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Abstract: From the theory of two-phase composites it is concluded that in the concentration depen-
dence of the Seebeck coefficient S a kink can occur precisely at S = 0 absolute if the two phases have
different kinds of carriers, electrons and holes, and if the phase grains are spherical without preferred
orientations and arranged in a symmetrical fashion. This feature, indeed found to be realized in
amorphous Cr1−xSix thin films deposited by ion beam sputtering from Cr-Si alloy targets, can be
applied to make reference standards for S = 0 at room temperature and even at higher temperatures.
Additionally, it may be used to design a thermopower switch between S = 0 and S 6= 0. It is
also concluded that the structure realized in any alloy during solidification does not only depend
on the diffusion mobility of the atoms and on the existence of a (relative) minimum in the Gibbs’
free energy. It depends also on the fact whether this structure is compatible with the demand that
(spatial) continuity of the entropy and energy flux densities and their gradients is saved during the
solidification process.

Keywords: seebeck coefficient; seebeck coefficient standard reference; composites; Effective Medium
Theory; amorphous alloys; phase separation; thermopower switch

PACS: 71.23.-k; 71.55.Jv; 72.10.Bg; 72.15.-v

1. Introduction

Experimental data of thin a-Cr1−xSix (“a” in a-Cr1−xSix stands for “amorphous”)
films [1,2] produced by ion beam sputtering have shown that the concentration depen-
dence of the thermoelectric power S shows a discontinuity at x = 0.49. Coming from
x < 0.49, S is negative and increases monotonically approaching S = 0 µV/K at x = 0.49,
where S jumps suddenly to S = 2.0µV/K (see Figure 1). With further growing x, S con-
tinues to increase monotonically. Originally, the reason for this discontinuity was not
understood. Only the assumption, that a-Cr1−xSix films could be composed of two differ-
ent amorphous phases (differing by short range order) gave a possible answer. Indeed,
theoretical calculations based on Effective Medium Theory (EMT) have shown that these
two properties, S = 0µV/K and the step can be explained, if the coexistence of two differ-
ent phases is assumed [3], and that such a step occurs independently of the temperature.
The experimental confirmation of the presence of two amorphous phases in a series of
amorphous transition-metal-metalloid alloys took place in the 1990s. Applying Raman
spectroscopy, infrared absorption, extended X-ray absorption fine structure (EXAFS) and
anomalous small-angle X-ray scattering (ASAXS) it has been confirmed for a number of
amorphous transition metal-metalloid alloys that these indeedly consist of two different
amorphous phases [4–8]. Regan et al. [8] found for co-sputtered a-W1−xGex, a-Fe1−xGex,
a-Fe1−xSix and a-Mo1−xGex films phase separation regions of the order of 1 nm in the
growth plane and 1.5–2.0 nm in the growth direction. They could show that their measure-
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ments are in agreement with the assumption of two coexisting amorphous phases, a-Ge or
a-Si, on the one side and a metallic phase with a-FeGe2, a-FeSi2, or a-MoGe3 compositions
for the last three systems, respectively, on the other side. Raap et al. [7] found amorphous
phases separation in co-sputtered a-Fe1−xSix films into regions of a-Si and an intermetallic
close in composition to a-FeSi2 with ' 0.6 nm in the film plane and '1 nm in size in the
growth direction. For the case a-Cr1−xSix, the two identified amorphous phases are a-Cr3Si
and a-Si [9]. The bonding state in these two phases differs in terms of orbital structure, sp
for the metal-rich phase and sp3 for a-Si.

The two properties, S = 0µV/K and the discontinuity observed in a-Cr1−xSix,
Figure 1, deserve special interest because they can be used to produce a reference standard
for the absolute thermopower (Seebeck coefficient Standard Reference material—SRM)
and a thermopower switch between S = 0µV/K and S 6= 0µV/K. SRM’s used in practice
to measure the absolute thermopower of materials are generally not very accurate (see
Appendix A). A decisive advantage of the proposed new SRM based on a-Cr-Si is that it
can be used to set S = 0µV/K very precisely.
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Figure 1. S(−) vs. x for a-Cr1−xSix at T = 300 K calculated by Equation (1), respective Equation (9)
and Equations (2)–(13) for the phases A (= a-Cr3Si) and B (= a-Si), where ∂EC,A/∂T = ∂EV,B/∂T = 0
was set. This curve agrees with those of Figure A.2 in [10] for c = 2.6 eV. The experimental data are
taken from Gladun et al. [11] (diamonds), Weser [1] (open triangles) and Sonntag [2] (full triangles).
The discontinuity in S(−) at x = xs = 0.49 corresponds to the discontinuities in Figures 2–4.
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Figure 2. S(−) (bold line) and S(+) (thin line) vs. υB calculated by Equations (2)–(13) for a
hypothetical composite with S0

A = −13.0µV/K, S0
B = +1.5µV/K, κe,A = 8.5 mW/cmK, and

κe,B = 12.7 mW/cmK (corresponding to n = 1022 cm−3 and p = 2× 1022 cm−3 and T = 300 K,
where dµ/dT, Equation (10), is calculated for ∂EC,A/∂T = ∂EV,B/∂T = ∂ϕi/∂ni = 0).
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Figure 3. Same as Figure 2, for varying values of p: p = 1.5, 2, 3, and 5 (in units of 1022 cm−3),
while ∂EC,A/∂T = ∂EV,B/∂T = ∂ϕi/∂ni = 0 is set. The discontinuity in the curves shifts to lower υB

as p decreases. For p < 1.2149× 1022 cm−3 (and n = 1022 cm−3), Equation (9) does not have real
solutions for the entire concentration range. For p > 1.2149× 1022 cm−3 the lower kink of S(±) at
the discontinuity occurs always at S(−) = S(+) = 0.
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Figure 4. Same as Figure 2, for varying values of ∂EC,A/∂T: ∂EC,A/∂T = −5 , − 1, − 0.3, 0, 0.3,
and 0.5849 (in units of 10−6 eV/K), while ∂EV,B/∂T = 0 and ∂ϕi/∂ni = 0 is set. The discontinuity
in the curves shifts to lower υB as ∂EC,A/∂T increases. For ∂EC,A/∂T > 0.5849, Equation (9) does
not have real solutions for the entire concentration range. For ∂EC,A/∂T < 0.5849, the lower kink of
S(±) at the discontinuity occurs at S(−) = S(+) = 0, always.

It is important to underline that the fabrication conditions of a-Cr1−xSix films play
a pivotal role on the appearence of the discontinuity in S at S = 0µV/K. Actually, a
co-sputtering approach (from a Cr target and a Si target) leads to completely different
results from those found originally; both the resistivities were essentially higher and
the discontinuity was not found. The difference between these two data groups was
not understood. Apparently, this difference is caused by the fact that the experimental
original data was produced by single deposition, i.e., for each x separately, whereas the
experimental data produced by co-sputtering [12], i.e., during the sputtering process all
the different samples with different x were electrically connected with each other. It is also
the aim to find the reason of this difference. As it will be argued in this paper, the reason
is apparently a general phenomenon, which, until now, has not yet been considered in
the experimental practice, which has consequences with respect to both the dynamics of
formation of the structure during production/deposition the films and, more over to the
electronic transport properties as thermopower, the electrical and thermal conductivity
and the Hall coefficient of the samples. It will be shown that these properties are essentially
determined by the demand that (spatial) continuity of the entropy and energy flux densities
and their gradients is saved during the solidification process. This has far-reaching practical
consequences in the search for new materials with new properties, for which the method
of “high-throughput characterization” by co-sputtering is often used today. The aim of
this paper is thus twofold, first, to make known the highly exciting property of a step in S
with S = 0µV/K and its consequences (SRM and switch), and second, to recognize that
co-sputtering and single-coating can give completely different results, due to the different
dynamics during the layer deposition process.



Materials 2021, 14, 5529 5 of 18

As a theoretical support, the EMT formalism, which has been widely used to explain
the transport properties of composites, including ceramics [13–15] and thermoelectrics [16–18],
will be implemented.

The paper is structured as follows. The thermopower formula and its application are
described in Section 2. Section 3 treats the effect of the carrier densities and band edges on
the concentration dependence of S. The results of Sections 2 and 3 and what is the cause
of the difference of the two data groups described previously are discussed in Section 4
and summarized in Section 5. In the Appendix A the state of the art on SRM’s is described,
and in Appendix B our EMT formula applyed in the present paper is compared with EMT
formulas derived earlier by other authors.

2. Formulas for the Calculation of the Seebeck Coefficient

The thermopower formula applyed for the calculation of S vs. x shown in Figure 1
reads [19,20]

∑
i

υi
κe,i/Si − κe/S
κe,i/Si + 2κe/S

= 0, (1)

where S and κe are the Seebeck coefficient and the electronic contribution to the thermal
conductivity of the composite, κ. Si, κe,i and υi are the corresponding parameters and the
volume fraction of the phase i (A, B, . . .). The thermopower formula Equation (1) is derived
on basis of the Effective Medium Theory (EMT).

For the derivation of Equation (1) the following assumptions were made: The alloy is a
composite consisting of two different phases which form spherical phase grains, randomly
arranged and in a symmetrical fashion. This assumption is only an approximation, but we
believe that this is a good description of the principle behavior of the current flow densities
through the composite consisting only of amorphous phase grains. There are also attempts
to consider deviations from a spherical shape in the formulas, for instance the Generalized
Effective Medium Theory (GEMT), based on a phenomenological model with the addition
of elements of the percolation theory to the EMT. This idea was applied by Vaney et al. [18]
to S for crystalline composites.

Each phase is characterized by its own transport coefficients. At the boundary face
between a single phase grain and the surrounding ‘effective medium’ continuity of the
current densities and potentials and their gradients are saved, and the additional condition
J = Ji = 0 is to be fulfilled. Ji and J are the electrical current density in a single phase grain
and the surrounding ‘effective medium’, respectively.

S vs. υi can be calculated by Equation (1) if Si, κe,i and κe are known. Si can be
calculated by [10]

Si = S0
i +

1
|e|

dµ

dT
, (2)

where µ is the electrochemical potential, and T the absolute temperature. S0
i and 1

|e|
dµ
dT are

the “scattering term” in the phase i and the “thermodynamic term”. The “thermodynamic
term” is identical for all the phases in the composite.

For metallic phases, S0
i and κe,i are given by

S0
i =

π2k2
BT(1 + ri)

3eiEF,i
, (3)

κe,i =
16π3

9
miLiEF,i

h3 k2
BT, (4)

following from the Boltzmann transport equation (BTE) in the approximation of nearly free
electrons (NFE). |e| is the elementary charge; ei = −|e| and +|e| for electrons and holes,
respectively. mi and Li are the effective mass and the mean free path, respectively, in the
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phase i. ri characterizes the energy dependence of Li according to Li ∝ Eri . h is the Planck’s
constant, and kB the Boltzmann constant. EF,i is the Fermi energy given by

EF,i =
h2

8mi

( 3
π

)2/3
n2/3

i (5)

for a phase i with electron conductivity having the electron density ni. The approximation
in Equation (4) is surely a good one for metallic phases, if the phases form macroscopic
clusters. The formula for κ (total thermal conductivity) derived by Odelevskii [21] reads

∑
i

υi
κi − κ

κi + 2κ
= 0. (6)

Therefore we assume that

∑
i

υi
κe,i − κe

κe,i + 2κe
= 0 (7)

is valid as well.

3. The Effect of the Carrier Densities and Band Edges on S vs. υB

Let us consider a two-phase composite where the phase A has electron conductivity
with n ≡ nA, whereas the phase B has hole conductivity with the hole density p, for which
the Fermi energy reads

EF,B =
h2

8mB

( 3
π

)2/3
p2/3 (8)

(characterized by Figure 1c in [3]).
Equation (1) has two solutions, S(+) and S(−),

S = S(±) = 4κe

<±
√
<2 + 8(κe,A/SA)(κe,B/SB)

(9)

with< = (3υA− 1)κe,A/SA + (3υB− 1)κe,B/SB and υA + υB = 1. In Figure 2 an example of
calculation is shown for a hypothetical composite with S0

A = −13.0µV/K, S0
B = +1.7µV/K,

κe,A = 8.5 mW/cmK, and κe,B = 12.7 mW/cmK. These transport parameters correspond to
n = 1022 cm−3 and p = 2× 1022 cm−3 if calculated by Equations (3)–(5) and Equation (8)
with mA = m0, mB = 0.2×m0, ri = 2 and Li = 4/π × di ([22], p. 348) at T = 300 K. m0
is the bare electron mass. di is the interatomic distance in the phase i (dA = 0.25 nm and
dB = 0.234 nm). For calculating dµ/dT in Equation (2),

dµ

dT
=

∂EC,A

∂T
+

∂µ0
A

∂T
−

∂µ0
A

∂T +
∂µ0

B
∂T +

∂EC,A
∂T −

∂EV,B
∂T

1 +
υA

(
∂µ0

B
∂p −|e|

∂ϕB
∂nB

)
υB

(
∂µ0

A
∂n −|e|

∂ϕA
∂n

)
(10)

has been applied with
∂µ0

i
∂T

= −
π2k2

BT
6EF,i

, (11)

∂µ0
A

∂n
=

2EF,A

3n
, (12)

∂µ0
B

∂p
=

2EF,B

3p
(13)

(following from the Fermi–Dirac-statistics), where the contributions by the band edges
(EC,A, EV,B) and those of the electrostatic potential (ϕi) to dµ/dT were still neglected, i.e.,
∂EC,A/∂T = ∂EV,B/∂T = ∂ϕi/∂ni = 0 was set. ϕi and µ0

i are the electrostatic potential
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and the chemical potential, respectively, in the phase i. EC,A and EV,B are the band edges
of the conduction band (CB) in the phase A and the valence band (VB) in the phase B,
respectively. Note that dp = −dnB. With this dµ/dT, Si and S(±) are calculated by
Equation (2) and Equation (9), respectively. The result is shown in Figure 2: At υB = 0.63
there is a discontinuity in the S(−) and S(+) curves, where the lower kink occurs exactly
at S(−) = S(+) = 0.

An analogous result is also obtained for other values of n and p. Figure 3 shows S(±)
vs. υB for different values of p, while n is hold constant, n = 1022 cm−3, and the other
parameters mi, ri, Li are identical to those applied in Figure 2. With decreasing the value of
p, the size of the discontinuity (the distance between the upper and lower kinks) decreases
continuously, until it disappears completely at a critical value of p and a gap opens in the
concentration range where there are no real solutions S(±), because the square root in
Equation (9) becomes imaginary. For the example composite shown in Figure 3, this critical
value is pcrit = 1.2149× 1022 cm−3: For p ≤ pcrit, Equation (9) has no longer real solutions
for the entire concentration range.

If n is varied, while p, mi, ri and Li, are identical to those applied in Figure 2,
we get a similar result: Here the critical value is ncrit = 1.24 × 1022 cm−3. For n ≥
ncrit (and p = 2× 1022 cm−3), Equation (9) has no longer real solutions for the entire
concentration range.

Until now fixed band edges have been assumed. However, the thermopower of
the phases Si, Equation (2), depend on dµ/dT, and dµ/dT depends on ∂EC,A/∂T and
∂EV,B/∂T, according to Equation (10). In Figure 4 the effect of ∂EC,A/∂T on the solutions
of Equation (9) is shown. For this variation, in Equation (2) ∂EV,B/∂T = ∂ϕi/∂ni = 0 is set,
and the other parameters are identical to those applied in Figure 2. The discontinuities
in the S(−) curve (bold line) and the S(+) curve (thin line) are shifted to lower υB as
∂EC,A/∂T increases. Here the critical value is (∂EC,A/∂T)crit = 0.5849× 10−6 eV/K. For
∂EC,A/∂T > (∂EC,A/∂T)crit there are no real solutions for the entire concentration range
0 < υB < 1.

A variation of ∂EV,B/∂T has a similar effect as a variation of ∂EC,A/∂T. There the
critical value is (∂EV,B/∂T)crit = 1.8967× 10−6 eV/K. For ∂EV,B/∂T > (∂EV,B/∂T)crit
there are no real solutions for the entire concentration range 0 < υB < 1.

When we vary the parameters n, p, ∂EC,A/∂T and ∂EV,B/∂T, the lower kink of S(±)
at the discontinuity occurs at S(−) = S(+) = 0, as long as we are not beyond the critical
values mentioned.

The two S(−) curves in Figure 4 for (∂EC,A/∂T)crit = 0.5849 × 10−6 eV/K and
(∂EC,A/∂T) = +0.3× 10−6 eV/K are very similar to the experimental data for amorphous
a-Cr1−xSix thin films, deposited under different deposition conditions: For the a-Cr1−xSix
films sputtered from different Cr1−xSix targets in single manufacturing processes, there is
a significant step in the S versus concentration dependence as shown in Figure 1, whereas
a-Cr1−xSix films sputtered from a Cr target and a Si target arranged separately from each
other (co-sputtering) does not show such a step [12]. The essential difference between these
two methods of deposition is the fact, that in the co-sputtered films there is a common
dµ/dT for all the x realized during the deposition run, whereas for the films sputtered
from different Cr1−xSix targets, dµ/dT is different for the different x. Between these two
series of a-Cr1−xSix films there are also considerable differences regarding their specific
resistivity ρ versus x dependences ([23], Figure 7 therein).

4. Discussion

As shown in Section 3 for the hypothetical composite, S(−) and S(+) approach
always the value “0” at the lower kink of the discontinuity provided that the carriers in
the two phases have different signs, electrons and holes (the concentration where this kink
occurs will be noted υB = υB,s and x = xs for the corresponding atomic concentration).
This property can be used to construct “Seebeck coefficient Standard Reference with 0 µV/K
absolute”. In order to use this property, the following questions are still to be answered:
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(1) Does the experimental Seebeck curve Sexp vs. x (respectively Sexp vs. υB) of a real
two-phase alloy follow one of the solutions, S(−) or S(+), or does it follow a smooth
curve changing between S(−) to S(+) at the discontinuity? (see Figure 2)

(2) If Sexp vs. x follows one of the solutions, S(−) or S(+), does then the lower kink of
the discontinuity in the Sexp vs. x curve occur at Sexp = 0?

(3) Which effect do the electrostatic potentials have on the discontinuity in S(±)?
(4) Which meaning or consequence has the fact that Equation (1) (respectively Equation (9))

does not have real solutions for the entire concentration range if the carrier densities
or the band edge shifts are beyond the critical values specified earlier?

Let us start with the point (1). If the thermopower changed between S(−) and S(+)
at the discontinuity, no discontinuity in Sexp vs. x is expected experimentally. However, the
experimental data in Figure 1 apparently follow the calculated S(−) curve on both sides
of the discontinuity at xs = 0.49, i.e., they does not cross over from S(−) to S(+) or vice
versa. Contrarily to that, for the two limiting cases “υB = 0” and “υB = 1” it follows from
Equation (9) with Equation (7) that S(+) is the physical solution.

Let us move now to the second question, (2): As can be seen in Figure 1, at the
lower kink of the S(−) curve at xs, S(−) = 0. Actually, coming from the left-hand side
of this discontinuity, the experimental thermopower data approach zero precisely at the
lower kink at xs. This experimental finding corresponds to the calculated S(−) curves
for the hypothetical composite specified in Section 2 drawn in Figures 2 and 3. (Note
that υB increases monotonically with x provided that the phase compositions, xA and xB,
are constant.)

We emphasize that the jump in the thermopower at S = 0 is not the result of approxi-
mations. It also does not depend on the choice of the model applied for calculation of the
transport coefficients of the phases A and B (“parabolic band model with an effective mass
and power law scattering rates”). The jump at S = 0 always follows purely mathematically
from Equation (1), independent of the chosen numbers for Si and κe,i, if Equation (1) has a
mathematical solution at all for S(−) and S(+).

It is clear that if one of the two phases is present as separate islands, the band model
can no longer be applied to this phase. This is true for υB < 1/3 for phase B and, on the
other hand, also for υA < 1/3 for phase A. In amorphous composites this limit, which
separates “island structure” and “continuous structure” from each other, is very precisely
at υB = 1/3 with respect to phase B. The same is true for phase A. Details to this problem
are discussed in detail in [19].

In Figure 5, the same curve S(−) of Figure 1 is shown once more, however with the
difference that SB = 0 and κe,B = 0 are set for υB < 1/3, and SA = 0 and κe,A = 0 are set for
υA < 1/3. For υi < 1/3 the phase i exists as islands separated from each other, where the
electronic bands in the phase i are not formed. The curve S(−) in Figure 5 agrees relatively
well with the experimental data. It is noteworthy that at υA = 1/3 and at υB = 1/3 two
more steps appear, which are also reflected in the experimental data.

If Equation (1) does not provide a mathematical solution, we conclude that the under-
lying physical model (the “EMT”-assumption that “the phase grains are spherical with no
preferred orientations and arranged in a symmetrical manner”) is not a good approxima-
tion to describe the structure of the alloy. More on this in the next points, (3) and (4) that
are treated in the following paragraphs.

The electrostatic potential affects the thermopower of a composite, but does not affect
it in a homogeneous material [10]. For the example alloy a-Cr1−xSix it is shown that the
discontinuity in S(−) shifts to larger υB as the electrostatic parameter c increases and one
may conjecture that such a situation where Equation (1) does not have solutions for the
entire concentration range is not realized in the nature, because the electrostatic potentials
act contrarily to the effect of ∂EC,A/∂T (respectively ∂EV,B/∂T) [10]. For instance, assuming
that ∂EC,A/∂T > 0, then a temperature depending electron transfer occurs from the phase
A to the phase B leading to an increase of the electrostatic potential difference between the
phases counterbalancing the effect of ∂EC,A/∂T on the solutions of Equation (1).
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Figure 5. Same as Figure 1, where however SB = 0 and κe,B = 0 are set for υB < 1/3 and SA = 0
and κe,A = 0 are set for υA < 1/3. For υi < 1/3 the phase i exists as islands separated from each
other. (The curve for S(−) agrees with that obtained by Sonntag [19]).

However, such a counterbalancing is surely incompletely, and one can conjecture that
situations are possible in nature (i.e., experimental conditions) where Equation (1) does
not have solutions for the entire concentration range. For concentration ranges, where
Equation (1) does not have a mathematic solution, we speculate that the structure and
arrangement of the phase grains realized is different from that assumed for the derivation
for Equation (1), for instance that the phase grains are not spheric or/and arranged in
an asymmetrical fashion or/and there are preferred orientations of them. The reason is
the following: Equation (1) has been derived under the condition that at the boundary
face between a single spherical phase grain and its surroundings, (spatial) continuity of
the entropy-flux density, JS, and its gradient is fulfilled [19]. This condition must also
be fulfilled during the solidification process of the alloy. If Equation (1) does not have
a solution (for a certain x), then the condition of continuity of JS at the boundary faces
between the different phases cannot be fulfilled leading to the fact that such a structure
as specified cannot be realized. Instead, another atomic structure is favored, where the
continuity of JS and its gradient can be fulfilled. This other atomic structure can be,
for instance, characterized by non-spheric phase grains or other values for xA (and xB)
corresponding to a situation where the phase compositions become a function of x. Saving
continuity of JS and its gradient, the structure of the alloy is matched at the especial
conditions prevailing during the solidification of the alloy. This discussion can also be
executed considering the energy flux density JE and its gradient.

In other words, the structure realized in any alloy does not only depend on the
diffusion mobility of the atoms and whether there exists a (relative) minimum in the Gibbs’
free energy. The structure realized depends also on the fact whether it is compatible with
the demand that continuity of the entropy and energy flux densities and their gradients is
saved during the solidification process.

This conclusion is a consequence of the Gibbs equation and its conditions of validity.
Gibbs equation reads

dU = TdS + ∑
i

µ0
i dni, (14)
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where ni is the particle density of species i. U is the internal energy density, S is the
entropy density, and µ0

i is the chemical potential of the ith species present in the system.
Equation (14) holds both for electronic carriers and atoms and ions [24,25]. Introducing

E = U + ϕsq (15)

and considering the Gibbs–Duhem relation, which is applicable to the function U, it follows

S
∂T
∂t

+ ∑
i

ni
∂µ0

i
∂t

= 0, (16)

where t is the time. With the electrochemical potential µi we get

∂E
∂t

= T
∂S
∂t

+ ∑
i

µi
∂ni
∂t

+ q
∂ϕs

∂t
, (17)

where ϕs is the electrostatic potential. q is the net charge density with q = ∑i qi. qi is the net
charge density of the species i. Equation (17) is the basic formula for deriving the transport
equations to describe the electronic transport processes, but also for diffusion processes
in solids, expressed by the transport coefficients, to bring the system into equilibrium.
Equation (17) is based on the continuity of the energy and entropy flow densities and
their derivations according to place and time so that they do not break off. For our above
conclusion it is now important under which conditions Equation (17) holds. “From an
empirical viewpoint, use of the Gibbs equation is justified on the basis that, except for
turbulence and shock-wave phenomena, it leads to excellent agreement with experiment.
Therefore, we take the view that Equation (17) remains applicable, as long as local devi-
ations from equilibrium are sufficiently small.” (quoted from Harman and Honig [24],
p. 10 therein). One can now object that this condition, that the local deviations from the
equilibrium state during the layer deposition, are not small, because the process of layer
growth is certainly far away from an equilibrium state. However, this means nothing
other than that the resulting phase distribution of the growing layer on the substrate can
more or less deviate from an uniform distribution and that also the shape of the phase
grains can more or less deviate from a spherical shape. This means that the assumption
for the derivation of the EMT approximation made for Equation (1), “the phase grains are
spherical with no preferred orientations and arranged in a symmetrical fashion” is not or
only partially fulfilled. This is all the more serious if there are not only microscopic concen-
tration gradients on the substrate (single target deposition), but a macroscopic, pronounced
concentration gradient over the entire substrate in the horizontal direction (co-sputter
deposition). Because Equation (17) is also the basis for the derivation of Equation (1), it
cannot apply if the deposition conditions deviate too much from the equilibrium.

A situation, where Equation (1) has no solution, is equivalent to a situation, where
the demand of this continuity of the entropy and energy flux densities and their gradients
cannot be fulfilled by such a structure as assumed leading to a modified grain structure
and structural arrangement.

Such a modified structure could be for example such that the phase grains are not
spherical or such that there are additional holes or spaces at the phase boundaries. In this
last case, the resistivity of the alloy is expected to be higher than without these defects.

For the assumption of holes or spaces speeks the fact, that the resistivities of the
films produced by co-sputtering are essentially higher than the films produced by single
sputtering. The question, which structure is actually realized, can be answered by specific
structural investigations.

Independently of this open question, we state that for all the cases considered in
Figures 2–6, the lower kink at the discontinuity in the calculated S(−) curves is ex-
actly at S(−) = 0, provided that the critical values for n, p, ∂EC,A/∂T, ∂EV,B/∂T are
not yet exceeded.
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Figure 6. Same as Figure 1, however S(−) vs. x calculated for different temperatures: T = 100, 200,
300, and 400 K. The discontinuity at x = 0.27 disappears if S0

B = 0 and κe,B = 0 is set for υB < 1/3,
which is a better approximation than given by Equation (3) and Equation (4), because the phase
B does no longer form a macroscopic cluster through the alloy; at υB = 1/3 the energy spectrum
changes from a quasi-continuous spectrum (υB > 1/3) to a discrete energy spectrum (υB < 1/3)
typical for separate phase grains [19].

Thermopower Switch

As shown in Figure 1, coming from x < 0.49 and increasing x, at room temperature
the thermopower jumps at x = xs = 0.49 from S = 0µV/Kto S = 2.0 µV/K. Now let us ask
whether or not the value of xs is temperature dependent? By applying Equation (1) one
can show, that the calculated value of xs is actually a function of T. This is shown for two
choosen examples in Figures 7 and 8, where several values are assumed for the physical
parameters which are contained in the formulas summarized in Sections 2 and 3. Indeedly,
for both cases there is a jump in S vs T. That is why, we assume that such a temperature
dependence can also be expected for real composites or nanocomposites.

By choosing of a suitable composition x very close to xs, we have the possibility to
produce a reference standard for the Seebeck coefficient S, where S = 0µV/K absolute.
Until now, such (theoretically established) reference standards for S = 0µV/K were
restricted to superconductors below the critical temperature.

For a-Cr1−xSix, S(−) = 0 at xs, independently of the temperature, as shown in
Figure 6. This finding is especially noteworthy, because (contrarily to that) the ther-
mopower in a homogeneous metal depends on T. For the case of temperature independent
band egde, in a homogeneous “NFE”-metal, S depends even linearly on T (in correspon-
dence to [10], Equations (38) and (39) therein).
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Figure 7. (a) xs and υB,s vs. T calculated for the example of Figure 4 with ∂EC,A/∂T = +0.2×
10−6 eV/K. For x = 0.48, Ts = 312.41K. (b) S(−) vs. T for x = 0.48. The inset shows the same data
with a better resolution. At the lower kink of the discontinuity, S(−) = 0 precisely; S(−) decreases
with increasing T very slowly at a rate of −0.0037 (µV/K) per 1 K.
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kink of the discontinuity, S(−) = 0 precisely; S(−) increases with increasing T very slowly at a rate
of 0.001 (µV/K) per 1 K.
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xs itself (characterized by S(−) = 0), depends, however, on temperature if ∂EC,A/∂T 6= 0
or ∂EV,B/∂T 6= 0, i.e., for two different temperatures the values for xs are different. Only
for the hypothetical special case that ∂EC,A/∂T = ∂EV,B/∂T = 0, xs turns out to be
independent of T. This fact seems to be a disadvantage for a realization of a highly precise
reference standard with S = 0. On the other hand, it can also be an advantage: By choice of
an appropriate composition x close to xs one could produce a “thermopower switch”, which
swiches between S = 0µV/K and a finite S 6= 0 at a certain temperature, the switching
temperature Ts. If this “switching property” is actually realized for a given x close to xs,
the value S = 0µV/K could be adjusted arbitrarily precisely by variation of T approaching
Ts, so that this material could serve, after all, as a very precise reference standard for
S = 0µV/K absolutely. While this formal discussion is, to a certain extent, speculative,
let us calculate such a “thermopower switch” for the hypothetical composite specified
in Section 2. In Figures 7 and 8 such a “swiching” property is shown for ∂EC,A/∂T =
+0.2× 10−6 eV/K and−0.2× 10−6 eV/K, respectively, where simultaneously ∂EV,B/∂T =
∂ϕi/∂ni = 0 was set. In the Figures 7a and 8a, the υB,s and xs, related by

xs =
xANA(1− υB,s) + xBNBυB,s

NA(1− υB,s) +NBυB,s
, (18)

are drawn vs. T. Ni and xi are the atomic density and the atomic concentration in percent in
the phase i, respectively, which were set to beNA =7.9 × 1022 cm−3, NB = 5.0 × 1022 cm−3,
xA = 0.25, and xB = 1.00.

According to Figure 7a, a composite with ∂EC,A/∂T = +0.2× 10−6 eV/K and x = 0.48
would show a switching temperature of Ts = 312.41 K with a switching property as indicated
in Figure 7b. According to Figure 8a, a composite with ∂EC,A/∂T = −0.2× 10−6 eV/K and
x = 0.615 would show a switching temperature of Ts = 311.62 K with a switching property
as indicated in Figure 8b. In both Figures 7b and 8b, at the lower kink of the discontinuity,
S(−) = 0 precisely. As can be seen in the insets of Figures 7b and 8b, on the side where
S(−) is close to 0, S(−) changes very slowly with T with rates of −0.0037 (µV/K) per 1 K
and 0.001 (µV/K) per 1 K, respectively.

However, we emphasize that such a “switching property” of S is a fictitious result
following from an application of the thermopower formula Equation (1) to the two-phase
composite specified in Section 2 with the additional property that EC,A depends on T.
Note that for the calculations shown in Figures 7 and 8 the effect of the electrostatic
potentials has been neglected. Taking into account these contributions, the “switching
properties” are expected to be modified, and there remains the open question whether such
a hypothetical discontinuity occurs really in the S vs. T dependence or whether the effect
of the electrostatic potential counterbalances this effect of band edge shift. Therefore, it is
not at all clear whether or not there are real composites with such a “switching property”.

Suitability of a-Cr1−xSix films as reference standard: Amorphous alloys are generally
in a relatively unstable state. In contrast to this general experience, for not too small
x, a-Cr1−xSix thin films, adequately annealed below the crystallization temperature Tk,
can be very stable as long as the temperature of application is essentially lower than Tk.
This high stability is assumed to be caused especially by an extremely thin a-Cr-Si-O
passivation film at the surface of the a-Cr1−xSix film as well as by the p-d bonds at the
phase boundaries (as discussed in [26], Section 2 A therein). Close to xs, the crystallization
temperature is Tk ≈ 550 K or a little higher (depending on the annealing time), and thus a
practical application of an a-Cr1−xSix film as a SRM up to temperatures T ≈ 500 K seems
to be reasonable.

The method for designing SRM’s proposed in the present paper has three advantages:
(i) A SRM is now available with 0 µV/K absolute above superconducting temperatures
and thus can also be applied at room temperature or even above, (ii) the assumption of
reversible processes [which is the basis for Equation (A1)] is no longer necessary, and (iii)
now we have the possibility to determine the thermopower very precisely by a method
which is completely independent of the classical method (applied by Borelius et al. [27,28]).
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Regarding the advantage (iii) we state, when once a SRM with exactly 0 µV/K absolute
is designed for one material, then the Thomson coefficient can be measured for all other
interesting materials using Equation (A1). These measuring results can be compared
directly with the experimental data of the Thomson coefficient of any other material. In
other words, with this new SRM we have the possibility to check the question mentioned
earlier, to what extent the processes acting on a real measurement of the Thomson coefficient
τ (described in the Appendix A) are actually reversible, because Equation (A1) holds only
for the case that only reversible processes act.

We close by a short statement on the formulas Equations (2) and (3) in connection
with Equation (10) applied for the present calculations: The BTE formula S0

i , Equation (3)
is assumed to describe exclusively the scattering contribution to Si. The correctness of
this assumption is, however, not yet confirmed. The question of whether or not in S0

i

the effect of “∂µ0
i /∂T” (respectively “−π2k2

BT
6EF,i

”) is contained indirectly is still open (see
the discussion in [10]). However, this question does not influence the conclusions of the
present paper, especially that the lower kink of S(±) at the discontinuity would occur at

S(−) = S(+) = 0. If in S0
i , Equation (3), the effect of “∂µ0

i /∂T” (respectively “−π2k2
BT

6EF,i
”)

would be contained indirectly, the S(±) vs. υB curves would be shifted in Figures 2–4;
however, in this case the discontinuity would also occur at S(−) = S(+) = 0.

5. Conclusions

Applying the EMT to composites with different kinds of carriers in the different phases
(electrons and holes), it is concluded that a discontinuity can be expected in the concen-
tration dependence of the Seebeck coefficient which coincides exactly with the transition
from negative values to positive ones. Such a dicontinuity (kink) is actually found experi-
mentally in a-Cr1−xSix thin films sputtered from different Cr1−xSix targets representing a
composite with the phases a-Cr3Si and a-Si. This feature can be applied to make reference
standards for an absolutely zero Seebeck coefficient at room temperature and even at
higher temperature. The experimental confirmation of this feature for a-Cr1−xSix alloys
supports the theory of composites developed in the last years [3,9,10,19,26]. Under certain
conditions such a kink at S = 0µV/K can also be expected in the temperature dependence
of S.

The experimentally finding that the electronic properties of amorphous Cr-Si films
can differ fundamentally depending on the prevailing fabrication conditions suggests that
the structure realized in any alloy is not only determined by the diffusion mobility of the
atoms and that for this structure a (relative) minimum of the Gibbs’ free energy exists,
but it depends also on the fact whether this structure is compatible with the demand that
(spatial) continuity of the entropy and energy flux densities and their gradients is saved
during the solidification process.
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Symbols

E Energy density (Ws/cm3)
U Internal Energy density (Ws/cm3)
S Entropy density (Ws/cm3T)
t time (s)
T temperature (K)
S Seebeck coefficient (µV/K)
τ Thomson coefficient (µV/K)
σ electrical conductivity (Ω−1cm−1)
κe electronic contribution to the thermal conductivity (Wcm−1K−1)

Si, σi, κe,i and υi

are the Seebeck coefficient, electrical conductivity, electronic contribution to the
thermal conductivity, and volume fraction, respectively, of the individual phase
i [i = A, B]

αi (= S0
i ) the “scattering terms” of the Seebeck coefficient in the phase i

and α (µV/K)
and the composite, respectively. The difference to S and Si is defined in
the Appendix B.

EF,i the Fermi energy in the phase i (eV)
Li mean free path of the electronic carriers in the phase i (nm)
ϕ, ϕs electrostatic potential (V/cm3)
µ0

i chemical potential in the phase i (eV)
µ electrochemical potential of the composite (eV)

n
electron densitiy [in a two-phase composite n is the electron densitiy in
the phase with the higher potential (≡ phase A)] (1022 cm−3)

p hole densitiy in the phase B (1022 cm−3)
ζ = υB/υA

β
a constant for a given alloy, which is determined by the average
potential difference between the two phases.

Ec band edge of the conduction band (eV)
d average atomic distance (nm)
Ni atomic density in the phase i (1022 cm−3)
xi atomic concentration of the phase i
xs concentration, where the discontinuity occurs
Ji electric current density in the phase i
JQ,i thermal current density in the phase i
JS,i entropie flux density in the phase i

Appendix A. Seebeck Coefficient Standard Reference Materials

Absolute values of the thermoelectric power (Seebeck coefficient) of any material
cannot be measured directly. It is always differences between two materials which are
measured. That is why, in practice, Seebeck coefficient Standard Reference materials
(SRM’s) are designed which allow to measure the absolute Seebeck coefficient of any
material by a direct comparison with it.

SRM’s used in practice to measure the absolute thermopower of materials are gener-
ally not very accurate. An exception are superconductors, whose thermopower is exactly
S = 0µV/K. However, these can only be used for temperatures T smaller than the critical
one Tc. For higher temperatures special SRM’s are used, which are, however, only approxi-
mations for an absolute value of S, which are the worse the higher the desired comparison
temperature or reference temperature. Examples for such SRM’s are Pb, Sn or a special
silver-normal-alloy (Ag + 0.37at%Au) (Borelius et al. [27–29], Christian et al. [30]). For this
last strategy the fact was used that for a certain material the absolute Seebeck coefficient S
is related with τ, the Thomson coefficient, by (first Kelvin relation)

S =
∫ T

0

τ

T
dT, (A1)
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where T is the absolute temperature. The precision of such a SRM is however limited:
First, Equation (A1) holds only if all the processes involved are reversible, but it is not
yet completely clear to what extent this condition is fulfilled under the conditions of real
measurement of τ. Second, the precision of the measured Thomson coefficients is restricted,
because there are a series of sources for systematic uncertainties in measuring the Thomson
coefficient τ (see, for instance Borelius et al. [27]).

Another practical method for supplying a SRM has been realized by
Lowhorn et al. [31,32]. By two different, independent experimental techniques Lowhorn et al.
have developed a special SRM (Te-doped Bi2Te3) which is designed as a comparison ma-
terial for thermoelectric research in different laboratories. For this SRM uncertainties in
the Seebeck coefficient are given by Lowhorn et al. [31] in the range of ≈1 . . . 6 µV/K
in the temperature range T = 10 . . . 391 K. It remains a problem that absolute values for
the Seebeck coefficient can only be measured relatively imprecisely, especially at room
temperature and at higher temperatures.

Appendix B. Comparison with Earlier EMT Formulas

There are a series of thermopower formulas published in the scientific
literature, [33–37], which all are different from our formula Equation (1), and they do
not provide such a discontinuity in the α versus x dependence. On the first look all these
formulas look different. However, comparing their formulas in detail, all provide an identi-
cal concentration dependence ([23], Section 2.5.1. therein), α versus x, and what is especially
remarkable, all these formulas contain αi, σi and κi. Reason for this fundamental difference
to the formula Equation (1) is the fact, that the authors start with an approximation of the
thermal current density, JQ, for instance Webman et al. [33],

JQ = −κ · gradT + α · σ · gradϕ. (A2)

κ and κi are the total thermal conductivities in the composite and the phase i, respectively.
α and αi are the Seebeck coefficients in the composite and the phase i, respectively. (Why
we distinguish between S and α becomes clear further below.) In formula Equation (A2)
the quadratic term in α and the contribution of the chemical potentials of the phases, µ0

i ,
are not contained. An additional difference is that JQ, Equation (A2), represents the total
thermal current density (containing both the electronic part and the lattice part). However,
if we leave aside this difference with respect to κ, we are still left with the fundamental
difference that neglecting the quadratic term of α results in all three transport coefficients,
αi, σi and κi, appear in the EMT formula. This is not the case if the quadratic term in α is
considered. If this point and the contribution of the chemical potentials are considered in
JQ,i (formula (16) in [3]), then in the EMT formula only κe,i and αi occur. Starting with Ji
and JQ,i and correcting these inaccuracies contained in Equation (A2), then it follows for
the EMT formula

∑
i

υi

κe,i
αi−(dµ0

i /dT)/|e| −
κe

α−〈(dµ0
i /dT)〉/|e|

κe,i
αi−(dµ0

i /dT)/|e| + 2 κe
α−〈(dµ0

i /dT)〉/|e|
= 0, (A3)

(formula (30) in [3]), where Ji and JQ,i are the local electric current density and the local
thermal current density (without the lattice contributions), respectively, of the phase i. The
angular brackets in Equation (A3), 〈. . .〉, characterize an average.

Equation (A3) looks very complicated, especially because of the term 〈. . .〉. A simplier
formula we get, if Ji and JS,i is used as the starting equations ([19]), where JS,i is the entropie
flux density in the phase i:

∑
i

υi

κe,i
αi+(dµ/dT)/|e| −

κe
α+(dµ/dT)/|e|

κe,i
αi+(dµ/dT)/|e| + 2 κe

α+(dµ/dT)/|e|
= 0 (A4)



Materials 2021, 14, 5529 17 of 18

In Equation (A4) dµ0
i /dT (which are different for the different phases) do not occur,

insteadly the common dµ/dT.
Replacing αi + (dµ/dT)/|e| and α + (dµ/dT)/|e| by Si and S, respectively, we get

Equation (1), i.e., that S0
i in Equation (2) is identical with αi. This replacing was the decisive

step for geting the final formula Equation (1). In the earlier practice of thermoelectricity,
α was generally used as the thermopower, respective Seebeck coefficient, of a material,
where the “thermodynamic term” (dµ/dT)/|e| did not occur in all the earlier thermopower
formulas. This decisive step α −→ S, respective αi −→ Si, i.e., the introduction of the
additional “thermodynamic term” (dµ/dT)/|e| to the thermopower formulas founded
in [10] has important consequences. In [10] it is also shown, that this contribution gives
the answer on the question unsolved until now, why there are simple metals with positive
thermopower as Cu, Ag, Au, and Li.

The difference between Equations (A4) and (A3) reflects a general problem for multi-
band systems or multiphase systems: Applying Ji and JQ,i, problems can arise, which
can be avoided when Ji and JS,i is used. ([24], pages 28 and 40). So, Equation (A4),
respective Equation (1), can be considered as the exact EMT formula under the special
conditions (“the phase grains are spherical without preferred orientations and arranged in
a symmetrical fashion”.)

In the formulas Equation (A4), Equations (A3) and (1) only the electronic part of
the thermal conductivity occurs, but not the lattice part. This is in agreement with the
seminal work of Harman and Honig [24], especially formula (1.17.1a) on page 40 and the
explanatory text. In the electronic transport equations the lattice thermal conductivity does
not appear.
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