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Identification of significantly 
mutated subnetworks in the breast 
cancer genome
Rasif Ajwad1,2, Michael Domaratzki2, Qian Liu1, Nikta Feizi1 & Pingzhao Hu1,2,3*

Recent studies showed that somatic cancer mutations target genes that are in specific signaling and 
cellular pathways. However, in each patient only a few of the pathway genes are mutated. Current 
approaches consider only existing pathways and ignore the topology of the pathways. For this reason, 
new efforts have been focused on identifying significantly mutated subnetworks and associating 
them with cancer characteristics. We applied two well-established network analysis approaches to 
identify significantly mutated subnetworks in the breast cancer genome. We took network topology 
into account for measuring the mutation similarity of a gene-pair to allow us to infer the significantly 
mutated subnetworks. Our goals are to evaluate whether the identified subnetworks can be used as 
biomarkers for predicting breast cancer patient survival and provide the potential mechanisms of the 
pathways enriched in the subnetworks, with the aim of improving breast cancer treatment. Using the 
copy number alteration (CNA) datasets from the METABRIC (Molecular Taxonomy of Breast Cancer 
International Consortium) study, we identified a significantly mutated yet clinically and functionally 
relevant subnetwork using two graph-based clustering algorithms. The mutational pattern of the 
subnetwork is significantly associated with breast cancer survival. The genes in the subnetwork are 
significantly enriched in retinol metabolism KEGG pathway. Our results show that breast cancer 
treatment with retinoids may be a potential personalized therapy for breast cancer patients since 
the CNA patterns of the breast cancer patients can imply whether the retinoids pathway is altered. 
We also showed that applying multiple bioinformatics algorithms at the same time has the potential 
to identify new network-based biomarkers, which may be useful for stratifying cancer patients for 
choosing optimal treatments.

The accumulation of somatic genetic mutations, such as single nucleotide variants and copy number alterations 
(CNAs), drives cancer  progression1. Somatic CNAs are changes in the copy numbers of a DNA sequence that 
arise during the process of cancer development. They have been found to be prevalent in breast  cancer2. Genes 
in the CNA regions that have changes to the chromosome structure in the form of gain or loss in copies of DNA 
segments, if mutated, can create abnormal proteins with different functions than a normal protein, which can 
lead to uncontrollable growth of cancer cells.

Not all mutations cause damage to the human cells: depending on the location of the mutations in the gene, 
the alteration can make no difference or can even be beneficial. In fact, of all the mutations that occur in human 
genome, only a few, known as driver mutations, can drive the cancer  development3.

One of the main challenges in cancer genomics research is to identify the driver mutations. Next generation 
sequencing and microarray techniques have been popular in characterizing driver mutations. These technolo-
gies can analyze cancer genomes for large cohorts of patients in a timely way, which allows more differentiation 
between driver mutations and passenger mutations than traditional Sanger sequencing technology. Although 
these are significant advancements, the development and application of new computational methods to analyze 
and characterize the vast amount of CNA data is still far behind the development of the technologies to gener-
ate the  data4.

One of the major approaches to identify genes with driver mutations is to find genes with a significantly 
higher mutation frequency or recurrently mutated genes in a collection of cancer patients. For example, The 
Cancer Genome Atlas (TCGA)  study5 applied this method to 91 glioblastoma (GBM) patients and identified eight 
significantly mutated genes with false discovery rate (FDR) smaller than 0.001. In particular, they observed that 
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the TP53 gene is mutated in approximately 38% of the patients. Another TCGA  study6 examined 316 high-grade 
serous ovarian cancer patients and identified around 302 TP53 mutations. However, this approach is challenging. 
Although some cancer genes have higher mutation frequency rates (e.g., TP53) than non-cancerous genes, most 
of them have much lower mutation  frequencies7.

However, due to the spatial heterogeneity of cancer genomes, studying individual mutated genes is not suf-
ficient to understand the mechanism of cancer. The single gene test sometimes fails to find other significant 
genes that are responsible for driver  mutations1. While the main reason behind the failure can be an insufficient 
number of patients, individual gene interactions that affect biological function may also affect results. In particu-
lar, when the specific functions of the genes are altered due to mutation, the interaction between mutated genes 
can reveal information related to the mutation that is necessary for understanding the progression of cancer. 
Therefore, instead of a single gene, driver mutations can target groups of genes, which can be broadly defined as 
gene clusters or subnetworks in networks or  pathways8,9.

Compared to analyzing genetic mutation data at single gene level, pathway and network analyses can extract 
more information as these methods deal with multiple genes in the same pathway or network, so the probabil-
ity that a molecular event will pass the statistical threshold is increased and the number of hypotheses tested 
is  reduced10. Another benefit of pathway analysis is that results obtained for different related datasets can be 
compared easily, as pathway information can ensure the interpretation of the data is done in a common feature 
 space11. This approach to test associations between mutation and phenotype at the pathway level has been 
implemented in different  studies12–14. A recent  study15 conducted a pathway-level analysis to predict the overall 
survival of urothelial cancer patients. They found that 35 out of 103 samples had mutations in at least one of 
TP53 and PIK3CA, which consists of 16% and 9% of the total number of mutations identified in the study. The 
authors also found that around 65% of the patients had CNA mutations.

Pathway level analysis can increase the statistical power to identify significantly mutated pathways in specific 
cancers and has better biological interpretation. However, the approach of identifying pathways being mutated 
in large numbers of patients has its limitations too, because only existing pathways are considered, ignoring the 
topology of the pathways. Moreover, the pathways are analyzed in isolation but they interact in larger networks, 
which may neglect many groups of interacting genes that are not in known pathways but have significant asso-
ciation with clinical  phenotypes3.

In recent years, methods to identify mutated subnetworks among cancer genomes have been introduced. 
Cerami et al.16 proposed a network-based approach based on the hypothesis that cellular networks are modular 
and have inter-connected proteins that perform specific biological functions. The authors used a unified molecu-
lar interaction network consisting of both protein–protein interactions and pathways to perform an integrated 
network analysis for identifying candidate driver mutations. Their approach was a combination of sequence 
mutations and CNAs.

Vandin et al.1 introduced another approach to find subnetworks by considering that mutations in the subnet-
work are correlated with the clinical parameter of survival time of patients. They presented an algorithm called 
HotNet to identify significantly mutated subnetworks determined by the mutation frequency of individual genes 
along with the interactions between them. They considered the mutation as a source of heat on the network 
and extracted the ‘hot’ nodes. The significance of the subnetworks was calculated using both the topology of the 
networks and the frequency of mutation of the genes. Leiserson et al.17 introduced HotNet2, a modified version 
of the HotNet algorithm. They used this updated algorithm to analyze a Pan-Cancer dataset of 3281 samples 
from 12 cancer types. The authors identified significantly mutated subnetworks with known pathways such as 
TP53, RTK, and PI3K. The HotNet and its variant of HotNet2 demonstrated the advantages of using network 
approaches to identify mutated subnetworks with clinical prognosis significance. However, the authors noted 
that some genes with very high individual mutation scores were absent from the network analysis results and 
stated that this is due to a lack of data as well as false negatives in the analyzed data.

One key limitation of the subnetwork-based approaches is that they do not assign the same mutated genes 
into different subnetworks although overlapping subnetworks are possible. Nepusz et al. developed a network-
based clustering algorithm, called  ClusterOne18, which can identify overlapping clusters in protein interaction 
networks. This motivates us to apply the two well-established network-based clustering algorithms, HotNet2 
and ClusterOne, to analyze breast cancer CNA mutation data. We measure the mutation similarity of gene pairs 
and use the two algorithms to identify significantly mutated subnetworks and test the association of the genes 
in the subnetworks with breast cancer patients’ survival.

Materials and methods
Data collection and filtering. Identification of significantly mutated subnetworks in the breast cancer 
genome requires both patient-specific mutations and gene interaction networks. For patient-specific mutation 
data, we used CNA data obtained from the METABRIC (Molecular Taxonomy of Breast Cancer International 
Consortium)19. The CNA calls were identified from approximately 2000 clinically annotated primary fresh fro-
zen breast cancer specimens along with a portion of normal specimens from different North American and 
European tumor banks. Initially, a set of 997 samples including paired DNA and RNA profiles were analyzed. 
The authors referred to these 997 female patient data as the ‘Discovery set’. A second group of 995 samples 
was referred to as the ‘Validation set’, for which the paired DNA and RNA profiles were not available during the 
initial study and collected at other time periods. The purpose of the Validation set was to test the reproducibility 
of the clinical outcome associations.

In the data sets, there were five discrete somatic states: HOMD, HETD, NEUT, GAIN and AMP. We mapped 
these five states to three CNA states: HOMD and HETD were broadly called ‘loss’ and GAIN and AMP were 
broadly called ‘gain’ and NEUT was represented by ‘neutral’. The CNA calls were represented for gain, loss and 
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neutral as 1, − 1 and 0 respectively. We filtered out the data where the CNA length was 5 kilobase (KB) or longer 
and the number of probes was ten or more for the remaining analyses. In the Discovery set, 131,956 calls (38,647 
CNA loss and 93,309 CNA gain) remained after the filtering. In the Validation set, 137,896 calls (42,824 CNA 
loss and 95,072 CNA gain) remained.

The gene interaction network data was taken  from20, which included 141,296 interactions between 13,460 
human proteins. Interactions from gene expression data were not included. The interactions are primarily 
protein–protein interactions (PPI), but the dataset also included other types of physical interactions such as 
regulatory interactions, protein complexes from the comprehensive resource of mammalian protein complexes 
(CORUM) database and signaling  interactions21. The authors treated the interactions as an undirected network.

Methods. We applied two well-established network analysis approaches to identify the clinically relevant 
and statistically significantly mutated subnetworks as shown in Fig. 1. Briefly speaking, we first retrieved gene 
information in each sample-specific individual CNA region; then we calculated the gene-specific mutation fre-
quency and the gene-pair specific mutation similarity score, which, together with the gene interaction network, 
were passed to the HotNet2 and ClusterONE tools to identify statistically significantly mutated subnetworks and 
gene clusters, respectively; finally, we evaluated the clinical and pathway significance of the overlapping genes 
identified in both the mutated subnetworks and gene clusters. These steps are detailed as follows.

Retrieve CNA-specific genes. We retrieved gene information for each of the patient-specific CNA regions 
using the BiomaRt R  package22 (Fig. 2A). We used the ‘hsapiens_gene_ensembl’ dataset from the ENSEMBL 
database, which contains human genes. We used the hg19 version of the database to retrieve the CNA-specific 
genes. The parameters we used are from the filtered CNA data: the chromosome ID, and the start and end 
locations of the CNAs in the chromosome. After we retrieved the genes for each CNA region, we generated a 
sample-by-gene CNA mutation matrix, where the rows were the filtered samples and the columns were the genes 
found in the CNA regions. The gene- and sample- specific CNA mutation matrix was generated by expressing 
the non-mutated genes as ‘0’ and mutated genes as ‘1’ for gain and ‘− 1’ for loss, respectively (Fig. 2B).

Calculate gene-specific mutation frequency. After generating the mutation matrix, we calculated the 
gene-specific mutation frequency. The main motivation behind calculating gain and loss frequencies was to 
have a measure for gene-specific mutation score. We used this mutation frequency as the ‘heat score’, which is 
required to run the Hotnet2 software, as described below.

The mutation frequency for each gene i was calculated as:

Figure 1.  Flowchart to identify significantly mutated gene subnetworks. HotNet2 and ClusterONE were used 
to identify significantly mutated gene subnetworks or clusters from a curated gene interaction network and 
CNA mutation data in the METABRIC Discovery and Validation sets, respectively. The clinical and biological 
pathway significance of the overlapping genes in the subnetworks (clusters) identified by both algorithms in 
both the Discovery and Validation sets were evaluated.
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Here Ns denotes the total number of samples in the dataset, whereas ng and nl are the total number of CNA gains 
and CNA losses of gene i in all the samples, respectively. fig and fil are the mutation frequencies of CNA gain 
and loss in gene i, respectively.

Calculate gene-pair specific mutation similarity. Since our aim is to identify subnetworks and clusters 
with genetic defects in the gene interaction network we collected, which is unweighted, we need to first measure 
the genetic defects at gene-pair level. To do this, we calculated the pairwise gene mutation similarity in the gene 
interaction network by taking the genetic mutation frequencies into account. We used this measure of gene-pair 
specific mutation score as the weight for each interaction in the network. This similarity score for each pair is 
used as an input to ClusterONE, as described below. The original ClusterONE algorithm had a constant weight 
(= 1) for all the interactions, and the authors stated that using a weighted approach may yield improved  results18.

For simplicity, we used the cosine  similarity23 and Eqs. (1) and (2) to measure the gene-pair mutation 
similarity:

The similarity measure sim
(

i, j
)

 for genes i and j is defined by mutation frequency f  . In our case, we have two 
types of mutation frequencies: gain ( k = g ) and loss ( k = l ). For our work, we treated the gene-pair similarity 
as a network edge weight. As the gene interaction network we obtained  from20 is unweighted, we have assigned 
the gene similarity to the edges of the network.

Identify significantly mutated subnetworks. We used two different algorithms to identify significantly 
mutated subnetworks from our collected breast cancer CNA data and the gene interaction network. HotNet2 
identifies mutated subnetworks of a genome-scale interaction  network17, while ClusterONE identifies clusters or 
groups of interacted genes in a gene interaction  network18. We briefly discuss these two algorithms.

HotNet2. HotNet2 (HotNet diffusion oriented subnetworks) identifies subnetworks that are mutated more fre-
quently than the general rate of mutation by chance. The authors used an insulated heat diffusion approach, which 
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Figure 2.  From sample specific CNA regions to gene- and sample-specific CNA mutations. Gene information 
was retrieved for each sample-specific CNA region (A), where regions labeled as blue represent no CNA change, 
regions labeled as red represent as CNA gain and regions labeled as green represent as CNA loss. The non-
mutated genes are expressed as ‘0’ and mutated genes are expressed as ‘1’ for gain and ‘− 1’ for loss, respectively 
(B).
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not only considers the mutation score for each gene, but also leverages the topology of interactions between the 
genes. The inputs to HotNet2 are: a heat score vector h that contains the mutation score for each gene, and an 
unweighted graph G = (V ,E), where each node v ∈ V corresponds to a gene/protein and each edge e ∈ E cor-
responds to an interaction between the corresponding genes/proteins. In the first step, the algorithm performs 
‘heat diffusion’ to extract the local topology of the interaction network. At each iteration, the nodes (genes) in the 
network send and collect heat from the neighboring nodes. The authors define an insulating parameter β , which 
denotes the fraction of the heat retained by each node at each iteration. The iterations terminate when all nodes 
in the graph reach equilibrium. HotNet2 identifies strongly connected components in the network and returns a 
list of subnetworks, each containing at least k genes for a parameter k. The statistical significance of the returned 
list of subnetworks is then calculated for the number of subnetworks with at least k genes that are returned and 
the false discovery rate for the subnetworks are also estimated. In our study, the gene-specific mutation score h 
is calculated to be equal to the mutation frequency fi

(

fi = fig + fil
)

.

ClusterONE. The ClusterONE (Clustering with overlapping neighborhood expansion) algorithm uses a greedy 
growth process to find groups of genes or proteins (here we treat gene and protein as interchangeable terms) with 
high cohesiveness in a gene interaction network. The authors generalized two structural properties of a gene 
module or protein complex represented by a subgraph to define cohesiveness for each group: the interaction 
between its subunits and the separation from the rest of the network. For a group of proteins P , the cohesiveness 
C(P) is defined by:

The term ‘internal edges’ is used to define the edges that have both endpoints with the given group and 
‘boundary edges’ are the edges that have a connection with the rest of the network. The constant p is a penalty 
term to model the uncertainty in the data.

The ClusterONE algorithm has three main steps. First, the algorithm follows a greedy approach to select 
the protein which has the highest degree as the first seed, and starts to grow a cohesive group from the initial 
seed based on (4). While selecting the next seed, the algorithm considers all the proteins that are not currently 
included in any other networks (e.g. pathways or protein complexes). Then the node with the highest degree is 
taken again. This step continues until there are no more proteins left to consider. The growth process ensures 
that any node from the group can be removed in later iterations if necessary. This includes the initial seed node. 
The seed node is selected as an outlier if it is not included in the final group. This means that the node will not 
be included in any of the clusters.

In the next step, highly overlapping pairs are merged based on the optimal cohesive groups. The authors 
merge pairs of groups which has an overlap score ( ω ) larger than 0.8. For two protein sets X and Y  , the authors 
defined ω as:

The authors state that the mergings may be performed one after another or concurrently. For the first 
approach, the problem is that the overlap scores need to be recalculated in each iteration, after each merging 
occurs. To avoid this problem, ClusterONE uses the concurrent approach. From a collection of cohesive groups, 
ClusterONE constructs an overlap graph. Each node in the overlap graph represents a cohesive group in the 
original graph, and two nodes are connected in the overlap graph if the overlap score is more than the selected 
threshold ( ω ≥ 0.8) . Nodes that have a direct (one-to-one) or indirect (via paths of edges) connection are then 
merged to convert them into subnetworks (e.g. pathways or protein complexes). If a node does not have an edge, 
no merging is done and it is promoted to a subnetwork candidate.

In the final step, the algorithm discards complexes which have a density below a particular threshold δ. In 
our study, we consider the gene network to be a weighted graph and the weight of each gene pair is the gene-pair 
mutation similarity sim

(

i, j
)

. The cluster-specific p-value is calculated based on an one-sided Mann–Whitney U 
test performed on the in-weights and out-weights of the vertices in the cluster. To adjust the p-values from the 
network analysis, we adjusted the p-values using Benjamini–Hochberg procedure implemented in R function 
p.adjust.

Parameters used to run HotNet2 and ClusterONE. HotNet2 runs in four consecutive steps: The first 
step is to create an influence matrix that defines an "influence score" for each gene pair in the network based on 
known gene interactions and a heat diffusion process. The second step is heat score generation. In our case, the 
heat scores were directly calculated from the mutation score. The third step is delta selection, which uses permu-
tated data sets to select thresholds that should be used for edge weight removal in the final step. The output of this 
step includes a list of selected thresholds for each permutation test. We took the median of the deltas across all 
permutation tests we performed. The final step identifies the mutated subnetworks based on the influence matrix 
and heat score, removing edges with weight less than delta, and extracting the resulting connected components. 
This step does not need any additional parameters. The parameters we used in each of the steps are shown in 
Additional File 1: Table S1.

To run ClusterONE, we only need a weighted network. We did not change any additional parameters pro-
vided by the software.

(4)C(P) =
Total weight for internal edges

Total weight for internal edges+ total weight for boundary edges+ p

(5)ω(X,Y) =
|X ∩ Y |2

|X||Y |
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Validating results using discovery and validation sets. We first obtained the subnetworks identified 
from the Discovery and Validation datasets by running the HotNet2 software step by step using the parameters 
described in Additional File 1: Table S1, respectively. The validation of the mutated subnetworks is done by find-
ing the mutated subnetworks from the Validation set, which have the overlap score threshold at least 50% with 
the mutated subnetworks identified from the Discovery set. The clusters identified by running ClusterONE from 
both the Discovery and Validation sets were also validated in the same way.

Overall survival analysis. To identify potential network biomarkers for breast cancer prognosis, we evalu-
ated the association of mutation patterns of the genes in the identified significantly mutated subnetworks from 
HotNet2 and clusters from ClusterONE with breast cancer survival. To do this, for a given significantly mutated 
subnetwork or cluster, we first extracted a submatrix from the mutation influence matrix generated previously 
that included the genes that we found in the identified subnetwork or cluster. Then, for each gene i in the subnet-
work or cluster, we have a gene-specific mutation frequency fi

(

fi = fig + fil
)

 as shown in (1) and (2), so we can 
calculate the sample-specific mutation score as:

Here pj is the mutation score for sample j, G′ is the number of genes in the subnetwork or cluster, fi is the mutation 
frequency score for the gene i , and vji is the copy number alteration status of gene i in sample j (see Fig. 2B). For 
example, from the generated mutation matrix shown in Additional File 2: Table S2, we can calculate the sample-
specific weighted mutation score for sample 1 as p1 = (0.3 × 1) + (0.38 ×|−1|) + (0.5 × 1) = 1.18.

We used the product-limit method, also known as the Kaplan–Meier (KM)  method24, to estimate a survival 
function. The KM method is a nonparametric technique that uses the exact survival time for each individual in 
a sample instead of grouping the times into intervals. To perform KM analysis, we categorized the breast cancer 
patients into a high risk and a low risk groups based on the sample-specific mutation score using R xtile func-
tion. We decided the optimal cut-point of the mutation score that results in a minimum p value of log-rank tests. 
The minimum p value approach was originally developed by Miller and  Siegmund25 to dichotomize continuous 
predictors with binary outcomes, which was later extended to survival outcomes by Mazumdar and  Glassman26.

To evaluate the robustness of using the sample-specific mutation score to stratify the breast cancer patients 
into high and low risk groups, we calculated the sample-specific score in each of the identified significantly 
mutated clusters and subnetworks using a permutation-based approach as follows:

(1) For each of the identified clusters and subnetworks, we randomly generated 1000 clusters and subnetworks 
by permutating the rows of the copy number alteration matrix (rows are genes and columns are samples), 
which have the same size as the specified cluster or network;

(2) For each of the permutated cluster and subnetworks, we calculated sample-specific mutation score using 
Eq. 6.

(3) The KM survival analysis was performed based on the permutated sample-specific score for each of 
the identified clusters and subnetworks. Finally, the cluster and subnetwork-specific permutation p 
value is calculated as ppermi =

1+#{p
permutated data
i <preal datai }

1001
, where i is the given cluster or subnetwork, 

p
permutated data
i and preal datai  are the survival p value of cluster or subnetwork i based on the its permutated 

and real data, respectively.

Pathway enrichment analysis. Using the gene list from each of the identified significantly mutated 
subnetworks and clusters, we performed the enrichment analysis of gene ontologies (biological processes and 
molecular functions) and biological pathways (REACTOME and KEGG) using the Enrichr  software27. The Enri-
chr contains a diverse and up-to-date collection of over 100 gene set libraries available for analysis and download. 
It is used to perform pathway enrichment analysis on the identified overlapping genes from both ClusterONE 
clusters and Hotnet2 subnetworks to identify which pathways are overrepresented in the overlapping genes.

Expression analysis of the identified genes. For the identified genes from our network analysis, we 
first evaluated their expression patterns in normal tissues from Genotype-Tissue Expression (GTEx)  portal28 as 
well as breast cancer tissue in METABRIC and TCGA data sets. We then examined the association of their gene 
expression levels with breast cancer patient’s overall survival using both METABRIC and TCGA gene expression 
data sets. We fitted Cox’s proportional hazards (COX-PH) model of the identified genes for TCGA, METABRIC 
validation, and METABRIC discovery data, respectively. Using the coefficients (coeff) extracted from COX-PH 
models, we then generated a signature as risk score by combining the genes’ expressions (E) for the three data-
sets, respectively, which is calculated based on: Risk score (RS): RSj =

∑

i coeffi ∗ Ei , where i is the ith gene and 
j is the jth sample. We binarized the expression levels for the combined risk score into a high risk and low risk 
groups using R xtile function. The survival differences between these two groups for the risk score were assessed 
by Kaplan–Meier (KM) curves.

Ethical approval and informed consent. This is not applicable to this study since all the data used in 
the study are publicly available.

(6)pj =

G′
∑

i=1

fi · |vji|
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Results
We first described the clinical characteristics of the Discovery and the Validation data sets and then compared the 
mutated subnetworks identified from the two data sets using the two algorithms we described in the “Method” 
section.

Clinical characteristics. The Discovery and Validation data sets have very similar distributions in age, 
and expression levels of progesterone receptor (PR) and Her2 (ERB-B2) (p > 0.05) (Table 1). On the other hand, 
the two sets have statistically significant differences in PAM50 subtypes, grade, and expression of estrogen (ER) 
(p < 0.05).

Mutation frequency and mutation similarity. Based on the individual-specific CNA positions, 
we retrieved 18,341 genes in both the Discovery and Validation sets. Based on the gene- and sample-specific 
mutation matrix (Fig. 2B), the genes with the highest number of CNA mutations were SLC41A1 and LEMD1, 
both with a CNA gain mutation frequency of approximately 46%. In both of the Discovery and Validation sets, 
approximately 70% of the genes have a mutation frequency lower than 10%. There are 6.1% and 7.3% of the genes 
with a mutation frequency higher than 30% in the Discovery and Validation sets, respectively. The gene-specific 
mutation frequencies were treated as mutation scores in HotNet2 to identify significantly mutated subnetworks.

We calculated the mutation similarity for the gene pairs of the 141,296 gene interactions from the gene 
interaction network. We divided the interactions into three different groups: high mutation group (interactions 
with a mutation similarity score at least 0.9), medium mutation group (interactions with a mutation similarity 
score less than 0.9 but at least 0.5) and low mutation group (mutation similarly scores below 0.5). Based on these 
thresholds, we found a total of 51,953, 37,251 and 52,092 interactions in the high, medium and low mutation 
groups, respectively. The gene-pair specific mutation similarities were treated as weights for the gene interaction 
network in ClusterONE, to identify significantly mutated gene clusters.

Significantly mutated subnetworks identified by HotNet2. We found a total of 99 and 79 subnet-
works that have at least three interacting genes from the Discovery and Validation data sets, respectively. Ten of 
these subnetworks were identified as significantly mutated subnetworks based on (1) a false discovery rate < 0.1; 
(2) an overlapping rate (number of overlapping genes divided by the minimum number of genes in either the 
Discovery or Validation set) being greater than or equal to 50% (Table 2). All of these 10 subnetworks have 3–7 
interacting genes.

Significantly mutated gene clusters identified by ClusterONE. We identified 18 significantly 
mutated gene clusters in both the Discovery and Validation sets from 2242 clusters with cluster size larger than 
2 in the Discovery set and 2231 clusters with cluster size larger than 2 in the Validation set, which have (1) an 
adjusted p value < 0.1; and (2) an overlapping rate greater than or equal to 50% (Table 3). Five of the 18 clus-
ters have at least 50 genes. Ten of the 18 clusters have fewer than 30 genes. The heatmaps in Fig. 3A–C, show 
the overlapping rate between the 18 clusters from the Discovery, Validation and Discovery vs. Validation sets, 
respectively. It appears that some of the clusters have shared genes (that is, the same gene can be assigned to 
multiple clusters). For example, cluster C1 has shared genes with clusters C2, C3 and C12 in both the Discovery 
and Validation sets, respectively. Table 3 shows the number of overlapping genes between the clusters from the 

Table 1.  Clinical characteristics. *For continuous variables (Age), quartiles are presented. † p values were 
determined by Wilcoxon rank sum test for continuous variables and Chi-square test for categorical variables. 
‡ The number of patients in each category and its proportion are presented. In ER-expr, PR-expr and Her2-expr, 
only the number of positive case are presented.

Characteristic METABRIC discovery METABRIC validation p†

Age 61 (51, 70)* 63 (52,71) 0.2107

Subtype 0.0005

Normal 58 (6%)‡ 144 (15%)

LumA 454 (46%) 255 (26%)

LumB 266 (27%) 222 (23%)

Her2 84 (9%) 153 (15%)

Basal 118 (12%) 211 (21%)

Grade 0.0095

1 68 (7%) 98 (11%)

2 407 (42%) 356 (40%)

3 505 (51%) 444 (49%)

ER-expr 784 (80%) 712 (72%) < 0.0001

PR-expr 517 (53%) 517 (52%) 0.9282

Her2-expr 112 (11%) 132 (13%) 0.1940
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Discovery and Validation data sets. It is clear that all of the 18 clusters identified in the Discovery set were vali-
dated by the Validation set.

Comparison of subnetworks identified by HotNet2 and clusters identified by ClusterONE. We 
compared the significantly mutated subnetworks (Table 2) identified by Hotnet2 with the significantly mutated 
clusters (Table 3) obtained by ClusterONE (Fig. 3D). Three significantly mutated subnetworks S2, S3 and S4 
have overlapping genes with significantly mutated clusters C5, C9, and C16, respectively, but there is only 
one significantly mutated subnetwork (subnetwork S4 in Table  2 and cluster C16 in Table  3), which has an 
overlapping rate larger than 50%. All four genes in the subnetwork S4 are in the cluster C16 with eight genes. 
The gene cluster C16 identified by ClusterONE includes eight genes RDH5, RDH8, RDH10, RDH11, RDH12, 
RDH13, RDH14, SDR16C5 in both the Discovery and Validation sets. The subnetwork S4 identified by HotNet2 
includes four genes RDH8, RDH11, RDH12 and RDH14 in the Discovery set and seven genes RDH5, RDH8, 

Table 2.  Significantly mutated subnetworks identified by HotNet2. The subnetworks shown in this table were 
selected based on (1) adjusted p value < 0.1; and (2) the overlapping rate (number of overlapping genes divided 
by the minimum number of genes in either Discovery or Validation set) being larger than or equal to 50%. 
*Subnetworks identified in Validation set with the largest number of overlapping genes for a given subnetwork 
identified in Discovery set.

Discovery set Validation set

No. of overlapping genes Overlapping subnetwork IDSubnetwork ID No. of genes Subnetwork ID* No. of genes

18 5 9 6 5 S1

32 4 6 7 4 S2

38 4 20 5 4 S3

49 4 8 7 4 S4

50 4 21 5 4 S5

79 3 23 4 3 S6

81 3 33 4 3 S7

89 3 16 6 3 S8

93 3 35 4 3 S9

96 3 13 6 3 S10

Table 3.  Clusters identified by ClusterONE in Discovery and Validation sets. The clusters (Clus) shown in 
this table were selected based on (1) adjusted p value < 0.1; and (2) the overlapping rate (number of overlapped 
genes divided by the minimum number of genes in either Discovery or Validation set) being greater than or 
equal to 50%.

Discovery set Validation set

No. of overlapped 
genesClus ID

No. of genes in 
clusters

p value (before 
adjustment) Adjusted p value Cluster ID

No. of genes in 
clusters

p value (Before 
Adjustment) Adjusted p value

C1 275 0 0 C1 280 0 0 269

C2 154 0 0 C2 154 0 0 154

C3 77 0 0 C3 77 0 0 77

C4 58 0 0 C4 59 0 0 58

C5 55 0 0 C5 55 0 0 55

C6 40 0 0 C6 40 0 0 40

C7 24 1.55E−09 4.95E−07 C7 24 1.55E−09 4.94E−07 24

C8 35 9.17E−08 2.57E−05 C8 37 8.36E−08 2.33E−05 33

C9 46 3.34E−07 8.31E−05 C9 45 1.43E−07 3.54E−05 41

C10 19 1.05E−06 2.35E−04 C10 19 9.06E−07 2.02E−04 19

C11 19 1.46E−06 2.96E−04 C11 26 1.01E−06 2.05E−04 19

C12 26 1.58E−06 2.96E−04 C12 51 1.17E−05 2.18E−03 26

C13 13 8.60E−06 6.29E−03 C13 12 5.84E−05 9.3E−03 12

C14 12 3.93E−05 8.73E−03 C14 20 8.97E−05 1.33E−02 12

C15 16 5.84E−05 3.93E−02 C15 16 2.12E−04 2.95E−02 16

C16 8 2.81E−04 5.18E−02 C16 8 3.93E−04 5.15E−02 8

C17 16 3.93E−04 6.04E−02 C17 16 4.24E−04 5.25E−02 16

C18 17 6.03E−04 7.11E−02 C18 17 6.79E−04 7.8E−02 17
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RDH11, RDH12, RDH13, RDH14 and RLBP1 in the Validation set. As shown in Fig. 4, the two genes RDH11 and 
RDH12 are highly mutated in Discovery set (Fig. 4A) and the six genes RDH8, RDH11, RDH12, RDH13, RDH14 
and RLBP1 are highly mutated in Validation set (Fig. 4B).

Kaplan–Meier analysis using the sample-specific mutation score showed that the mutation patterns of the 
significantly mutated subnetwork S4 identified by HotNet2 is significantly associated with breast cancer survival 
in the Discovery set (Fig. 5A) and the Validation set (Fig. 5B). The same trend is also observed in the gene cluster 
C16 identified by ClusterONE in both the Discovery set (Fig. 5C) and the Validation set (Fig. 5D). The survival 
permutation p value for the significantly mutated subnetwork S4 and cluster C16 in the Discovery set and the 
Validation set are 0.002, 0.003, 0.005 and 0.006, respectively.

Generally speaking, the patients with high mutation scores are associated with worse outcomes. In other 
words, they have significantly shorter survival time than those with low mutation scores.

Enrichment analysis. We further performed enrichment analysis of the seven genes RDH5, RDH8, 
RDH10, RDH11, RDH12, RDH13, RDH14 via the Enrichr software. Our analysis revealed that the genes are 
significantly over-represented in retinoid metabolic biological process, retinol dehydrogenase activity molecular 
function and retinol metabolism (Fig. 6).

Figure 3.  Heatmap of overlapping score for each pair of gene clusters. The overlapping score is defined as the 
number of overlapping genes divided by the minimum number of genes in either of the pair of gene clusters. 
The score is represented with the bar in the right, red being the highest overlapping score (1.0) and grey being 
the least (0.0). (A) Gene clusters identified by ClusterOne in the Discovery set; (B) Gene clusters identified by 
ClusterOne in the Validation set; (C) Gene clusters identified by ClusterOne in the Discovery set and Validation 
set; (D) The pairs of gene clusters identified by HotNet 2 (X-axis) and ClusterOne (Y-axis). Note: The gene 
clusters from ClusterOne are the overlapping gene clusters (see Table 3).
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Expression analysis of the identified genes. To explore the expression patterns of the seven genes 
RDH5, RDH8, RDH10, RDH11, RDH12, RDH13, RDH14 in normal tissues as well as breast cancer tissue, we first 
drew a heat map of the expression levels of the genes across normal human tissues from GTEx portal. As shown 
in Fig. 7, RDH5, RDH10, RDH11, RDH13 and RDH14 have a higher expression rate in breast tissue (underlined 
in red) while the expression rate of RDH8 and RDH12 appears to be rather lower in general. Furthermore, we 
also analyzed the expression levels of the genes at 50% and 90% quantiles in breast cancer samples from META-
BRIC and TCGA, respectively. Interestingly, as shown in the Table 4, the expression levels of the five highlighted 
genes (RDH5, RDH10, RDH11, RDH13 and RDH14) seems to be also higher compared to the other genes in 
breast cancer patients of the METABRIC data and the TCGA data.

Furthermore, we generated an expression risk score for each of the breast cancer patients in the METABRIC 
Discovery, Validation and TCGA sets using the seven genes RDH5, RDH8, RDH10, RDH11, RDH12, RDH13, 
RDH14. The KM survival showed the breast cancer patients with higher expression risk scores are significantly 
associated with worse outcomes while the breast cancer patients with lower expression risk scores are associated 
with good outcomes for METABRIC Discovery (Fig. 8A), Validation (Fig. 8B) and TCGA (Fig. 8C) sets, respec-
tively, suggesting the robust efficacy of the identified potential survival biomarkers in breast cancer.

Discussion
Many studies have found that retinoid receptors modulate various effects of retinoids, including estrogen metabo-
lism in human breast  carcinomas29,30. Interestingly, retinoids (such as vitamin A and its natural and synthetic 
analogs) have been used as potential chemotherapeutic or chemopreventive agents because of their differentiative, 
anti-proliferative, pro-apoptotic properties. Our analysis highlighted a number of retinol dehydrogenase (RDH) 
genes, belonging to the short-chain dehydrogenase/reductase (SDR) superfamily, to be significantly associated 
with breast cancer survival. To date, 47 SDR families, corresponding to at least 82 RDH genes, have been identi-
fied in human  genome31. SDR superfamily constitute one of the largest enzyme superfamilies possessing more 
than 46,000 highly diverse  members32 with only 15–30% sequence  similarity33. The members of this enzyme 
family have been identified in all domains of life from bacteria to  eukaryotes32. Based on structural differences in 
chain length, glycine binding motifs, and coenzyme binding motifs SDR families are grouped as classical SDRs 
and extended  SDRs33. They play critical functional roles such as function in steroid hormone, prostaglandin and 
retinoid metabolism, signaling, and metabolism of xenobiotics such as drugs and  carcinogens31. The functional 
role of SDR genes is highly related to the pathways contributed in breast cancer occurrence. Proliferation of 
hormone-dependent breast cancer is led by local production of  estrogens34. Blockade of prostaglandin biosyn-
thesis is considered as a prevention strategy against breast  cancer35. Additionally, recent studies have delineated 
an association between retinol and breast cancer risk of ER-tumors36.

The members of SDR family are located in different part of the genomes on different chromosomes. RDH5, 
RDH8, RDH10, RDH11, RDH12, RDH13, RDH14 and SDR16C5, which we introduced as breast cancer survival 
biomarkers, are located in 12q13.2, 19p13.2, 8q21.11, 14q24.1, 14q24.1, 19q13.42, 2p24.2 and 8q12.1 genomic 
regions, respectively. They mostly participate in retinol dehydrogenation which is highly in consistence with 
He et.al findings which reported the dietary intake of β-carotene to be significantly associated with improved 
breast cancer overall  survival37. It is noteworthy that dietary β-carotene is bio-converted to retinol (also known 
as vitamin A) which is essential for “the promotion of general growth, maintenance of visual function, regulation 
of differentiation of epithelial tissues, and embryonic development”38.

Figure 4.  Subnetworks identified by HotNet2. The subnetworks (S4 in Table 2) identified by HotNet2 in the 
Discovery and Validation sets, respectively. For the identified subnetworks, the heat (mutation level) is shown in 
the bottom, blue being the least mutated genes and red being the highest mutated gene in the network. (A) S4 
cluster identified in the Discovery set; (B) S4 cluster identified in the Validation set.
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We acknowledge that there are many excellent algorithms for identifying mutated subnetwork. For example, 
Hofree et al. developed an elegant network-based stratification method to integrate gene network and somatic 
tumor variants for clustering patients into subtypes with different clinical  outcomes39. The focus of this method 
is more on identification of tumor subtypes. Recently, Wiewie et al. applied different cluster methods, includ-
ing the ClusterONE used in this study, to analyze network-based or tabular format data and found there was 
no universal best  performer40. Furthermore, Batra et al. analyzed different pathway enrichment tools and they 
also showed that none of the methods consistently outperformed the  others41. Hence, when we selected the 
algorithms for this study’s analysis, we have kept two issues in mind: (1) well-developed algorithms published 
on high-profile journals; (2) biologically-driven. The HotNet2 was specifically designed for identifying mutated 
subnetworks while the ClusterONE was specifically designed for identifying overlapping clusters. It is a common 
phenomenon that the same genes/proteins can be played roles in multiple pathways/function groups. One of key 

Figure 5.  Kaplan–Meier survival analysis for the significantly mutated subnetwork S4 and cluster C16 based 
on real data. Survival plots based on the sample-specific mutation scores from the results of HotNet2 and 
ClusterONE. Patients were stratified into those with high mutation scores and those with low mutation scores 
based on the genes in the subnetwork S4 of HotNet2 in both the Discovery (A) and Validation (B) sets and gene 
cluster C16 of ClusterONE in both the Discovery (C) and Validation (D) sets. The blue curve shows the survival 
probability for the patients with low mutation scores and the red curve shows the survival probability for the 
patients with high mutation scores. The corresponding p-value is also shown in each plot.
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Figure 6.  Enrichment analysis of the genes in significantly mutated subnetwork S4. Graph bars are sorted by p 
value ranking. The length of the bar represents the significance of that specific gene set. Light red colored bars 
have a p value < 1 ×  10–6.

Figure 7.  Expression patterns of the identify genes in normal human tissues from genotype-tissue expression 
(GTEx) portal. The Y-axis is the identified genes and X-axis is the human tissues in GETx portal.

Table 4.  Expression of the identified genes in breast cancer samples form METABRIC and TCGA.

Gene

METABRIC (combined 
discovery and validation set) TCGA 

50% quantile 90% quantile 50% quantile 90% quantile

RDH5 6.332 7.225 61.210 315.634

RDH8 5.461 5.672 0 2

RDH10 7.076 8.840 1131.0 6645.4

RDH11 8.726 9.289 4528.0 7967.4

RDH12 5.394 5.562 5 16

RDH13 7.732 8.483 649.0 1218.8

RDH14 8.649 9.107 1240.0 1976.2
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challenges in large-scale biomedical research is that there are many false positive discoveries. It is expected that 
the findings identified by multiple high-quality algorithms will be more robust than those identified in a single 
high-quality algorithm. Our findings showed that the group of genes we identified have potential prognosis for 
breast cancer based on their mutation burden.

Taken together, we believe that the role of our candidate genes in dehydrogenizing Vitamin A in addition to 
the mentioned roles of retinol can be evidence enough for the existence of a relationship between these genes 
and breast cancer survival.

Figure 8.  Kaplan–Meier survival analysis of the identified gene expression scores in METABRIC and TCGA 
data. Survival plots based on the sample-specific expression risk scores from METABRIC and TCGA data. 
Patients were stratified into those with high expression risk scores and those with low expression risk scores 
based on the identified genes in Discovery (A) and Validation (B) sets of METABRIC data and TCGA data (C).
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Conclusions
Since genes usually interact with other genes to execute their functions, gene networks can be modular and 
divided into subnetworks. It is reasonable to assume that clinically relevant mutations in breast cancer occur in 
closely interacting genes and breast cancer is an outcome of coordinated dysfunction of these closely connected 
subnetworks enriched with clinically informative cancer mutations.

We applied two well-established network analysis approaches to identify significantly mutated gene subnet-
works using breast cancer copy number alterations, which included the approach to identify overlapping mutated 
subnetworks. This makes more biological sense because a gene can be assigned to multiple subnetworks and genes 
are usually involved in multiple pathways. Taken together, we found a significantly mutated yet clinically and 
functionally relevant subnetwork. The mutational pattern of the subnetwork is significantly associated with breast 
cancer survival. The genes in the subnetwork are significantly enriched in the retinol metabolism KEGG pathway.

Data availability
All the data used in the study are publicly available. Users can access the data based on our reference citations.
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