mostly (Epstein and Ward,
2010; Nemmi et al., 2017). Successful navigation does not
rely on one single strategy but requires the ability to switch
between and combine the different spatial strategies in a
flexible manner (Colombo et al., 2017). In the previous
study, the amnestic MCI single-domain patients showed both
the allocentric and the egocentric navigation impairment
(Hort et al., 2007). Potentially, because we did not classify
our MCIs into amnestic versus non-amnestic subtypes, we
found egocentric navigation but not allocentric navigation
impairment in these MCI patients. It also might be the
relatively younger population of MCI patients in our study,
which sometimes show hippocampal sparing subtype of AD
(Jellinger, 2020).

To date, SN accuracy has not been explored regarding the
relationship to whole-brain structural network properties based
on the graph theoretical approach. Subjects using an Allo strategy
revealed stronger activations in some nearby basal regions
(hippocampus and thalamus) (Henke et al., 2003), while Ego
navigation has been shown to rely on corticostriatal regions
of the brain (Wolbers and Wiener, 2014). A previous study
found that the parietal lobe is involved in the dynamic aspects
of spatial memory and makes contribution to topographic
memory (Berthoz, 1997). We also found a hypoactive brain
structural network in the right inferior parietal gyrus is related
to worse allocentric navigation skill. Another fMRI study
found SN performance-related activation of the inferior parietal
cortex, suggesting that this area participates in the encoding
of spatial relationships between consecutive landmarks in an
egocentric reference frame, defined relative to the observer’s
direction when facing the first landmark (Wolbers et al.,
2004). A study using structural MRI study showed that the
atrophy of the right inferior parietal cortex in amnesic MCI
patients was related to the deficits in allocentric and egocentric
navigation toward a target in a familiar virtual environment
(Weniger et al., 2011).

The graph theory measures reflect how well a region is
connected to its neighboring areas and within brain modules,
providing important information on the network’s capability for
specialized processing within densely interconnected groups of
brain regions (Rubinov and Sporns, 2010). Usually, randomly
organized networks are characterized by a low Cp (a measure
that depicts the connection of immediate neighbors around
individual vertices) and a short path length (an index reflecting
the overall integration of the network). The small-world
network, characterized by a high degree of clustering and
a short path length between individual network nodes, has
been an attractive model for the description of complex
brain networks (Wu et al., 2012). Researchers have found
that both anatomical and functional brain networks are
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TABLE 4 | General linear regression analyses between nodal network topology properties and spatial navigation accuracy.

Allo–Ego Ego Allo

Model 1 Model 2 Model 1 Model 2 Model 1 Model 2

Beta (SE) p Beta (SE) p Beta (SE) p Beta (SE) p Beta (SE) p Beta (SE) p

Cp

−0.2 0.10 −0.1 −0.2 0.10 0.2 0.15 0.2 −0.2 0.07 −0.2 0.07

L-middle frontal gyrus 14 3 70 13 6 45 3 36 22 8 22 7

R-rectus −0.601 0.550 −0.075 0.594 −0.043 0.749 −0.084 0.535 0.123 0.343 0.105 0.432

R-superior parietal gyrus 0.005 0.971 0.007 0.965 −0.145 0.270 −0.156 0.233 0.011 0.929 0.005 0.967

R-inferior parietal −0.235 0.078 −0.235 0.080 −0.127 0.339 −0.126 0.337 −0.278 0.028* −0.278 0.029*

Lp

L-paracentral lobule 0.361 0.011* 0.361 0.011* 0.235 0.099 0.234 0.098 0.348 0.011* 0.348 0.011*

The spatial navigation average total errors (AEV, EV, and AV) were set as independent variables. The different network topology properties of specific brain areas in MCI
patients were set as dependent variables. In all models, we controlled for age, sex, and education and the volume of WMH was added to model 2.
Cp, local clustering coefficient; Lp, local shortest path length.
∗p < 0.05.

small-world networks (Achard and Bullmore, 2007; Bassett and
Bullmore, 2016). The brain network topology showed the
small-world characteristic in both AD dementia and MCI,
but it changed significantly compared to NCs (Liu et al.,
2012; Zhao et al., 2012). A previous study also indicated
increased short path length in AD and decreased Cp in
amnestic MCI (Bai et al., 2012). In the current study, we
found a decreased Cp in MCI patients, which is similar
to a previous study, indicating worse local communication
between the left middle frontal gyrus, the right superior
and inferior parietal gyrus, and neighboring areas in the
brain, respectively.

The brain topology alterations of specific brain node regions
were also observed, in addition to global network changes. We
found a decreased short path length of the left paracentral
lobule, which means a loss of the number of connections
between these structures and other regions of the network. This
could be related to WM integrity loss or a disruption of WM
fibers connecting these brain areas, which has been previously
observed in MCI and AD patients in DTI studies (Chua et al.,
2008). The decreased connectivity of the left paracentral lobule
to neighboring areas was related to worse SN accuracy and,
more importantly, the burden of WMH had no effects on this
relationship. This may indicate that the network alteration and
the SN impairment were due to degeneration, not ischemic
lesion, which may need to be confirmed with a larger sample
size in the future.

There were some limitations in our study. First, we
had a relatively small sample size in this study. Second,
the computerized test based on the MWM paradigm may
be a useful tool for the evaluation of SN deficits (Laczo
et al., 2014). However, it should be noted that the real-
space and computerized two-dimensional versions are not
fully interchangeable, as the computerized SN tasks lack
proprioceptive feedback that is normally available in real-world
navigation tasks and that contribute to successful navigation.
Third, in humans spatial cognition evaluation is much more

difficult, as navigation in complex real-world environments
does not allow experimental control of the tasks, making it
difficult to determine the mechanisms that sustain performances.
Fourth, we did not analyze the specific structural connection
between any two brain nodes and this would be of great
significance in the future.

In conclusion, patients with MCI demonstrate abnormalities
in brain network topology, and the disruption of these
topological properties (e.g., Cp and shortest path length)
derived from the brain structural network influences the
SN process. These results may fuel future research on the
brain structure basis of SN, which can provide new insight
into brain mechanisms in SN impairments with network
topological properties.
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