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Background: To conduct a rapid preliminary COVID-19 screening prior to polymerase
chain reaction (PCR) test under clinical settings, including patient’s body moving
conditions in a non-contact manner, we developed a mobile and vital-signs-based
infection screening composite-type camera (VISC-Camera) with truncus motion
removal algorithm (TMRA) to screen for possibly infected patients.

Methods: The VISC-Camera incorporates a stereo depth camera for respiratory rate (RR)
determination, a red–green–blue (RGB) camera for heart rate (HR) estimation, and a
thermal camera for body temperature (BT) measurement. In addition to the body motion
removal algorithm based on the region of interest (ROI) tracking for RR, HR, and BT
determination, we adopted TMRA for RR estimation. TMRA is a reduction algorithm of RR
count error induced by truncus non-respiratory front-back motion measured using depth-
camera-determined neck movement. The VISC-Camera is designed for mobile use and is
compact (22 cm × 14 cm × 4 cm), light (800 g), and can be used in continuous operation
for over 100 patients with a single battery charge. The VISC-Camera discriminates infected
patients from healthy people using a logistic regression algorithm using RR, HR, and BT as
explanatory variables. Results are available within 10 s, including imaging and processing
time. Clinical testing was conducted on 154 PCR positive COVID-19 inpatients (aged
18–81 years; M/F = 87/67) within the initial 48 h of hospitalization at the First Central
Hospital of Mongolia and 147 healthy volunteers (aged 18–85 years, M/F = 70/77). All
patients were on treatment with antivirals and had body temperatures <37.5°C. RR
measured by visual counting, pulsimeter-determined HR, and BT determined by
thermometer were used for references.

Result: 10-fold cross-validation revealed 91% sensitivity and 90% specificity with an
area under receiver operating characteristic curve of 0.97. The VISC-Camera-

Edited by:
Jinseok Lee,

Kyung Hee University, South Korea

Reviewed by:
Bersain A. Reyes,

Universidad Autónoma de San Luis
Potosí, Mexico

Youngsun Kong,
University of Connecticut,

United States

*Correspondence:
Takemi Matsui

tmatsui@tmu.ac.jp

Specialty section:
This article was submitted to

Computational Physiology and
Medicine,

a section of the journal
Frontiers in Physiology

Received: 28 March 2022
Accepted: 23 May 2022
Published: 22 June 2022

Citation:
Unursaikhan B, Amarsanaa G, Sun G,

Hashimoto K, Purevsuren O,
Choimaa L and Matsui T (2022)

Development of a Novel Vital-Signs-
Based Infection Screening Composite-

Type Camera With Truncus Motion
Removal Algorithm to Detect COVID-

19 Within 10 Seconds and Its
Clinical Validation.

Front. Physiol. 13:905931.
doi: 10.3389/fphys.2022.905931

Frontiers in Physiology | www.frontiersin.org June 2022 | Volume 13 | Article 9059311

ORIGINAL RESEARCH
published: 22 June 2022

doi: 10.3389/fphys.2022.905931

http://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2022.905931&domain=pdf&date_stamp=2022-06-22
https://www.frontiersin.org/articles/10.3389/fphys.2022.905931/full
https://www.frontiersin.org/articles/10.3389/fphys.2022.905931/full
https://www.frontiersin.org/articles/10.3389/fphys.2022.905931/full
https://www.frontiersin.org/articles/10.3389/fphys.2022.905931/full
https://www.frontiersin.org/articles/10.3389/fphys.2022.905931/full
https://www.frontiersin.org/articles/10.3389/fphys.2022.905931/full
http://creativecommons.org/licenses/by/4.0/
mailto:tmatsui@tmu.ac.jp
https://doi.org/10.3389/fphys.2022.905931
https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2022.905931


determined HR, RR, and BT correlated significantly with those measured using
references (RR: r = 0.93, p < 0.001; HR: r = 0.97, p < 0.001; BT: r = 0.72, p < 0.001).

Conclusion: Under clinical settings with body motion, the VISC-Camera with TMRA
appears promising for the preliminary screening of potential COVID-19 infection for afebrile
patients with the possibility of misdiagnosis as asymptomatic.

Keywords: infection screening, COVID-19, non-contact vital signs measurement, mobile screening system, remote
photoplethysmograph, body temperature measurement, respiratory rate measurement, heart rate measurement

INTRODUCTION

As of March 2022, the number of people who have been infected
with COVID-19 worldwide was 434 million, resulting in
approximately 5.9 million deaths (WHO, 2022). Although
nucleic acid amplification tests, such as the reverse
transcriptase-polymerase chain reaction (RT-PCR), are
recommended to identify active infection as a gold standard,
the tests require specialty resources and time-intensive tasks
(WHO, 2020a). RT-PCR test takes approximately 2 h,
including specimen collection and handling time.

As a preliminary daily screening prior to the RT-PCT test, an
infrared thermometer-based body temperature (BT) screening
has been widely used to conduct rapid infection screening at
entrances of mass gathering places such as schools, offices, and

hospitals (WHO, 2020b). However, recent cohort studies have
reported a high rate (70–75%) of afebrile cases in patients with
COVID-19 infection, which will be undetected in BT screening
and can spread the virus (Goyal et al., 2020; Richardson et al.,
2020). Rechtman et al. have reported COVID-19 induced vital
signs alterations in addition to BT, such as higher heart rate (HR,
HR>100 bpm) than that of normal controls and higher
respiratory rate (RR, RR>24 bpm) (Rechtman et al., 2020).
Moreover, a cohort study in the United Kingdom revealed
that patients with COVID-19 experienced significant increases
in RR and slight increases in HR; however, they had no significant
increases in BT (Pimentel et al., 2020).

We have developed vital signs (RR, HR, and BT) based
infection screening system which can detect afebrile patients
(Matsui et al., 2010; Dagdanpurev et al., 2019). However, the
proposed system had a limitation of accuracy in orthostatic RR
measurement because of the patient’s non-respiratory motion,
such as truncus front-back motion, for maintaining upright
posture (Figure 1). Using Doppler radars, we have previously
developed non-contact screening systems for sepsis and
pneumonia (Matsui et al., 2020; Otake et al., 2021). However,
Doppler radars have limitations in noise reduction induced by
body movements. Therefore, in this paper, we adopted image
sensors used in our previous studies instead of Doppler radars,
such as a depth camera (Takamoto et al., 2020) and a
red–green–blue (RGB) camera (Unursaikhan et al., 2021).

In order to conduct an accurate orthostatic RR assessment, we
propose a truncus motion removal algorithm (TMRA). A truncus
motion is measured using depth-camera-determined neck
movement. Adopting TMRA in addition to the ordinary
region of interest (ROI) tracking algorithms, we developed a
mobile and vital-signs-based infection screening composite-type
camera (VISC-Camera). VISC-Camera detects COVID-19
possibly infected patients within 10 s using a stereo depth
camera for RR determination, an RGB camera for HR
estimation, and a thermal camera for BT measurement
(Figure 2). These three vital signs are indices used to
determine the systemic inflammatory response syndrome
(SIRS) score (Kaukonen et al., 2015).

To conduct a rapid preliminary COVID-19 screening, we
developed a portable vital-signs based COVID-19 screening
system using multiple image sensors (VISC-Camera) with body
(trunk) motion removal algorithm (TMRA). The clinical study in a
Mongolian hospital revealed that VISC-camera enabled accurate
afebrile COVID-19 patients screening due to patients’ respiratory
rate (RR) increase induced by inflammatory responses in relation to

FIGURE 1 | The vital-signs-based infection screening composite-type
camera (VISC-Camera) measurement setup in the standing position. In
addition to respiratory anterior thorax (ZAT ) region of interest (ROI) tracking
algorithms, the VISC-Camera incorporates a non-respiratory truncus
motion (red dotted line) removal algorithm (TMRA) using Ztruncus movements
determined as neck motions.
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COVID-19. Clinical testing was conducted on 154 PCR positive
COVID-19 inpatients (aged 18–81 years; M/F = 87/67) within the
initial 48 h of hospitalization at the First Central Hospital of
Mongolia and 147 healthy volunteers (aged 18–85 years, M/F =
70/77).

MATERIALS AND METHODS

The VISC-Camera System Structure
The VISC-Camera with a seven-inch touchscreen display
incorporates three kinds of image sensors, i.e., a stereo depth
camera with a Red-Green-Blue (RGB) camera (424 × 240 pixels,
30 [frames/s], Intel Real sense D435i), and a thermal camera [80 ×
60 pixels, 9 (frames/s), FLIR Lepton 2.5] (Figure 2B). A circular
polarizer lens is installed in front of the RGB camera to reduce the
reflection of glossy skin. The VISC-Camera has a built-in single-
board computer (Raspberry Pi 4B) for data processing. Images of
a stereo depth camera with an RGB camera and a thermal camera
are transferred to the single board computer through USB 3.0 and
serial peripheral interface (SPI), respectively. A built-in Li-ion
battery enables continuous operation for over 100 measurements
by a single battery charge. The housing of the device is printed by
a 3D printer with overall dimensions of 22 cm (L) × 14 cm (W) ×
4 cm (H). The total weight of the VISC-Camera is 800 g.

The VISC-Camera Data Processing
Algorithms
The software of the VISC-Camera is stand-alone and was developed
in Python programming language (Python Software Foundation).
The overview of the software block diagram is shown in Figure 3

(Supplementary Video). We used the Open computer vision
(OpenCV) library for image processing and the multiprocessing
module from Python to execute the image analyses
simultaneously (Bradski, 2000). The VISC-Camera executes
parallel processes in a quad-core processor, i.e., image capturing
and RR, HR, and BT determinations. As shown in The Truncus
Motion Removal Algorithm for Respiratory Rate Estimation, the
VISC-Camera extracts RR from depth images while measuring
the distance from the VISC-camera to the examinee. RGB images
enableHR estimation through facial landmarks detectionwith a facial
tracking algorithm. BT is derived from RGB-determined ROI using
the thermal images. Logistic regression analysis (LRA) was adopted
from the Python Scikit-Learn machine-learning library (Pedregosa
et al., 2011) to classify COVID-19 infection. The linear equation
determined by LRA is expressed as follows:

log
p

1 − p
� β0+β1×RR+β2×HR+β3×BT (1)

where log p
1−p is the predicted logit score, β0 is a constant, and

β1/β3 are regression coefficients corresponding to the LRA
explanatory variables of RR, HR, and BT (Figure 3D).

In order to keep the computational load as minimum as
possible, we adopted the following procedures to determine
regions of interest. ROIBVP (HR), ROIthermal (BT), ROIAT (RR),
and ROIneck (for truncus motion determination) are the regions
of interest corresponding to face (wide), face (narrow), anterior
thorax, and neck, respectively, as shown in Figure 3. Using a
stereo depth camera, the facial area was determined using the
bounding box algorithm via OpenCV library and the average
human facial dimension (Zhuang et al., 2010). For extracted
facial area, an RGB camera was adopted to determine facial
landmarks A to D [Figure 3 (B; Chart 2)]. ROIBVP was

FIGURE 2 | The VISC-Camera structure and vital signs-related signals were derived in the COVID-19 isolation unit. (A) VISC-Camera screening for a patient with
COVID-19 within 10 s (B) The three cameras of VISC-Camera: stereo depth camera for respiratory rate (RR) monitoring, RGB camera for heart rate (HR) determination,
thermal camera for body temperature (BT) measurement. (C) Vital signs-related signals of the patient comprising respiration signal, heartbeat signal, and facial region of
interest (ROI, orange rectangle) for BT determination.
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determined using A to C, and ROIneck (3 × 3 cm) was placed
below point D corresponding to the jaw. ROIthermal (5 × 7 cm)
was placed 3 cm above B. Using typical human facial
dimensions, ROIAT [20 (H) cm ×18(W) cm] was fixed 12 cm
below D (Bellemare et al., 2003).

Heart Rate Estimation
The VISC-Camera determines HR by sensing facial skin tone
changes induced by an arterial pulsation called blood volume
pulse (BVP) using an RGB image-based remote
photoplethysmography (rPPG) method (Figure 3B). To

FIGURE 3 | Software block diagram of the VISC-Camera screening procedure. (A) Respiratory rate (RR) estimation procedure. (Chart 1) Stereo depth camera
capture [424 × 240 pixels, 30 (frames/s)]. (Chart 2) ROIneck (3 × 3 cm) for truncus-motion monitoring is placed below point D. ROIAT [20 (H) cm ×18 (W) cm] for anterior
thorax measurement is fixed 12 cm below the D. (Chart 3) Estimation of anterior thoracic volume, VAT(t), using truncus motion removal algorithm (TMRA), which
separates non-respiratory truncus-motion [Ztruncus(t)] from respiratory induced anterior thorax-motion [ZAT(t)]. (Chart 4) Extraction of the respiratory signal using
autocorrelation function (ACF) and root MUSIC algorithm. (B) Heart rate (HR) estimation procedure. (Chart 1) RGB camera capture [424 × 240 pixels, 30 (frames/s)].
(Chart 2) ROIBVP for HRmonitoring is determined by facial landmarks A-C. (Chart 3) Heartbeat signal obtained by wavelet transformation (MODWTMRA) and root MUSIC
algorithm. (C)Body temperature (BT) estimation procedure. (Chart 1) Thermal camera capture (80 × 60 pixels, 9 [frames/s]). (Chart 2)ROIthermal (5 × 7 cm) is placed 3 cm
above the landmark point B. (Chart 3) BT determined by the estimated equation from facial temperature. (D) Classification of patients with COVID-19 infections from
healthy volunteers using explanatory variables of RR, HR, and BT via logistic regression analysis. ROI, region of interest; MUSIC, multiple signal classification; BVP, blood
volume pulse; MODWTMRA, multiresolution analysis of the maximal overlap discrete wavelet transform.
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extract the BVP signal, the VISC-Camera detects the human
face using the Haar cascade classifier from the OpenCV
library (Viola and Jones, 2004). The median flow object
tracking algorithm was adopted from the OpenCV library
to track facial ROI for HR measurement without being
affected by body motion, including headshake (Kalal et al.,
2010). To efficiently acquire the BVP signal, we selected
ROIBVP based on the human facial arterial anatomy using
facial landmark points A–C [Figure 3 (B; Chart 2)] (von Arx
et al., 2018). The landmark points are determined by a neural
network-based facial landmark detection algorithm from the
DLIB library (King, 2009). The BVP signal is extracted from
the spatial average of the RGB green color signal of the ROI
via multiresolution analysis of the maximal overlap discrete
wavelet transform (MODWTMRA) with order four Symlet
wavelet filter, decomposition level 4, and bandpass filter
(0.7–2.5 Hz). To avoid aperiodic waves, we adopted the
autocorrelation function (ACF) on the extracted BVP.
Finally, HR is estimated using the root multiple signal
classification (MUSIC) algorithm with elements of one at a
sampling rate of 30 Hz (Barabell, 1983).

The Truncus Motion Removal Algorithm for
Respiratory Rate Estimation
The VISC-Camera determines RR by monitoring the
examinee’s volume of the anterior thorax [VAT(t)] using a
stereo depth camera. The truncus motion removal algorithm
(TMRA) enables accurate RR measurement from the
respiratory anterior thoracic motion by extracting non-
respiratory front-back truncus movements determined by
neck motions (Figure 1). Neck as ROI was adopted to
estimate non-respiratory front-back motion because there
are no respiratory muscles on the neck. VAT(t) is
determined as follows:

VAT(t)�∫
t

0

∑424
x�1

∑240
y�1

(Spixel(t)×(ΔZAT,xy(t)−ΔZtruncus(t))
Δt

×ROIxy)dt
(2)

ROIxy� { 1, if (x, y)∈ROIAT
0, otherwise

where ZAT,xy(t) are the distances from VISC-Camera to an
anterior thorax point (x, y), Ztruncus is the truncus distance
determined as the average distance of the ROIneck from
VISC-Camera, 424 and 240 are the maximum pixel
numbers of the stereo depth camera corresponding to
horizontal and vertical directions, respectively. Δt is a
sampling interval (33 ms). Spixel(t) is the area of a pixel at
a distance of Ztruncus(t) as shown below, 86° and 57° are the
stereo depth camera’s horizontal and vertical field of view
angles, respectively.

Spixel(t) �
2× (Ztruncus(t))× tan(86°2 )

424
×
2 × (Ztruncus(t))× tan(57°2 )

240
(3)

The facial landmark point D, which was coordinated in the HR
estimation process, determines the location of the ROIneck and
the ROIAT to reduce computational load [Figure 3 (A; Chart 2)].
In addition, a bandpass filter (0.1–0.6 Hz) excludes higher
frequency artifacts induced by the examiner’s handshake. To
estimate RR from a short-time signal, we used ACF to find the
periodicity of the respiratory signal and root MUSIC algorithm
(with elements of one at a sampling rate of 30 Hz) for RR
determination.

Body Temperature Estimation
The VISC-Camera estimates BT from the ROIthermal using a
thermal camera (Figure 3C). The ROIthermal is located 3 cm
above the facial landmark point B [Figure 3 (C; Chart 2)]. We
conducted linear regression analysis to estimate BT from the
facial temperature (Tface). The linear equation is expressed as
follows:

BT � A×Tface+B (4)
where Tface is an average temperature within the ROIthermal. We
excluded pixels indicating temperatures below 34°C or above 42°C
in the ROIthermal. A and B are regression coefficients.

Image Quality Assessment
Taking stable images from a proper position is essential in
measuring reliable signals using image-based remote methods.
Therefore, the VISC-Camera screening is according to the
following procedures. First, with 3D visual assistance on the
screen, the examiner can orientate the device to the examinee.
Next, to begin measurement, the VISC-Camera assesses the
examinee’s posture with respect to angles, i.e., roll and yaw,
using facial landmark points A-C. After measurement starts, the
VISC-Camera detects sudden motions using a second
derivative-based blur detection method while capturing
images (Pech-Pacheco et al., 2000). We used the Laplacian
operator as a second derivative operator with the following
3 × 3 kernel:

⎡⎢⎢⎢⎢⎢⎣ 0 1 0
1 −4 1
0 1 0

⎤⎥⎥⎥⎥⎥⎦ (5)

The pre-defined motion detection threshold value of the
variance of the absolute value was Laplacian Variance< 100.

Clinical Testing of VISC-Camera at the First
Central Hospital of Mongolia for COVID-19
Patients
We conducted clinical testing of the VISC-Camera in 154
patients who tested positive for COVID-19 according to
RT-PCR (aged 18–81 years; 87 males, 67 females) within the
initial 48 h of hospitalization at the First Central Hospital of
Mongolia. A control set comprised 147 healthy volunteers
(aged 18–85 years; 70 males, 77 females). All patients were
afebrile (BT < 37.5°C) following administration of antiviral
agents (umifenovir 200 mg/day or favipiravir 200 mg/day).
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Febrile patients in the intensive-care unit were not included.
All healthy volunteers were examined using COVID-19
symptoms-based questionnaires and showed no symptoms
for 1 week before and after VISC-Camera screening. We did
not use criteria in body temperature, which excludes an
examinee with and without COVID-19. A summary of the
demographic of the participants is shown in Table 1. Figure 1
shows the VISC-Camera measurement setup in the standing
position. We did not give any instructions on posture to
examinees. Standing, sitting, and supine examinees are
included in our study. There are possible effects of posture
on RR and HR; however, the RR of COVID-19 patients
drastically increased compared to healthy volunteers. The
clinical tests were conducted indoors with moderate
illumination levels (600–1,100 lux). For reference, a
respiratory belt, visual respiratory counting, a fingertip
pulsimeter, and a thermometer were used. We used a
respiratory belt and visual respiratory counting as references
of RR for healthy volunteers and COVID-19 patients,
respectively. Because person-to-person contact was strictly
limited in the isolation unit of COVID-19. Prior to a
clinical study, we tested the concordance between
respiratory belt-derived RR and that determined by visual
respiratory counting. In order to evaluate false positive
cases induced by another infectious disease with systemic
inflammation, we recruited 33 pediatric pneumonia
inpatients (aged 1–14 years; 18 males, 15 females) measured
by the VISC-Camera at the Central Hospital of
Songinokhairkhan District in Mongolia. This study was
approved by the Tokyo Metropolitan University ethics
committee (approval number H20-038). All participants
gave written informed consent. We obtained the photograph
licensing of Figure 1 from the patient.

Statistical Analysis
Pearson’s correlation coefficient and Bland–Altman plots were
used to analyze the correlation between the measurement of
the VISC-Camera and the references. The LRA classification
model results were used to calculate the sensitivity, specificity,
negative predictive value (NPV), and positive predictive value
(PPV). A t-test was conducted to statistically assess the vital
signs’ mean rate of the two groups. Ten-fold cross-
validation was performed, and the receiver operating
characteristic curve was calculated to evaluate the accuracy
of LRA models.

RESULTS

The heartbeat signal measured by the RGB camera showed
similar periodic fluctuation to that determined by fingertip
photoplethysmography (Figure 4A). Respiration signal
determined by stereo depth camera indicated cyclic oscillation
same as that derived by the respiratory belt (Figure 4B).

Respiratory signals determined as VAT(t) with (right) and
without (left) TMRA are shown in Figure 5. TMRA drastically
improved the cyclic feature of the respiratory signal (Figure 5A).
TMRA greatly increased the correlation coefficient between RR
determined by the reference and VISC-camera-derived RR from
0.51 (Figure 5B; left; without TMRA) to 0.93 (Figure 5B; right;
with TMRA).

BT, defined as the same as the axillary temperature, is
determined using thermal camera-monitoring of the
temperature (Tface) of the facial region of interest (ROI;
Figure 2C) using the following equation:

BT � 0.78 × Tface + 8.99

The level of agreements between the VISC-Camera and the
references were assessed using the Pearson correlation
coefficient (n = 301) and the Bland–Altman plot. Correlation
scatter plots for HR, RR, and BT are shown in Figures 6A,B,C,
respectively. VISC-Camera-determined HR, RR, and BT
significantly correlated with those measured using references
(HR: r = 0.97, p < 0.001; RR: r = 0.93, p < 0.001; BT: r = 0.72, p <
0.001). The root mean squared errors of HR, RR, and BT were
2.7, 1.6, and 0.2, respectively. Figures 6D,E,F show the
Bland–Altman plots for HR, RR, and BT determined by the
VISC-Camera and the references. The 95% limits of agreement
of HR, RR, and BT measurements ranged from −4.7 to 4.2 bpm
(σ = 2.3), -3.1 to 3.1 bpm (σ = 1.6), and -0.39 to 0.40°C (σ = 0.2),
respectively.

The 3D plot of RR, HR, and BT determined by the VISC-
Camera is shown in Figure 7A. Although all patients with
COVID-19 were afebrile, the 3D plot shows two groups: the
patient and the healthy volunteer groups. This is because the RRs
of infected patients were significantly higher than those of healthy
volunteers (patients with COVID-19: mean RR = 22.1 bpm (σ =
2.7); healthy volunteers: mean RR = 15.1 bpm (σ = 2.4); two-tailed
p < 0.05). To separate patients from healthy volunteers more
accurately, the following logit regression analysis (LRA) equation
was determined by adopting RR, HR, and BT as explanatory
variables:

Logit Score�log p
1−p�−9.192+0.505×RR−0.006×HR+0.0101×BT

Logit Score≥00Suspected as COVID−19
Logit Score<00Healthy

where p is the probability, p
1−p is the corresponding odds. In the

screening of afebrile patients with COVID-19, a 10-fold cross-
validation revealed 91% sensitivity, 90% specificity, 91% positive
predictive value (PPV), and 90% negative predictive value
(NPV) (Figure 7C). From the receiver operating

TABLE 1 | Demographics of the patients with COVID-19 and the healthy
volunteers.

COVID-19 Healthy p-value

Heart rate 76.4 ± 13.2 75.7 ± 10.9 0.60
Respiratory rate 22.1 ± 2.7 15.1 ± 2.4 <0.01
Body temperature 36.41 ± 0.20 36.37 ± 0.22 0.12
Logit score 1.8 ± 1.4 -1.7 ± 1.2 <0.01
Age 44.8 ± 14.8 44.7 ± 14.1 0.93
Sex (male/female) 87/67 70/77 0.12
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characteristic (ROC) curve, the LRA model achieved an area
under curve (AUC) of 0.97 (Figure 7B). Also, to evaluate false
positive cases induced by another infectious disease with
systemic inflammation, we tested our LRA model by adding
33 recruited pediatric pneumonia patients to 154 patients with
COVID-19 and 147 healthy volunteers. The result revealed 91%
sensitivity, 74% specificity, 75% PPV, and 90% NPV. Even the
false positive rate increased; however, the most important
parameters in quarantine screening, i.e., sensitivity and NPV,
did not change.

DISCUSSIONS

The VISC-Camera can be used as an Internet of Things device for
an infectious disease surveillance platform, as proposed in our
previous study (Sun et al., 2020). It can also be used routinely in
hospitals as a daily vital signs recording tool because it determines
RR, HR, and BT within 10 s and correlates significantly with
reference values. Generally, healthcare professionals take more
than 3 min to measure and record vital signs. Therefore, in
addition to screening, the proposed system may reduce the

FIGURE 4 | Comparison between VISC-Camera-derived vital signals (red) and references (grey). (A) Heartbeat signal. (B) Respiration signal. PPG,
photoplethysmography.

FIGURE 5 | Comparison of VAT(t) measurements between without (left) and with (right) TMRA. (A) Respiration signals (left; without TMRA, right; with TMRA). (B)
Scatter plots of correlation between the Stereo depth camera-determined RR and the reference value (left; without TMRA, r = 0.51, right; with TMRA, r = 0.93).
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FIGURE 6 | Summary of the VISC-Camera’s vital signs measurement accuracy (n = 301). Scatter plots showing the relationship between VISC-Camera
determined vital signs and reference vital sign values. (A)HR with r = 0.97, p < 0.001, RMSE = 2.7. (B) RR with r = 0.93, p < 0.001, RMSE = 1.6. (C) BT with r = 0.72, p <
0.001, RMSE = 0.2. The Bland–Altman plots illustrating 95% limits of agreements of RR, HR, and BTmeasurements by the VISC-Camera and the references. (D) For HR,
the RGB camera and fingertip pulsimeter ranged from −4.7 to 4.2 bpm vs. mean (σ = 2.3). (E) For RR, the stereo depth camera and the reference ranged from −3.1
to 3.1 bpm vs. mean (σ = 1.6). (F) BT and axillary temperature ranged from −0.39 to 0.40°C vs. mean (σ = 0.2).

FIGURE 7 | Performance of the classification model in discriminating between patients with COVID-19 and healthy volunteers. (A) Scatter plots of the three
explanatory variables of RR, HR, and BT in patients with COVID-19 (red) and healthy volunteers (blue). (B) The receiver operating characteristic (ROC) curve with area
under the curve (AUC) of 0.97. (C) The classification result is represented by the logit scores (Logit Score ≥0 0Suspected as COVID-19, Logit Score <0 0Healthy).
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everyday burden on medical staff responsible for the care of
patients with COVID-19.

In addition, sequential organ failure assessment (SOFA) has long
been used to predict ICUmortality. However, in recent years, and in
particular, following the publication of the Sepsis-3 guidelines
(Singer et al., 2016), quick SOFA (qSOFA) has been more
commonly used in clinical practice than SIRS or SOFA scores,
which are better suited to evaluation during the early stages of sepsis
screening. The qSOFA approach is also used when a sudden change
in patient status is suspected. Although qSOFA uses only three
parameters (RR, blood pressure, and consciousness), the traditional
RRmeasurement is relatively laborious formedical staff. Therefore, a
device to measure RR quickly and easily could be a helpful tool in an
emergency clinical setting.

Although limited to supine position, Dong et al. recently
reported non-contact COVID-19 screening using continuous-
wave radar-based non-contact sleep monitoring equipment via
XGBoost and LRA model (Dong et al., 2022). However, the
VISC-Camera enables non-contact COVID-19 screening in
standing and sitting postures, as well as in supine positions. In
addition, our study focuses on not only technical backgrounds but
also clinical findings, such as the success of non-febrile COVID-19
patients screening by non-contact vital signs monitoring.

In our study, the patients were treated with antiviral
medication in advance; thus, their conditions differed from the
initial characteristics. Despite their lack of fever, we found a
drastic increase in RR in patients with COVID-19 infection.
Therefore, the ability of the proposed system to accurately
measure RR during preliminary screening may contribute to
the reduction of false-negative test results for COVID-19
infection.

Our study has some limitations. Critically ill patients with
COVID-19 were excluded, and all participants were recruited
from one country. Therefore, further data are needed that
encompass examinees with various degrees of COVID-19
severity, diverse ethnicities from various countries, and a
wide range of ages to increase the general-purpose
versatility of the VISC-Camera. In this study, the VISC-
Camera was used in air-conditioned areas with moderate
illumination levels (600–1,100 lux). Therefore, the VISC-
Camera should also be tested in other, less optimal
environments. The VISC-Camera detects COVID-19-
induced inflammatory responses rather than the SARS-CoV-2
virus itself. Therefore, there are possibilities to misdiagnose the
other infectious diseases as COVID-19, such as pneumonia or
influenza. The VISC-Camera was developed for preliminary
screening and not to define the diagnosis.

The portable VISC-Camera described here, which conducts
infection screening within 10 s in a no-contact manner, appears

promising for the preliminary screening of potential COVID-19
infection in afebrile patients.
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