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Abstract: Stereo matching is an open problem in Computer Vision, for which local features

are extracted to identify corresponding points in pairs of images. The results are heavily

dependent on the initial steps. We apply image decomposition in multiresolution levels,

for reducing the search space, computational time, and errors. We propose a solution to

the problem of how deep (coarse) should the stereo measures start, trading between error

minimization and time consumption, by starting stereo calculation at varying resolution levels,

for each pixel, according to fuzzy decisions. Our heuristicenhances the overall execution

time since it only employs deeper resolution levels when strictly necessary. It also reduces

errors because it measures similarity between windows withenough details. We also compare

our algorithm with a very fast multi-resolution approach, and one based on fuzzy logic.

Our algorithm performs faster and/or better than all those approaches, becoming, thus, a

good candidate for robotic vision applications. We also discuss the system architecture that

efficiently implements our solution.

Keywords: image analysis; fuzzy rules; multiresolution; sensor configuration; stereo

matching; vision
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1. Introduction

The goal of stereo vision is to recover 3D information given incomplete and possibly noisy

information of the scene [1, 2]. Depth (or shape) is useful for terrain mapping [3], robot controlling [4–7]

and several other applications. Shape from shading, structured light and stereoscopy are among the many

possible sources of information. In this work we propose enhancements to the determination of matching

points in pairs of images, which stems as the bottleneck of the stereo vision process.

Our approach consists of performing an initial coarse matching between low resolution versions of the

original images. The result is refined on small areas of increasingly higher resolution, until the matching

is done between pixels in the original images resolution level. This is usually termed “coarse to fine” or

“cascade correlation”.

Multiresolution procedures can, in principle, be performed in any order, even in a backwards and

forwards scheme, but our choice is based upon computationalconsiderations aiming at reducing the

required processing time. Multiresolution matching, in particular, is known to reduce the complexity

of several classes of image processing applications, including the matching problem, leading to fast

implementations. The general problem with multiresolution algorithms is that, more often than not, they

start with the coarsest resolution for all pixels and thus spend a long time. Our approach improves the

search for an optimal resolution where to find correspondence points.

The main contribution of this work is proposing, implementing and assessing a multiresolution

matching algorithm with starting points whose levels depend on local information. Such levels are

computed using a new heuristic based on fuzzy decisions, yielding good quality and fast processing.

The paper unfolds as follows. Section 2 presents a review of image matching, focused on the use

of multilevel and fuzzy techniques. Section 3 formulates the problem. Section 4 presents the main

algorithms, and Section 5 discusses relevant implementation details. Section 6 presents results, and

Section 7 closes with the main contributions, drawbacks andpossible extensions of this work.

2. State of the Art

Vision is so far the most powerful biological sensory system. Since computers appeared, several

artificial vision systems have been proposed, inspired by their biological versions, aiming at providing

vision to machines. However, the heterogeneity of techniques necessary for modeling complete vision

algorithms makes the implementation of a real-time vision system a hard and complex task.

Stereo vision is used to recover the depth of scene objects, given two different images of them.

This is a well-defined problem, with several text books and articles in the literature [1, 2, 8–11].

Disparity calculation is the main issue, making it a complexproblem. Several algorithms have been

proposed in order to enhance precision or to reduce the complexity of the problem [12–16]. Features

as depth (or a disparity map) are useful for terrain mapping [3], robot controlling [6, 7, 17] and several

other applications.

Stereo matching is generally defined as the problem of discovering points or regions of one image

that match points or regions of the other image on a stereo image pair. That is, the goal is finding

pairs of points or regions in two images that have local imagecharacteristics most similar to each

other [1, 2, 8–10, 18–20]. The result of the matching process is the displacement between the points
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in the images, or disparity, also called the 2.5D information. Depth reconstruction can be directly

calculated from this information, generating a 3D model of the detected objects using triangulation

or other mesh representation. Disparity can also be directly used for other purposes as, for instance,

real-time navigation [21].

There are several stereo matching algorithms, generally classified into two categories: area matching

and/or feature (element) matching [1]. Area matching algorithms are characterized by comparing

features distributed over regions. Feature matching uses local features, edges and borders for instance,

with which it is possible to perform the matching.

Area based algorithms are usually slower than feature basedones, but they generate full disparity

maps and error estimates. Area based algorithms usually employ correlation estimates between image

pairs for generating the match. Such estimates are obtainedusing discrete convolution operations

between images templates. The algorithm performance is, thus, very dependent on the correlation and

on the search window sizes. Small correlation windows usually generate maps that are more sensitive to

noise, but less sensitive to occlusions, better defining theobjects [22].

In order to exploit the advantages of both small and big windows, algorithms based on variable

window size were proposed [3, 22, 23]. These algorithms trade better quality of matching for shorter

execution time. In fact, the use of full resolution images fairly complicates the stereo matching process,

mainly if real time is a requirement.

Several models have been proposed in the literature for image data reduction. Most of them treat

visual data as a classical pyramidal structure. The scale space theory is formalized by Witkin [24] and

by Lindeberg [25]. The Laplacian pyramid is formally introduced by Burt and Adelson [26], but its first

use in visual search tasks is by Uhr [27]. Several works use it as input, mainly for techniques that employ

visual attention [28, 29].

Wavelets [30] are also used for building multiresolution images [31], with applications in stereo

matching [32–34]. Other multiresolution algorithms have also been used forthe development of

real-time stereo vision systems, using small (reduced) versions of the images [35, 36].

Multiresolution algorithms mix both area and feature matching for achieving fast execution [34, 37].

Multiresolution matching can even reduce the asymptotic complexity of the matching problem, but at

the expense of worse results.

Besides the existence of thesedirect algorithms, Udupa [38] suggests that approaches based on fuzzy

sets should be taken into consideration, considering the fact that images are inherently fuzzy. Such

approach should be able to handle realistically uncertainties and heterogeneity of object properties.

Several works use logic fuzzy clustering algorithms in stereo matching in order to accelerate the

correspondence process [39–46]; some of these technique achieve real time processing. Theidea is to

pre-process images, group features by some fuzzy criteria or guide the search so the best match between

features can be determined, or at least guided, using a smallset of candidate features. Fuzzy logic for

object identification and feature recovering on stereo images and video is also used [47–50].

Fuzzy theory is also applied to determine the best window size with which to process correlation

measures in images [51]. This is in certain degree related to our work, since we determine the

best resolution level to start stereo matching, which meansdetermining window size if only one level of
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resolution would be used. Fuzzy techniques have also been used in tracking and robot control with stereo

images [52–54].

Our proposed approach is rather different from the above-listed works and integrates multiresolution

procedures with fuzzy techniques. As stated above, the mainproblem with the multiresolution approach

is how to determine the level with which to start correlationmeasures. A second problem is that, even

if a good level is determined for a given pixel, this will not be the best for all the other image pixels,

because this issue is heavily dependent on local image characteristics. So, we propose the use of fuzzy

rules in order to determine the optimal level for each regionin the image. This proposal leads to the

precise determination of matching points in real time, since most of the image area is not considered in

full resolution.

Our algorithm performs faster and better than plain correlation, and it presents improved results with

respect to a very fast multi-resolution approach [17], and one based on fuzzy logic [41].

This paper extends results by Medeiros and Gonçalves [55] by presenting an updated literature review,

by a more detailed discussion and explanation about the proposed technique and by the presentation and

discussion of further results.

3. Stereo Matching Problem

In the stereo matching problem, we have a pair of pictures of the same scene taken from different

positions, and possibly orientations, and the goal is to discover corresponding points, that is, pixels

in both images that are projections of the same scene point. The most intuitive way of doing that is

by comparing groups of pixels of the two images to obtain a similarity value. After similarities are

computed, one may or may not include restrictions and calculate the matching that maximizes the global

similarity. Our proposal assumes (i) continuity of disparity, and (ii) uniqueness of the correct matching.

In general, given a point in one image, the comparison is not made with all points of the other image.

Using the epipolar restriction [2, 16], only pixels on a certain line in one image are the corresponding

candidates of a pixel in the other one. The orientation of this line depends only of the relative orientation

of the two cameras. The test images used in the current work have a horizontal epipolar line, thus pixels

are searched only in such direction.

We measure similarity with the normalized sample cross correlation between images

x = (x(i, j))1≤i≤m,1≤j≤n andy = (y(i, j))1≤i≤m,1≤j≤n, estimated by the linear Pearson correlation

coefficient as

rx,y =
n
∑

i,j[x(i, j)y(i, j)]− [
∑

i,j x(i, j)][
∑

i,j y(i, j)]
√

n
∑

i,j [x(i, j)]
2 − [

∑

i,j x(i, j)]
2
√

n
∑

i,j[y(i, j)]
2 − [

∑

i,j y(i, j)]
2
. (1)

If the objects are known to lie within a distance range, the search for the best match can be restricted

to a subset of the epipolar line. We will refer to this subset as the “search interval”, to avoid confusion

with the refining interval that will be defined latter.

Small search intervals, if can be defined, improve the quality of the resulting matching and avoid

false positives that are far from the desired match on the epipolar line. While for many problems this is

convenient, for some, remarkably in robotic vision, near objects are the most important ones, requiring

thus a full matching between the images.
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3.1. Plain correlation algorithm

We compare here the plain correlation and multiresolution matching approaches. Both algorithms

have as common attribute the window size. Although some authors recommend the use of a7 × 7

window for plain correlation (see, for instance, the work ofHirshmuller [22]), we opted for testing

several window sizes in order to compare the relative performances of both approaches.

Traditional plain correlation calculates the normalized,linear cross correlation between all possible

windows of both images. For each point in one image, the matching point is chosen in the other image

such as to maximize the correlation coefficient.

When matching square images of sidew, this algorithm calculatesw3 correlations, but when a search

intervalws < w is available, the number of correlations drops down towsw
2. Of course, in the worst

case, we should assume that the plain correlation approach would haveO(w3) complexity.

3.2. Multiresolution matching with fixed depth

Multi-resolution stereo matching uses several pairs of images of the same scene, sampled with

different levels of detail, as a double pyramidal representation of the scene [17]. As in any scale space,

images at the base of the pyramid have higher resolution and,therefore, more detail of the scene than

those at the top. The credit for using this idea in visual tasks can be given to Uhr [27]. The scale

space theory is formalized by Witkin [24], and further by Lindeberg [25]. A variation, the Laplacian

pyramid, was introduced by Burt and Adelson [26]. Tsotsos [56, 57] integrated multi-resolution into

visual attention, implemented as such by Burt [58], and used in several visual models [28, 29, 59, 60].

Based on multi-resolution, Lindeberg [61] detected features using an automatic scale selection algorithm,

while Lowe [62] dealt with detection of scale-invariant features.

Multiresolution algorithms in stereo matching calculate the disparity of all pixels (or blocks of

pixels) of a coarse level image and refine them, matching the pixels of finer level images with a small

number of pixels around the coarser match. We refer to the interval that contains those pixels as the

“refining interval”.

For example, a multiresolution algorithm with fixed depth that matches the points of two256 × 256

pixels images, sayx0 andy0, may use three pairs of images having, thus, level3 of sizes128 × 128,

64 × 64 and32 × 32; we denote these pairs of images(xℓ, yℓ), 1 ≤ ℓ ≤ 3 respectively. Note that

usuallyxℓ(i, j) = (xℓ−1(2i, 2j) + xℓ−1(2i + 1, 2j) + xℓ−1(2i, 2j + 1) + xℓ−1(2i + 1, 2j + 1))/4, for

every1 ≤ ℓ ≤ 3, but other operators are also possible as will be seen in Section 4. In this case the

window size isw = 2. The same transformation is recursively applied toy0 in order to obtainy1, y2 and

y3. We omit the dependence of the coordinates(i, j) on the levelℓ for the sake of simplicity.

The classical approach would attempt to match all the32 × 32 pixels of the pair(x3, y3) to, then,

proceed to their refinement. The refinement of pixelx3(i, j) consists of correlating the valuesx2(2i, 2j),

x2(2i + 1, 2j), x2(2i, 2j + 1) andx2(2i + 1, 2j + 1) with the pixels within the refining interval around

the matching point ofy2. This is repeated until the matching is done on the(x0, y0) pair, obtaining the

final result.

This approach is known to be faster than the brute force search on(x0, y0) (plain correlation). In fact,

on the extreme case, where the images are squares and the smallest ones are single pixels, it requires
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w2 log(w) correlations, werew is the window size, thus its complexity isO(w2 log(w)). Of course, there

is the time used for building the pyramid. So, to determine final algorithm complexity, one must add the

complexity for building the pyramid, which isO(w2)+O(w2/4)+ · · ·+O(w2/w2), with the complexity

of the matching, given above, which results anyway inO(w2 log(w)).

Reducing the search interval is not very efficient at improving this algorithm, since the gain in

operations comes at the expense of more errors. Often, important characteristics are lost in the smaller

images, reducing correlation precision. Those errors can sometimes be alleviated by a larger refining

interval, which increases the execution time.

In practice, some implementations relate that the processing time used for building the multiresolution

pyramid often compensates for the time gained on optimizingthe correlations [22]. This basic

multiresolution matching is seldom used in current applications [21].

4. Proposal: Multiresolution Matching with Variable Depth

As previously seen, plain correlation matching is very expensive and prone to generating errors such

as ambiguity or lack of correspondence when there is not enough texture detail. On the other hand,

multiresolution matching with fixed depth also tends to generate errors, but most of the pixels are still

near correctly assigned. Also, the number of errors increases with the depth of the algorithm, since they

are due to loss of information on the coarser images.

To get the best of both algorithms, one could assign for each pixel a different level: hard-to-compute

positions should be treated at the highest resolution, while the others could be treated at an

optimum, coarser level with just enough information. This adaptive approach, which is the proposed

multiresolution matching with variable depth, will be shown to be able to reduce errors while still

requiring less computational effort. The optimal level is computed on one of the images, and then

each displacement is calculated in the same way as is done on the fixed depth algorithm.

An heuristic is, then, needed to calculate the desired depth. Also, we need to generate the small

resolution images.

The proposed algorithm uses, for each image, a scale pyramidwith several resolution versions of the

original image, and one or more detail images. Scale images are obtained by a sub-band filter applied

to the original images, while detail images are obtained by filtering the contents of the same level, scale

image. We assessed two distinct approaches for the pyramid creation that differentiate mainly in the

manner that the detail images are calculated: wavelets, andby Gaussian and Laplacian operators. They

are described in the following sections.

4.1. Building the pyramids with wavelets

We used a discrete wavelet transform to build the pyramids. With this approach, in a given leveli, the

scale image of the pyramid (Ii) is obtained by applying a low pass filter (L) to the scale image of level

i − 1 followed by a decimation (↓). Detail imagesDi (with vertical, horizontal and diagonal details)

are calculated using high-pass filters applied to the scale image of leveli− 1 followed by a decimation.

Figure1 shows the schema for calculating a wavelet pyramid of level 2. We used the Daubechies and

Haar bases [63].
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Figure 1. Creation of a pyramid with wavelet transform.

4.2. Building the pyramids with Gaussian and Laplacian operators

We build two multiresolution pyramids by successively convolving the previous images with

the low-pass Gaussian (ΥG) and high-pass Laplacian masks (ΥL) defined in Equations (2), and

then decimating:

ΥG =
1

16







1 2 1

2 4 2

1 2 1






,ΥL =







−1 1 −1

1 4 1

−1 1 −1






. (2)

With this, we generate a pyramid of images and another of details. Figure2 illustrates this filtering

process used for the creation of a pyramid with three levels.By convolving the original imageI0 with the

high-pass filter (H mask), imageD0 is generated.I0 is then convolved with the low-pass filter defined

by the maskL, and decimated by a factor 2, which generatesI1. This last image is then convolved again

with the high-pass filter defined by the maskH, generatingD1. A second low-pass filter (L) followed

by a decimation, applied toI1, generates imageI2, which is finally filtered byH generatingD2.

Figure 2. Illustration of the creation of a pyramid with three levels.

These two pyramids are able to retain enough information in order to allow an efficient search for

matching points.

The use of a sub-band filtering makes this algorithm much faster than the one proposed by Hoff and

Ahuja [37], by removing the bottle-neck which is filtering. This fact,plus a lower error rate, allows to

use a smaller refinement interval, which makes the multiresolution matching with variable depth much

faster than the one with fixed depth and than the simple correlation approach in the original images.

Due to decimation, the construction of the scale images of the pyramid cannot be made shift-invariant.

However, the detail images can be shift-invariant and this is a key difference between the two techniques.

In the case of wavelets, the detail images are sensitive to shifts, but with 2D filtering they are invariant.
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The wavelet transform is invertible. 2D filtering based transform is invertible only if both the

high-pass and low-pass filters are ideal filters [64], which amounts to using convolution masks of the

size of the original image. In order to be economic, small masks are employed and, therefore, this

transformation is not invertible.

4.3. Desired level calculation

We use a propositional logic based on fuzzy evidence to derive a heuristic for calculating the desired

level from which the matching will be performed. Such level is the coarsest one that can be labeled as

“reliable”, in the sense that it provides enough information for the matching.

Fuzzy logic is composed of propositionsP with continuous rather than binary truth values

µ(P ) ∈ [0, 1]. We used the following operators on those propositions: “¬”, whereµ(¬P ) = 1 − µ(P ),

“∧”, whereµ(A ∧ B) = min(µ(A), µ(B)), “∨”, whereµ(A ∨ B) = max(µ(A), µ(B)), “⇒”, where

(A ⇒ B) ⇐⇒ (µ(B) ≥ µ(A)) and “6⇒”, where(A 6⇒ B) ⇐⇒ (µ(A) > µ(B)).

We define a predicateσℓ(i, j) meaning “the classification of the block at position(i, j) and levelℓ is

not reliable”. This predicate must satisfy the following conditions:

• If the detail at(i, j) is zero, the classification is reliable:D(i, j) 6= 0 ⇒ σℓ(i, j), whereD is the

amount of detail available.

• The deeper the classification the less reliable it is: ifKℓ+1(i, j) is the set of pixels at levelℓ + 1

that collapse into pixel(i, j) at levelℓ, we have that
∨

v∈Kℓ+1(i,j)
σℓ(v) ⇒ σℓ+1(i, j).

Lack of texture details may cause accumulation of small errors, but this conflicts with getting always

some minimum texture at the coarsest level, so we opted not toaccumulate errors.

Because short execution time is our main objective, the heuristic has to be easy to compute by general

purpose computers, leading to Equation (3):

σℓ(i, j) =

(

∨

(i,j)∈K

σℓ−1(i, j)

)

∨D(i, j) 6= 0. (3)

We define, for anya ∈ [−1, 1], µ(a 6= 0) = |a|, completely specifying the heuristic. Defining a

dependability thresholdδ ∈ [0, 1], our desired level for each pixel is the maximum levelℓ for which

δ ⇒ σℓ.

The ideal values ofδ depend on the amount of detail in the image and, in principle,different values

of δ should be associated to each pixel. For example, an image with substantial detail (texture) would be

better treated at highest resolution, i.e., it should have values ofδ very close to zero. Flat images with

little detail could be dealt with at very coarse resolution without loosing information,i.e., with δ close

to 1. Figure3 illustrates this with a5×5 image, where each pixel has a differentδ associated to it; notice

that the smallest values are associated to the border, wherethere is detail that would be lost if treated at

a coarse resolution.

However, the amount of texture is not known a priori. So, in this work, an empirically value is

assigned forδ and kept constant for the whole image. In practice, we found that values greater than0.2,

cause the algorithm not to perform well, as it will be seen in the experiments.
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Figure 3. Cartoon image andδ map.
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4.4. Execution time considerations

The fuzzy heuristic presented above is able to assign a proper level to every pixel of an image,

identifying detailed and flat areas. A successful techniquefor our purposes should be able to detect

the level of detail of each image region based on texture. Flat regions should be treated at coarser,i.e.,

higher levels of the pyramid (at the pyramid top) since they carry less information than detailed regions,

which should be treated at lower levels (at the pyramid basis).

As it will be shown, at the coarsest level, the variable depthmultiresolution matching also makes less

mistakes than the fixed depth approaches. Because of that, wewere able to obtain good results even with

a refining interval as small as four pixels wide, leading to very fast execution.

The implementation of our proposal requires complex memorymanagement that allocates and frees

amounts of memory equivalent of several pages of the most common processors. Most operating

systems lose performance on such conditions. So, also as a contribution of this work, we implemented

a secondary memory management strategy that uses a buffer allocated only once at the beginning of

execution. This pre-allocated memory is then managed by ourprocedure avoiding several calls to the

operating system to perform this task. This approach alleviates the execution time, rendering a still

faster procedure.

5. System Architecture

The proposed technique was implemented as aC++ library and a collection of test programs.

This library generates disparity maps using the default correlation method and our approach, using

multi-resolution with variable depth, considering or not asearch interval. Due to the complexity of

this library, its implementation was divided in several modules as shown in Figure4.

TheBasicsmodule contains common classes used by other modules.Signalis composed by classes

that store and operate on images.Memorycomprises the classes responsible for memory management

and for the implementation of the data structures used.FuzzyLogicimplements the fuzzy decision given

in Equation (3), and disparity calculation.Visionis composed by classes that implement the stereo vision

algorithms and related functions.Utils packs auxiliary code used for the manipulation of the test images

and extraction of results from data.

Each module is detailed in the following.
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Figure 4. Scheme of the software architecture.

5.1. Module Basics

This module contains the libraryops.h, that implements operations which are required in almost

every stage. It also has the classesPosition, that stores a position of type “(row, column)”,Window,

that defines a rectangular area of interest, andInterval, that defines a connected subset of integer

values. ClassesWindow andInterval also store some pre-calculated values used to accelerate the

matching.

5.2. Module Signal

This module contains the templateImage, and classes that specializePixel: ColorPixel,

BWPixel, PositionPixel, BWLabel andColorLabel. Image<PixType> has an array of

elements of typePixType that represents the pixels. This template implements operations for image

reading and writing images in PGM and PPM formats, and also guarantees access to operations in pixels

and the wavelet transform.

Pixel provides arithmetic operators used in transformations andconvolutions, besides methods for

extracting data. TypesColorPixel andBWPixel implement pixels for color and monochromatic

images. TypesColorLabel andBWLabel implement color and monochromatic pixels also, but with

an integer identification code (id).PositionPixel implements a gray level pixel with integer value;

it stores the final disparity map values and an integer id.

The data structures that store pyramids of images, regardless the technique (wavelets or 2D filtering),

are created by the classesImgPair andLowHigh. The former returns the first pair of images in the

pyramid, while the latter builds the remaining pairs. ClassesImgSet andImgListSet implement the

data structure that contains the four images generated by wavelets transform and the lists of the images

generated in a sequence of transformations, respectively.

ClassDWT has values and methods used by the Daubechies wavelet transform. An object of class

DWT has filters of a transformation implemented in another class; this strategy is adopted to avoid the

use of a virtual class. ClassesHaar andDaub4 implement the two types of wavelets used in this work,

namely Daubechies and Haar.
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5.3. Memory Module

The result of the heuristic that calculates the desired depth for each pixel requires a complex data

structure. We implemented linked lists that contain objects of classPosition. These lists have

different formats in each execution of the matching requiring, thus, dynamical allocation of memory.

A problem is that a list may use a large region of memory that may, sometimes, grow up to several

megabytes. This is beyond the size of the memory page of most modern computer architectures, which

is usually 16 Kb. As current operational systems usually lose performance as they allocate and free,

repeatedly, such amounts of memory, we developed a memory managing system for our library. To do

that, we created the classMemoryBuffer containing a buffer, which is allocated at the initialization,

and resources for managing it.

By using the classMemoryBuffer, tailored to the needs of our library, program execution is

much faster than by using the memory management provided by the operating system. The directive

FAST_MEMORY, available at compiling time, makes memory management still faster by disabling the

checking of buffer limit. When used through this library, all data stored in these buffers are calculated

locally and not brought from other programs. We remark that this strategy presents low risk for the

system security.

The classList implements a low-level list that can deal with allocated memory, with or without the

aid of an object of the typeMemoryBuffer. The other classes of this module areLinkedList and

Stack, that implement high-level data structures (linked list and stack, respectively), useful for other

modules of the library.

5.4. FuzzyLogic Module

ClassFuzzy represents thefuzzyhypotheses, with the following operators:¬ (!), ⊕ (+), . (*), ∨ (|),

∧ (&), ⇒ (<), and 6⇒ (>).

ClassFuzzyImax also composes this module. It is responsible for calculating the desired depth for

each pixel. The return value of this method is of typeLinkedList<LinkedList<Position>>,

wherePosition stores a position in image. The output is a list of depth levels. For each depth, there

is a list of pixels where disparity calculations start from that depth.

Note that each image pixel can be represented in more than a depth. In such case, matching must be

performed at the least resolution depth in which the pixel isfound. For example, if the sixth element of

the returned list has position(1, 1), this means that for all pixels in the original image that liein positions

(x, y), x, y < 26, the greater level that can be used is5 (starting from zero). It is possible for a pixel

to appear twice in the list, for instance if position(2, 3) appears at the fourth list, for all pixels of the

interval (x,y),2× 24 ≤ x <3×24, 3× 24 ≤ y <4×24, that is, in the interval(x, y), x, y < 26, the depth

must be up to3, and not5 anymore.

The easiest way of obtaining depth for each level is, thus, bytraveling this list starting from the

less coarse level and marking positions already visited. For that, pixels of the typeColorLabel and

BWLabel are used.
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5.5. Using the library

The main classes for our application areLeftImax andPlainCorr, both derived fromVision.

These classes implement the multiresolution with variabledepth matching and the simple correlation

methods. Objects of both classes are created using as parameters the left and right images, and the

resulting image were disparity will be stored. Images can becreated through allocation of a memory

area or using an already allocated area. Image data are stored linewise as one-dimensional arrays.

Objects of classesLeftImax and PlainCorr can then be initialized withsetWindow.

For simple correlation, arguments aresetWindow(Window C, Interval B), where C is

the comparison window andB is the search interval. In this implementation, arguments are

setWindow(Window C, Interval B, Interval R), whereC andB are the same andR is

the refining interval.

ClassesWindow andInterval define windows and intervals, respectively, as integer numbers.

Windows can be created at any position, usingWindow(int rmin, int rmax, int cmin,

int cmax), wherermin andrmax are the extreme lines that the window contains, andcmin and

cmax the extreme columns. Intervals can be created in arbitrary positions;Interval(int min,

int max) creates the interval[min;max].

After windows are initialized, the matching is performed using match of LeftImax or

PlainCorr. For plain correlation, this method does not receive arguments, and in multiresolution

matching with variable depth it receivesmatch(Fuzzy δ) as argument, whereδ is as defined in

Equation (3). After matching is performed, disparities can be read at the resulting image.

Memory allocation is always done in a transparent way to the programmer. All necessary memory

is allocated at the creation of the objects of classesLeftImax andPlainCorr. Garbage collection,

however, is not supported. This is not a problem in most applications, but might be an issue when dealing

with images from several pairs of different cameras. The constructor of classFuzzy receives only an

argument of type double that represents, in this case,µ(δ).

6. Experimental Results

An example of pyramids is shown in Figure5. The image to the left is the well known Lena data set,

used as a benchmark in many applications because it presentsboth flat and detailed areas. Middle and

right of Figure5 show the levels computed by the Daubechies wavelet decomposition (of size4) and

by our approach (computed usingµ(δ) = 0.2), respectively; darker pixels are coarser and, thus, require

more time to process.

We performed stereo measures using both approaches, but theuse of wavelets (both Daubechies and

Haar) for computing the pyramid turns out not being as efficient to subsequent phases as our proposal.

Differently from other works [31, 65], our approach employs the detail coefficients being, thus,more

vulnerable to problems due to the transformation not being shift invariant. So we adopt the approach

that uses the high and low pass filtered pyramid due to its better performance.
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Figure 5. Computed pyramids. Left to right: original image, Daubechies wavelet levels, and

levels computed by our proposal.

We contrasted plain correlation and multiresolution with variable depth matching using them on two

well known pair of images, namely the Tsukuba and Corridor data sets, and comparing the results

with the available ground truth. Figures6 and7 show the pairs, along with the desired disparity maps

(ground truths).

Figure 6. Tsukuba data set. From left to right: left image, right image, desired

disparity map.

Figure 7. Tsukuba data set. From left to right: left image, right image, desired

disparity map.
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The matching results are compared with the desired ones in two ways, by visual analysis and by

using an error metric. We use the mean error (Equation (4)) and its standard deviation (Equation (5)) as

measures of precision:

d =

∑

i,j (O(i, j)−D(i, j))

N
, (4)

s =
1

N

√

∑

i,j

(O(i, j)−D(i, j))2., (5)

whereO andD denote, respectively, the observed and desired disparity maps.

These error measurements are insensitive to the shape of theobjects but are not so good for describing

the quality of results on regions close to borders and edges.In this case, we use visual inspection that

is, on the other hand, good in these tasks at the expense of being subjective. We therefore use these two

complementary methods.

We used square correlation windows of side3, 5, 7, 9, and11 pixels, in order to test our approach with

more than one window size. This means that, for a certain resolution level, given a pixel in one image

(say the left) to be matched to a pixel in the other image (say right), a template window of a specified size

will be taken around the pixel in the left image. Correlationmeasures will be calculated for this window

with several windows of the same size taken around pixels in the epipolar line in the right image, within

a certain search interval. When using the plain correlationalgorithm, if a search interval is defined, it is

always 70 pixels wide (not the whole epipolar line). We remark that, even with this optimization, plain

correlation is still a time consuming algorithm. On the multiresolution matching, the refining interval is

always 4 pixels wide.

6.1. Comparing Multiresolution Algorithms

We performed tests with two versions of our multiresolutionmatching. The first uses only scale

images in all levels based on correlation measures. The second uses the detail images in each level and

the scale images at the coarsest level, since at this level there is less detail.

Disparity maps generated by both versions of our multiresolution algorithm are shown in Figure8.

These results are obtained with a correlation window of size3 and a thresholdδ = 0.3. Note that

borders and edges obtained by the algorithm that uses detailcoefficients are sharper and better defined

than the ones produced by the other technique, which only uses scale images. Besides that, the overall

aspect of the former disparity map is better than the latter.Figure9 shows average measures of the

errors obtained with several thresholds for both versions,keeping the correlation window at size 3. The

minimum in both lines near the origin indicates that the thresholdδ = 0.3 produced less errors. The use

of scale images at all levels produces results with less errors, what is represented by the bottom lines in

both graphs.

With the new fuzzy heuristic, multi-resolution matching islikely to start at the lowest level where there

is a border adjacent to the pixel under assessment. The correlation of the images at the coarsest depth is,

thus, highly prone to errors due to occlusions. Matching thedetails, instead of the raw images, should,

in principle, lead to higher resistance to occlusions. Thatbehavior was confirmed in our experiments,
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as the results obtained matching the scale images at each level were consistently better than those that

employed detail information.

Figure 8. Disparity maps generated by multiresolution matching using the detail images at

the coarsest level (level), and using always the scale images (right).

Figure 9. Errors measured with both algorithms: mean distanced (left) and standard

deviations (right).
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6.2. Comparing Multiresolution and Plain Correlation

Here we contrast plain correlation with multiresolution algorithm. Disparity maps obtained by both

algorithms are shown in Figure10.

Figure 10. Disparities obtained by plain correlation (right) and multiresolution (left) with

correlation windows of size 3 (top) and 5 (bottom) pixels, using δ = 0.3.

We made experiments with both approaches for window sizes of3, 5, 7, 9 and 11. Standard deviation

and mean distance of the measured errors for multiresolution approach with variable depth are shown

in Figure11. The same error measures produced by the technique without search interval are shown in

Figure12 for the same window sizes.

Figure 11. Measured errors for multiresolution with variable depth: Tsukuba pair.
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Figure 12. Measured errors for plain correlation with no search interval: Tsukuba pair.
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We observe that larger windows generate smaller errors in both approaches. Multiresolution incurred

in smaller errors than plain correlation in most cases, and it made mistakes as often as the plain

correlation. Plain correlation produces errors distributed on bigger areas than our algorithm, which

is hard to visualize in the disparity figures. By the results,on the overall, our approach performed better

than plain correlation.

Figure13 shows a comparison between the matching using the two algorithms (plain correlation and

ours, with thresholdδ = 0.1, 0.2) for the Tsukuba images, while Figure14 shows the same comparison

applied to the Corridor images.

Figure 13. Visual comparison between disparity maps generated by correlation (right

column) and multiresolution matching withδ ∈ {0.1, 0.2} (middle and left columns,

respectively), Tsukuba data set, using windows of size3, 5, 9 (top, middle and bottom rows,

resp.),4 pixels search interval.
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Figure 14. Visual comparison for the Corridor images between disparity maps generated by

correlation (right column) and multiresolution matching with δ ∈ {0.1, 0.2} (middle and left

columns, respectively), using windows of size5, 9, 13 (top, middle and bottom rows, resp.),

10 pixels search interval

Figure15shows results of varyingδ, with a search interval of6 pixels wide.

Figure 15. Disparity maps generated by multiresolution matching withδ ∈ {0, 0.2, 0.3, 0.4}

(columns from left to right) and windows of size3, 5, 7 (rows from top to bottom),6 pixels

search interval.
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We tested both algorithms also in the Corridor image, and theresults are shown in Figure16. In this

case, a search interval of 10 pixels was imposed, a refinementinterval of 4 and 6 pixels and square search

window sizes of 5, 7, and 11 pixels. We tried with several limits (δ). Figure17shows the time necessary

for running this experiment. The best result of the matchingis achieved forδ = 0.05 and the best times

start atδ = 0.1. So, one has to weight between precision and time. The resultof the matching is still

better than plain correlation forδ = 0.05, whose error and standard deviation are shown in Figure18.

Figure 16. Disparity maps generated, Corridor, by generated by correlation (right column)

and multiresolution matching multiresolution matching with δ ∈ {0, 0.1, 0.2} (columns from

left to right), windows of size5, 7, 11 (from top to bottom), refinement windows of4 pixels.

Figure 17. Time needed for computing the disparity by our approach in the Corridor pair.
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Figure 18. Error and standard variation for the Corridor images.
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The time needed for the matching processes is shown in Figure19 as a function of the threshold (δ).

Multiresolution matching was consistently faster than plain correlation. It should be remarked that the

execution time of our algorithm is much shorter than the plain correlation, on all thresholds, and it is

even faster at small thresholds. Note that smaller correlation windows need less time. One has to weight

between precision and available time when deciding the sizeto be used. Plain correlation errors usually

increase a little fromδ = 0, but they fall at near the same or smaller values nearδ = 0.3, which seems to

be an optimum threshold.

Figure 19. Required time.
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7. Discussion and Conclusions

We have proposed a new approach to stereo matching using multiresolution in which the level with

which to start is variable as a function of the images content. That is, in a given region, for example a

smooth one without edges, our algorithm starts in coarser (deeper) levels in order to improve precision;

in regions with edges or well textured, it starts in finer (lower) levels reaching, thus, better execution

time. Our approach is based on fuzzy logic, in order to define the level with which to start the matching,
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for each image region. By the results, this fuzzy logic decision process has proven to be excellent for

this calculation.

The ideal value forδ depends on the image content and on lighting conditions. Such value should, in

principle, be tuned automatically or dynamically, as a function of the amount of texture, both locally and

globally. Such measure can be performed by means of using theoperators described in [66, 67], or by

calculating the image focus [68, 69]. Our best results were obtained in the vicinity ofδ = 0.1, and they

are robust in the interval[0.05, 0.3).

The ideal window size is also dependent on the amount of texture in the original image pair. This

parameter and can also be estimated using a similar procedure as the one proposed forδ [70].

Initial experiments using wavelets in order to calculate the multiresolution pyramid were not good

enough due to the use of the detail coefficients. We then decided to apply a sub-band filtering based on

a low pass Gaussian and a high pass Laplacian masks to generate the two multiresolution pyramids: one

of images and other of details. With this approach, stereo matching performed much better, that is, faster

and with better precision in stereo measurements.

The main contribution of this work is the multiresolution approach, which differs from usual methods,

as seen above, by using a new fuzzy logic heuristic for calculating the starting level.

Our algorithm was able to generate disparity maps faster than plain correlation, with smaller errors.

We conjecture that the use of Gaussian and Laplacian masks reduced even further the errors that occur

close to borders. That is, those filters have a smoothing effect in such regions, allowing the algorithm to

better treat occlusions.

Recent research on stereo matching based on multi-resolution and fuzzy techniques has been

conducted, as discussed in Section2. However, when facing the problem of real-time stereo matching,

as in robotics vision, correlation based algorithms are known to be the best [71]. Despite that, in order to

validate our approach with respect to techniques other thanplain correlation, we tested two procedures,

namely, a very fast multi-resolution approach [17], and one based on fuzzy logic [41].

In the fast multi-resolution approach [17], we used4 levels with images of sizes96 × 72 and

64× 48 pixels. Average errors of30 and35 pixels were observed, with standard deviation of65 and54,

respectively. The time spent for disparity calculation was5 and12 milliseconds, making the technique a

very efficient algorithm that runs in real time. Despite its efficiency, it has poor precision.

The fuzzy approach by Kumar and Chatterji [41] leads to errors and time execution also bigger than

the ones produced by our approach. We tested with a search interval of64 pixels wide, with windows

of sizes3, 5, 7, 9 and11, as reported in Table1. This method produces a mean error of14 pixels with

standard deviation19, and time execution of21 seconds when using window size of3×3. When using a

window of size11× 11, the error decreases to7 with standard deviation12, however the time execution

increases to241 seconds. Figure20 shows the disparity maps obtained with this approach (from top to

bottom, window sizes of3, 5, 7, 9 and11 are shown).

These two techniques are, therefore, outperformed by our proposal when both precision and

performance are required.
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Table 1. Performance measures, Kumar and Chatterji’s algorithm, asa function of the

window size.

Window Mean Standard Execution

Size Error Deviation Time

3 14.12 19.74 21.00

5 10.66 16.04 53.31

7 8.92 13.96 98.48

9 8.09 13.07 161.06

11 7.61 12.56 241.15

Figure 20. Disparity maps, Kumar and Chatterji algorithm, for window of sizes3, 5, 7, 9,

and11 (from top to bottom).
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