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Deep learning‑based landslide 
susceptibility mapping
Mohammad Azarafza1, Mehdi Azarafza2, Haluk Akgün3, Peter M. Atkinson4 & 
Reza Derakhshani5,6*

Landslides are considered as one of the most devastating natural hazards in Iran, causing extensive 
damage and loss of life. Landslide susceptibility maps for landslide prone areas can be used to plan 
for and mitigate the consequences of catastrophic landsliding events. Here, we developed a deep 
convolutional neural network (CNN–DNN) for mapping landslide susceptibility, and evaluated it on 
the Isfahan province, Iran, which has not previously been assessed on such a scale. The proposed 
model was trained and validated using training (80%) and testing (20%) datasets, each containing 
relevant data on historical landslides, field records and remote sensing images, and a range of 
geomorphological, geological, environmental and human activity factors as covariates. The CNN–
DNN model prediction accuracy was tested using a wide range of statistics from the confusion matrix 
and error indices from the receiver operating characteristic (ROC) curve. The CNN–DNN model was 
evaluated comprehensively by comparing it to several state-of-the-art benchmark machine learning 
techniques including the support vector machine (SVM), logistic regression (LR), Gaussian naïve Bayes 
(GNB), multilayer perceptron (MLP), Bernoulli Naïve Bayes (BNB) and decision tree (DT) classifiers. 
The CNN–DNN model for landslide susceptibility mapping was found to predict more accurately 
than the benchmark algorithms, with an AUC = 90.9%, IRs = 84.8%, MSE = 0.17, RMSE = 0.40, and 
MAPE = 0.42. The map provided by the CNN–DNN clearly revealed a high-susceptibility area in the 
west and southwest, related to the main Zagros trend in the province. These findings can be of great 
utility for landslide risk management and land use planning in the Isfahan province.

Landslides, one of the most common and potentially catastrophic geo-hazards, are complicated geological phe-
nomena that occur in many geospatial environments and geomaterials1–5. Landslides are considered the second 
largest geo-hazard globally, causing extensive financial losses annually, according to the United Nations Devel-
opment Program6–8. Current opinion is that the best way to minimise landslide risk is to monitor, assess and 
pinpoint landslide-prone areas reliably9. Thus, mapping landslide-susceptible areas can be essential to manage 
and restrict the potential impacts of landslides in vulnerable regions10–17. Landslide susceptibility assessment is 
not straightforward and generally requires detailed investigation of a range of factors underpinning susceptibil-
ity to produce zonation maps which delineate susceptible regions in a spatially explicit manner. Such spatial 
information on susceptibility can be especially valuable in policy-making and management decision-making to 
mitigate and reduce the risks related to landsliding18–21.

Landslide susceptibility mapping has been undertaken based on quantitative, semi-quantitative and qualita-
tive methods (which can be further categorised as deterministic, statistic-probabilistic, heuristic, inventory-based, 
geostatistical and knowledge-based)22–32. Residual uncertainty within landslide susceptibility assessments has 
led to the development of more complex approaches to attain acceptable levels of accuracy. The largest sources 
of uncertainty in susceptibility modelling are related to the inventory database. Geological complexity, geomor-
phological deformations and land-use and landscape changes are the main causes of the uncertainties33. In this 
regard, development of more accurate models is important. Recently, knowledge-based approaches, namely, 
machine learning techniques such as logistic regression, support vector machines, random forests, artificial neural 
networks, and deep neural networks, have been applied for landslide susceptibility mapping to increase mapping 
accuracy22,34–36. These methods have improved capabilities concerning process adaptability and precision37,38.

Shallow learning (e.g., the multilayer perceptron, MLP) is machine learning where the learning is from data 
described by pre-defined (i.e., manually extracted) features. In deep learning, the feature extraction is computed 
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automatically without manual human intervention. Deep learning methods have gained popularity because they 
often outperform conventional shallow learning methods by extracting informative features automatically from 
raw data with little or no pre-processing due to their complex architecture39,40. Deep learning networks (DNNs) 
have become extremely popular, including convolutional neural networks (CNNs). The CNN is a regularised 
version of a supervised learning framework that employs a sequence of mathematical operations arranged in 
network layers, including the convolution, pooling, batch normalisation, dense, dropout and fully-connected 
layers41. The general CNN architecture is illustrated in Fig. 1. CNNs are used commonly for object detection, 
feature extraction, pattern recognition, and land-cover exploration. These deep learning techniques are applied 
mostly to analyse remote sensing images with special emphasis on detecting and recognising ’events’ and pattern 
recognition problems42. In terms of landslide susceptibility, CNNs are suitable for detecting historical landslide 
locations and landslide hazard analysis8. CNNs have also been applied for landslide recognition based on remote 
sensing images32,37,42,43. In relation to landslide susceptibility assessment, research has shown that deep learning 
is more effective than shallow learning44–47. While the application of CNNs has providedd increased accuracy for 
landslide susceptibility mapping, it has not provided the desirable or consistent accuracy. Thus, hybrid models 
are considered in this research.

This research aimed to assess the suitability of a coupled CNN–DNN neural network for landslide susceptibil-
ity analysis. The assessment was undertaken in the Isfahan province, Iran. The folowing objectives were set: (i) 
what are the main triggering factors for landslide occurrence probability?, (ii) Can the CNN–DNN predictive 
model provide more accurate results than regular models? and (iii) Can the CNN–DNN model provide the 
highest accuracy for susceptibility mapping. The CNN–DNN model was evaluated against a series of benchmark 
machine learning techniques, including the support vector machine (SVM), logistic regression (LR), Gaussian 
naïve Bayes (GNB), multilayer perceptron (MLP), Bernoulli naïve Bayes (BNB) and decision tree (DT) classi-
fiers. After preparing the landslide ’covariates’ (or factors) relevant to landslide occurrence in the study area, the 
various algorithms were used to predict landslide susceptibility spatially, and areas of high susceptibility were 
investigated further. The prediction results were tested using confusion matrices (i.e., overall accuracy, precision, 
recall and F1-score) and receiver operating characteristic curves (ROC).

Figure 1.   The main CNN–DNN architecture48.
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Analysis method
In deep learning and data mining, the extraction of features plays an important role. These extracted features 
can be used for classification or prediction with high accuracy. Since spatial prediction (i.e., mapping) is crucial 
for a range of applications including crisis management, urban planning and geo-hazard assessment (including 
landslide susceptibility assessment), the coupled CNN and DNN classifier has found wide applicability8,37,42,49. 
In the CNN–DNN classifier, the input data are evaluated by convolution, pooling, batch normalisation, dense, 
dropout and fully connected layers to predict the outputs (Fig. 1). The number of layers can be increased, thus, 
increasing the learning depth. The input data provide the first layer of evaluation as a data matrix in which each 
element has a specific feature value. Hence, the input layer is the primary feature map modified and organised 
by each convolutional layer and unit. These units extract different features from the input data. The first con-
volutional layer extracts some low-level features (e.g., lines, edges, corners). Further convolutional layers learn 
iteratively more intricate representations or features. Pooling is a critical manipulation in a CNN. Max-pooling 
is the most common manipulation amongst the different pooling approaches. Max-pooling aims to divide the 
feature maps into several rectangular zones and provide the maximum value for each zone42. Batch normalisa-
tion (or batch-norm) aims to increase the speed, performance and stability of the network. Batch normalisation 
is used to normalise the input layer by re-centring and re-scaling. The dense or regular densely-connected layer 
is commonly used as a linear/non-linear layer applied to the input and returned to the output. Fully connected 
layers connect every neuron in a preceding layer to every neuron in a subsequent layer. This is, in principle, the 
same as the traditional MLP network41. Combining these layers in the sequence can extract the desired features 
and, thereby, classify the input data into the desired classes.

Knowledge-based approaches have received significant attention in landslide susceptibility analyses where 
machine learning methods such as the CNN and DNN have provided highly accurate results. These methods, 
now considered common procedures, are applied to analyse visual imagery for image recognition and classi-
fication. CNNs and DNNs are regularised versions of the MLP, consisting of an input and an output layer and 
multiple hidden layers. The hidden layers of the CNN are typically concluded with a series of convolutional layers 
with multiplication or another dot product (e.g., the activation function is mostly RELU). On the other hand, 
the DNN finds the correct mathematical manipulation to transform the input into the output (based on linear 
or non-linear relationships). Each mathematical manipulation is considered a layer, and complex DNNs have 
many layers40,41. Since 2019, the application of the CNNs and DNNs in landslide susceptibility analyses has led 
to establishment of the potential of deep learning for landslide susceptibility mapping32,42,46. More widely, imple-
mentation of the coupled CNN–DNN has led to increased accuracy compared to the implementation of these 
two methods separately. We, thus, develop a coupled CNN–DNN methodology to assess landslide susceptibility.

Study site and data.  Study location.  The study area is located in the Isfahan province of central Iran and 
covers an area of approximately 106,786 km2 (Fig. 2). Markazi, Qom and Semnan provinces are located to the 
north, and the Fars and Kohgiluyeh-Boyerahmad provinces are located to the south of the Isfahan province. 
The city of Isfahan, which is the capital of the Isfahan province, is considered to be the historical, cultural and 
touristic capital of Iran. The Isfahan province experiences a moderate and dry climate that ranges from 10.6 to 
40.6 °C annually (the average annual temperature has been recorded as 16.7 °C). The annual rainfall of Isfahan 
has been recorded to range from 16.5 to 217.3 mm, with an average annual rainfall of 116.9 mm50. Figure 2 pro-
vides the location of 222 historical landsides that were identified during comprehensive field survey and from 
areal imagery. Geologically, the study area is located on a plain with rocky outcrops and mountains towards the 
north-western and south-western parts. The Zagros suture zone is the result of a collision between the Arabian 
and Central Iran tectonic plates51. The main tectonic trend in the region follows the Zagros Mountains. The 
trend is aligned NW–SE and has affected the geo-structures in the region, including fault orientations, folding 
and shear zone formation52. Although most of the study area is covered by Quaternary sediments, the geological 
formations in the region include late Triassic rocks53. The geo-structures in the region can lead to different slid-
ing and land-movement activities. The most important reasons for landslides in this province relate to tectonic 

Figure 2.   Location map of the study region using ArcGIS 10.4.1 software package55.
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structures rather than geological unit characteristics. Naturally, sedimentary rocks, especially marl formations, 
are more affected by landslides than igneous formations in the region, with the most important driving factors 
for landslides being tectonics and seismotectonics54.

Landslide covariates.  The selection of a set of influencing factors is considered a key step in landslide suscep-
tibility analysis56. Both full-length field surveys and remote sensing observations were acquired to provide a 
detailed landslide assessment of the study area. During the field surveys, 222 historic landslides in the study 
area were identified to determine landslide-prone areas. Several triggering factors, as used in numerous studies 
on machine learning-based landslide susceptibility modelling, categorized into several groups57,58, were used as 
landslide conditioning factors. The selection of the triggering factors required several considerations related to 
the dependency of triggering elements, measurability, non-redundancy and relevance of geological characteris-
tics. The main factors influencing landslide occurrence were identified by preparing a spatial landslide inventory 
database that included the spatiotemporal distribution of historical landslides and a set of potential influencing 
factors. As a result, four main groups of factors were identified as the most effective elements that triggered 
landslide movements, including geomorphologic (i.e., altitude variation, slope aspect, slope curvature, profile 
curvature), geological (i.e., geo-units, distance to faults, land-use, soil type, hydrologic variation, slope-dip), 
environmental (i.e., climate, watershed, drainage pattern, vegetation) and human activity-related (i.e., distance 
to roads, distance to cities) covariates. These covariates were identified based on expert knowledge from field-
work and remote sensing imagery. Table 1 provides information about the selected covariates used in this study. 
Before these data can be used in susceptibility modelling, it could be subject to multicollinearity and correlated 
variables21. The multicollinearity is a phenomenon in which one predictor variable in a regression model can 
be predicted linearly from others. To test for multicollinearity variance inflation factors (VIF) are commonly 
used21,59. A VIF > 5 indicates potential multicollinearity. In this article, all selected triggering factors produced 
VIF values less than 2.1 (Table 1).

Data preparation.  In this research, four groups of covariates were considered for landslide susceptibility analy-
sis. The inventory-based dataset was prepared using a digital elevation model (DEM) and Landsat TM (5–8), 
and ETM+ satellite sensor imagery provided by the Geotechnology Unit, Department of Geological Engineer-
ing, Middle East Technical University. The dataset included 222 recorded historical landside locations that were 
retrieved from technical documents, fieldwork and areal images taken from landsliding sites, checked using 
GPS coordinates and site-survey. The predictive models were fitted based on both landslide and non-landslide 
cells (i.e., where landslides did not occur). The flat plain area in Isfahan province was considered as contributing 
non-landslide cells (112 points in the dataset) mostly located in the east of the province. According to Huang 
et  al.33, three methods exist for attaining non-landslide grid cells: the seed-cell procedure, random selection 
and flat locations (slope lower than 2°). This study used random selection, while including flat locations as well 
(due to the geomorphological condition of the province). After providing the main database, this database was 
divided into training and testing sets (80% and 20% of the information from the ground survey, respectively). 
The training set comprises 60% landslide − 40% non-landslide; while testing set comprises 55% landslide − 45% 
non-landslide. Figures 3, 4, 5 and 6 present maps of the landslide covariates to support visual assessment of 
the performance of the various methods tested. The ArcGIS v10.4 software was used to produce the landslide 
susceptibility maps. All evaluated spatial data were converted to spatially defined layers to produce the landslide 
susceptibility maps. The proposed algorithm was implemented in the Python high-level programming language. 

Table 1.   The information about landslide triggering factors used in this study. *Iran Water Resources 
Management Company (IWRM)60. † Iran Meteorological Organization (IMO)50.

# Class Triggering factors Resolution Variables Data source VIF

1

Geomorphologic

Altitude variation  ± 30 m Continuous DEM 1.17

2 Slope aspect  ± 30 m Continuous DEM 1.09

3 Slope curvature  ± 30 m Continuous DEM 1.95

4 Profile curvature  ± 30 m Continuous DEM 2.03

5

Geological

Geo-units  ± 30 m Continuous Geological data 1.01

Distance to faults  ± 30 m Continuous DEM, Google Map 1.63

6 Land-use  ± 30 m Discrete Landsat TM, ETM+ 1.12

7 Soil type  ± 30 m Discrete Landsat TM, ETM+ 1.24

8 Hydrologic variation  ± 30 m Continuous Landsat TM, IWRM* 1.86

9 Slope-dip  ± 30 m Continuous DEM 1.13

10

Environmental

Climate  ± 30 m Discrete Landsat ETM+, IMO† 1.09

11 Watershed  ± 30 m Discrete Landsat TM, ETM+ 1.45

12 Drainage pattern  ± 30 m Discrete Landsat TM, ETM+ 1.86

13 Vegetation (NDVI)  ± 30 m Continuous Landsat TM, ETM+ 1.20

14
Human activity

Distance to roads  ± 30 m Continuous DEM, Google Map 1.17

15 Distance to cities  ± 30 m Continuous DEM, Google Map 1.09
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The results of the CNN–DNN evaluation were extracted as shapefiles and used as information layers in a GIS 
environment.

Methodology.  The study was conducted in several stages. First, ground survey was performed to estimate 
and record historical landslides in the study area. Second, by considering both the feature extraction of the CNN 
and the classification capabilities of the DNN, it was possible to identify highly susceptible (high risk) areas, 
potentially with high accuracy. In the next stage the model tested by using performance criteria, error models 
and the ROC curve.

This research evaluated the suitability of the proposed CNN–DNN method to produce detailed landslide 
susceptibility maps for the Isfahan province in Iran. The performance of the CNN–DNN was evaluated against 
several high-quality benchmark approaches through a range of appropriate statistical measures. A total of 15 
landslide covariates, falling into four main groups, were fed into the CNN–DNN. All covariate layers were nor-
malised and then entered into the model to standardise and prepare the information for landslide susceptibility 
analysis. The CNN was used for feature extraction, and the DNN was used to sort pixels into the high-susceptible 
and low-susceptible groups. Table 2 provides the hyperparameters used in the study. Hyperparameters are com-
monly used to optimize the fitting process which can increase the machine learning model prediction accuracy21. 
The objective of selecting the hyperparameters is to optimize the evaluation values38,61. Different optimisers 
were used for the hyperparameters, noting that some optimizers provide more accurate results than others61. 
The presented study used the grid search technique for the assessments. The hyperparameters that provide the 
highest accuracy were chosen for the final training and testing of the respective machine learning models21.

Figure 7 presents a flowchart describing the process applied for susceptibility assessment. As seen in the figure, 
the landslides dataset includes 222 historical cases and field survey recordings divided randomly into training 
(80%) and testing (20%) datasets. The database consists of the landslide inventory datasets (training and valida-
tion) and the landslide triggering factors. These factors were subsequently evaluated by calculating their weights 
from the relationship between the landslide occurrences and landslide triggering factors and then these results 
were checked62. There is no standard for the selection of triggering factors in susceptibility mapping, but the 
chosen factors have to be measurable depending on a particular area’s characteristics63. As mentioned, the test 
and train datasets represented 20–80%, respectively, of the primary database, taking their spatial distributions 
into account. Considering the test/train ratio is important for the model learning rate, that is, the response to the 
estimated error each time the model weights are updated. In fact, the learning rate controls how quickly the model 
is adapted to the problem. Smaller learning rates require more training epochs as smaller changes are made to the 
weights at each update, whereas larger learning rates result in rapid changes and require fewer training epochs. 
Specifically, the learning rate is a configurable hyperparameter used in the training of neural networks that has 

Figure 3.   The geomorphologic factors used in the analysis: (a) altitude variation, (b) slope aspect, (c) slope 
curvature, (d) profile curvature using ArcGIS 10.4.1 software package55.
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a small positive value, often in the range between 0.0 and 1.0. The learning rate used in this study was selected 
by optimizers, which for 0.01 and no momentum were scheduled via callbacks in Keras support. Pearson’s Phi 
coefficient was used to assess the susceptibility classification, and each of the landslide influencing factors was 
used in this process. The coefficient takes into account true and false positives and negatives. It is generally a 
balanced measure that can be used even if the class proportions are of very different sizes.

Figure 8 presents the Pearson’s coefficients for each layer. These information layers constituted the landslide 
dataset and were input to the CNN to extract more informative features for susceptibility assessment. These 
feature representations were then used in the DNN model to produce the susceptibility map. As is well known, 
some of the covariates, such as land cover, can be accepted by the proposed method, but some others, such as 
land use, must be modified before input to the CNN–DNN. In this regard, we used the class weight argument 
in the Keras package to select a large weight for unbalanced classes in such factors (to produce balanced values).

This classification is based on a set of influencing factors (which cover extrinsic and intrinsic elements) trained 
on historical landslide occurrences (a total of 222 landslides) characterising very high and high susceptibility 
zones. The historical landslide data were prepared and extracted from shapefiles implemented in a GIS environ-
ment and evaluated for each input factor.

To assess the proposed methodology rigorously, its accuracy was evaluated using statistics from the OA and 
ROC and compared with the accuracies of common machine learning methods, including the SVM, LR, GNB, 
MLP, BNB and DT classifiers. From the confusion matrix, the mean squared error (MSE), root mean square error 
(RMSE) and mean absolute percentage error (MAPE) were used to measure the model accuracy. In this regard, 

Figure 4.   The geologic factors used in the analysis: (a) geo-units, (b) distance to faults, (c) land-use, (d) soil 
type, (e) hydrologic variation, (f) slope dip using ArcGIS 10.4.1 software package55.
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the algorithm was run for 5000 iterations (epochs) using the training and validation datasets. The stochastic 
gradient descent (SGD), RMSprop and Adagrad high-dimensional optimisers were used as objective functions 
with suitable smoothness properties to provide accurate results. This helped to reduce the computational burden 
by balancing the number of iterations against the convergence rate.

The performance of the proposed methodology was estimated based on both the confusion matrix and the 
algorithm performance matrix. The performance matrix is a specific table that visualises the performance of a 
prediction algorithm based on its predicted values, and it contains the sensitivity, specificity and 1-specificity 
parameters. For classification tasks, true positives (TP), true negatives (TN), false positives (FP) and false nega-
tives (FN) are used to compare the results of the classifier in question with trusted external judgments (Hearty 
2016). Precision, also called the positive predictive value, is the fraction of relevant instances (TP) amongst the 
retrieved instances.

Figure 5.   The environmental factors used in the analysis: (a) climate, (b) watershed, (c) drainage pattern, (d) 
vegetation using ArcGIS 10.4.1 software package55.

Figure 6.   The human-activity related factors used in the analysis: (a) distance to roads, (b) distance to cities 
using ArcGIS 10.4.1 software package55.
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Recall (sensitivity) is the total fraction of relevant instances.

Therefore, both precision and recall are based on measures of relevance41. The false-positive rate can be 
calculated as ‘1-specificity’, where specificity is defined as:

Accuracy can be a misleading metric for imbalanced datasets. For example, for a prediction set with 95 posi-
tive and 5 negative values, classifying all values as negative gives a 0.95 accuracy score. On the other hand, the 
F1-score, the harmonic mean of precision and recall, provides approximately the average of the two values when 
they are close and is more generally the harmonic mean.

The overall accuracy (OA) represents the probability that a test will correctly classify an individual; that is, 
the sum of TP plus TN divided by the total number of the individuals tested:

OA is, thus, also the weighted average of ‘sensitivity’ and ‘specificity’ (Aggarwal, 2018). The application of the 
performance matrix helps to characterise the trustworthiness of the classifier in question.

Results
The proposed models.  Landslide hazard susceptibility assessment was conducted by applying the pro-
posed CNN–DNN methodology to evaluate landslide susceptibility in the study area (Fig. 9). The OA and ROC 
controlled the result of the proposed model. The ROC curve is a graphical description that shows the diagnos-
tic ability of a binary classifier system as its discrimination threshold is varied. As a result, the OA and AUC 
from the ROC curve represent the accuracy of the classifiers. Figure 10 presents the OAs and loss models for 
the CNN–DNN. These figures show that the estimated OA is 0.909, and the loss is reduced to 0.20 in 5000 
epochs. According to the evaluated hazard map presented in Fig. 9, susceptible and hazardous areas in the west 
and southern parts of the Isfahan province manifest spatially as visual stripes. DNN optimisers such as SGF, 
RMSprop and Adagrad estimated the modified IRs for the CNN–DNN (Figs. 11, 12, 13). IRs can be used as the 
AUC value of OA to control the performance of the algorithm. These stripes follow the northwest-southeast 
trace, which represents the main Zagros trend in the region. Therefore, it can be suggested that geological factors 
have had the most significant impact on landslide occurrence in the Isfahan province.

Benchmark comparison.  To evaluate the performance of the proposed CNN–DNN model rigorously, 
a large range of state-of-the-art and widely applied machine learning techniques were tested using the same 
accuracy statistics as applied to the proposed method. These benchmark methods include the SVM, LR, GNB, 

(1)Precision =
TP

TP + FP

(2)Recall/Sensitivity =
TP

TP+ FN

(3)Specificity =
TN

TN+ FP

(4)F1 - score = 2 ·
Precision · Recall

Precision + Recall

(5)Accuracy =
TP+ TN

TP+ TN+ FP+ FN

Table 2.   Hyperparameters for optimal values of the machine learning-based models.

Classifier Hyperparameters Explanation

SVM
Kernels Gama, Linear

C value Regularization intensity value

LR
Random state Controls the randomness

Max iter Maximum number of iterations

GNB Smoothing Largest variance of all features that is added to variances for calculation stability

MLP
Hidden layers’ size Hidden layers’ number

Learning rate Adaptiveity of learning rate

BNB Alpha Additive smoothing parameter

DT
Max depth Maximum depth of the tree

Random state Controls the randomness of the estimator

CNN–DNN

Learning rate Adaptiveity of learning rate

Number of hidden layers Hidden layers’ number

Units Unit for each layer

Batch size The number of training examples used in the estimate of the error gradient
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MLP, BNB and DT classifiers. Thus, the OA, IRs and ROC were also obtained for these benchmark methods 
(Fig. 14 and Table 3). By comparing the accuracy evaluation for the CNN–DNN with those for the benchmark 
approaches, it can be observed that the CNN–DNN model was able to predict landslide susceptibility with higher 
accuracy than the other classifiers. The IRs and AUC estimated for the CNN–DNN and benchmark methods 
indicate that the CNN–DNN method has significantly greater accuracy than the benchmarks. This suggests that 
the extracted features can more accurately characterise landslide susceptibility than the benchmark methods as 
measured with the AUC and IR indices. More specifically, the CNN–DNN (AUC = 90.9%; IRs = 84.8%) achieved 
greater prediction accuracy than the corresponding single classifiers such as SVM (AUC = 81.5%; IRs = 80.1%), 
LR (AUC = 78.3%; IRs = 72.2%), GNB (AUC = 80.1%; IRs = 68.7%), BNB (AUC = 50.0%; IRs = 61.0%), MLP 
(AUC = 50.9%; IRs = 61.8%) and DT (AUC = 85.5%; IRs = 80.0%) as revealed through the measured indices. The 
MSE, RMSE and MAPE values were also obtained for the various classifiers (Table 4). According to this table, 
the CNN–DNN model outperformed the benchmark methods.

As Table 3 shows the values of the classification metrics, the proposed model performed more accurately 
than all six benchmarks in all metrics. The proposed model produced the highest rate of ROC accuracy with a 
value of 90%. After the proposed model, the decision tree classifier achieved the next best performance, with 
accuracy approximately 5% lower than for the proposed model. The lowest estimated accuracy of 50% was 
achieved by the MLP and BNB, which is 40% less than for the proposed model. Regarding accuracy criteria, the 
proposed model produced an accuracy of 84.8%, and the closest algorithm (SVM) to the proposed model was 
approximately 4.7 less than the proposed model. The MLP produced the lowest accuracy of 61%. The average 

Figure 7.   The processing flowchart of the proposed model.
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Figure 8.   Pearson’s coefficient for each information layer.

Figure 9.   Landslide susceptibility map for the proposed model using ArcGIS 10.4.1 software package55.

Figure 10.   The OA and loss function values were obtained for the applied model.
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Figure 11.   The SGD optimiser results for the proposed model.

Figure 12.   The RMSprop optimiser results for the proposed model.
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precision for the two susceptibility classes of the proposed model is 84%. The lowest average accuracy of the 
MLP and BNB is 34% (a difference from the proposed model of more than 50%). The average recall rate for the 
proposed model is 88%, and the minimum recall rate is 55% for BNB. For the F1-score, the average is 85.5% for 
the proposed model, and, as for the other three criteria examined, this is the largest value amongst all models. 
The DT algorithm produced the next largest F1-score, with an average value of 83.5% and a difference of almost 
2% less than the proposed model.

Figure 13.   The Adagrad optimiser results for the proposed model.

Figure 14.   ROC results for the CNN–DNN model and the benchmark methods.
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Discussion
We investigated the potential of a coupled deep neural network (CNN–DNN) to predict landslide susceptibil-
ity spatially. The algorithm was evaluated using data with a spatial resolution of 30 m representing the Isfahan 
province, Iran. Indices associated with historical landslide occurrences (a total of 222 landslides) were used as 
the landslide inventory dataset, and this was divided randomly into training (80%) and testing (20%) sets for 
the analysis. Four main covariates, including geomorphologic, geologic, environmental and human activity-
related covariates, were identified based on field and remote sensing investigations. The CNN–DNN model was 
able to produce a susceptibility map for the study area with appropriate accuracy. The results show a significant 
increase in landslide susceptibility prediction accuracy compared to the benchmark models. Notwithstanding 
the high accuracy achieved by the proposed CNN–DNN predictive model for landslide susceptibility mapping, 
this study has some limitations that could be considered in future research. Theses limitation can be addressed 
as: (i) the primary database was provided based on fieldwork, historical landslide records and remote-sensing 
information. The limited number of reference landslides in the recorded data (as is commonly the case) made 
modelling challenging; (ii) the data on the triggering factors were highly dependent on the spatial resolutions of 
satellite sensor imagery and DEM data quality, which affected directly the quality of the input database; (iii) the 
predictive model required strong processors to manage the inputs during landslide susceptibility assessments. 
Thus, for future scientific research involving, for example, even finer spatial resolution images the adequacy of 
the available processors needs to be considered for landslide susceptibility analysis.

Referring to Fig. 9, which presents the landslide susceptibility assessment results in the study area, it is clear 
that the main risk area lies in the west and southwest part of Isfahan. Geo-structural studies suggest that the 
high-susceptible areas are located in the Zagros folded zone and follow the main Zagros trend in the province. 
Thus, it can be stated that the geological-based triggering factors play important roles in determining landslide 
occurrence in Isfahan. Fieldwork suggested the effect of geo-structures as triggers of landslide movements. It is 
interesting then that the CNN–DNN model was able to provide detailed mapping to corroborate this.

The benchmark classifiers SVM, LR, GNB, MLP, BNB and DT were used to validate the predictive per-
formance of the CNN–DNN model. Comparison of the proposed model with the benchmark methods dem-
onstrated the superiority of the proposed CNN–DNN approach. A review of recent studies on landslide sus-
ceptibility assessment demonstrated that applications of deep neural networks in susceptibility analysis are 
expanding37,42,44,45. Wang et al.42, Sameen et al.37, Fang et al.32, and Pham et al.8 used a CNN as the principle 
method for the assessment of landslide susceptibility for different locations, with an evaluation accuracy of 0.813, 

Table 3.   The performance matrix for further predictive analysis.

Classifier Parameter

Assessment score

Accuracy AUC (ROC)Precision Recall F1-score Support

SVM
High-susceptible 0.81 0.80 0.80 98

0.801 0.815
Low-susceptible 0.81 0.82 0.81 98

LR
High-susceptible 0.74 0.71 0.72 98

0.722 0.783
Low-susceptible 0.74 0.74 0.74 98

GNB
High-susceptible 0.69 0.67 0.68 98

0.687 0.801
Low-susceptible 0.70 0.70 0.70 98

MLP
High-susceptible 0.31 0.50 0.38 98

0.610 0.500
Low-susceptible 0.37 0.61 0.46 98

BNB
High-susceptible 0.31 0.50 0.38 98

0.618 0.500
Low-susceptible 0.37 0.60 0.46 98

DT
High-susceptible 0.80 0.82 0.80 98

0.800 0.855
Low-susceptible 0.79 0.81 0.80 98

CNN–DNN
High-susceptible 0.83 0.92 0.87 130 0.848

0.909
Low-susceptible 0.86 0.84 0.84 130

Table 4.   The model error is estimated for different predictive accuracy functions.

Classifier MSE RMSE MAPE

SVM 0.28367346 0.42857142 0.44225426

LR 0.25510204 0.50507627 0.54267105

GNB 0.29591836 0.54398379 0.63293793

MLP 0.38775510 0.62269984 0.65037790

BNB 0.38775510 0.62490772 0.65269613

DT 0.28073840 0.42631849 0.44543989

CNN–DNN 0.17112569 0.40582108 0.42187734
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0.835, 0.798, and 0.889; respectively8,32,42,44. This indicates that the CNN can be used as a basic predictive model. 
However, the coupled CNN–DNN model in this paper was able to increase the accuracy further, to reach 0.909.

The CNN–DNN method uses a first-stage CNN component that attempts to extract meaningful semantic 
information from low-level input covariates that may be related to the target for prediction, in this case, landslide 
susceptibility classes. The results suggest that the first-stage CNN is efficient in extracting suitable environmental 
features related to landslide susceptibility. This is important because it is unclear whether landslides should be 
considered as spatially continuous phenomena or spatial objects18–20,26–29,64. On the one hand, landslides are com-
plex geomorphological processes manifested as changes in states in space and time, including variation within 
the landslide (rupture zone and impacted area). Thus, at a fine spatial scale, one might consider a continuous 
statistical model appropriate for landslide susceptibility mapping. On the other hand, landslides create discrete 
rupture zones and impacted areas that appear against a landscape background. In this sense, and at a scale where 
variation between landslides becomes more important, landslides can be considered discrete objects.

The problem with the above duality between the continua- and object-based views of the world becomes 
obvious when considering the characterisation of existing landslides and prediction of yet-to-occur landslides. 
Landslides do not occur at a pixel, but rather occupy some positive area. As such, conventional methods, which 
are commonly pixel-based, insufficiently characterise the landslide as a spatially extensive phenomenon. They 
also run into difficulties in predicting yet-to-occur landslides because predictions of susceptibility are constrained 
to a pixel. The CNN–DNN model deals directly with these two problems by analysing spatial patches of data 
rather than pixels.

The second problem we leave as an open question for future research. Specifically, the CNN–DNN can 
transform the spatial information in the input covariates into meaningful higher-order feature representations 
about landslide susceptibility. This makes sense concerning landslides when one considers the conditions that 
may lead to failure. These conditions are often spatial, requiring not the conditions at a point to be satisfied, 
but the conjunction of several conditions over an area to be satisfied. For example, it may not be enough for the 
slope at a single point to be high. Landsliding may be more likely if that same high slope falls in the context of 
surrounding land which, for example, concentrates water to that point (e.g., via overland flow or throughflow). 
This requirement for context is true of many of the in situ factors that underpin the susceptibility of a location to 
fail. Thus, the CNN–DNN approach proposed in this research is an excellently matched algorithm to the specific 
characteristics of the landsliding phenomenon and problem under study.

Conclusions
Landslide susceptibility mapping is one of the most challenging tasks in geo-hazard assessment. In this context, 
application of modern deep learning techniques can be advantageous for analysis. Here, we applied a novel 
CNN–DNN predictive model for assessment of landslide susceptibility in Isfahan province, Iran. The model was 
fitted between historical landslides data (which accounted for different types of landsliding) and various triggering 
factors. The proposed CNN–DNN model produced a very high accuracy, outperforming a wide range of bench-
mark approaches, specifically the SVM, LR, GNB, MLP, BNB and DT methods. More specifically, the CNN–DNN 
(AUC = 90.9%; IRs = 84.8%) achieved greater prediction accuracy than the corresponding single classifiers such 
as SVM (AUC = 81.5%; IRs = 80.1%), LR (AUC = 78.3%; IRs = 72.2%), GNB (AUC = 80.1%; IRs = 68.7%), BNB 
(AUC = 50.0%; IRs = 61.0%), MLP (AUC = 50.9%; IRs = 61.8%) and DT (AUC = 85.5%; IRs = 80.0%) as revealed 
through the measured indices. Also, the CNN–DNN (MSE = 0.17, RMSE = 0.40, MAPE = 0.42) produced smaller 
error indices than the benchmark models: SVM (MSE = 0.28, RMSE = 0.42, MAPE = 0.44), LR (MSE = 0.25, 
RMSE = 0.50, MAPE = 0.54), GNB (MSE = 0.29, RMSE = 0.54, MAPE = 0.63), BNB (MSE = 0.38, RMSE = 0.62, 
MAPE = 0.65), MLP (MSE = 0.38, RMSE = 0.62, MAPE = 0.68), and DT (MSE = 0.28, RMSE = 0.42, MAPE = 0.44). 
We, thus, recommend the CNN–DNN approach for landslide susceptibility mapping. Importantly, the CNN 
component of the approach has great advantages for landslide susceptibility mapping precisely because it matches 
well, and takes advantage of, the spatially extensive nature of the landslide phenomenon itself.

The CNN–DNN model predicted a high-susceptibility zone in the west and south-western parts of the study 
area, appearing as a stripe aligned with the northwest-southeast main Zagros trend in the region.
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