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The within-host viral kinetics of SARS-CoV-2 infection and how
they relate to a person’s infectiousness are not well understood.
This limits our ability to quantify the impact of interventions on
viral transmission. Here, we develop viral dynamic models of
SARS-CoV-2 infection and fit them to data to estimate key within-
host parameters such as the infected cell half-life and the within-
host reproductive number. We then develop a model linking viral
load (VL) to infectiousness and show a person’s infectiousness
increases sublinearly with VL and that the logarithm of the VL in
the upper respiratory tract is a better surrogate of infectiousness
than the VL itself. Using data on VL and the predicted infectious-
ness, we further incorporated data on antigen and RT-PCR tests
and compared their usefulness in detecting infection and prevent-
ing transmission. We found that RT-PCR tests perform better than
antigen tests assuming equal testing frequency; however, more
frequent antigen testing may perform equally well with RT-PCR
tests at a lower cost but with many more false-negative tests.
Overall, our models provide a quantitative framework for inferring
the impact of therapeutics and vaccines that lower VL on the infec-
tiousness of individuals and for evaluating rapid testing strategies.

SARS-CoV-2 j viral kinetics j SARS-CoV-2 infectiousness

SARS-CoV-2 is a new human pathogen that causes COVID-
19 (1). It is highly contagious, spread rapidly across the

globe and has caused 5 million deaths worldwide as of the end
of October 2021. At the molecular level, SARS-CoV-2 enters
host cells via the angiotensin converting enzyme 2 (ACE-2)
receptor. It infects cells in the upper respiratory tract (URT),
can rapidly reach a high viral load (VL) and be effectively
transmitted (2–4). However, it is not clear how VL, symptom
onset, and infectiousness are quantitatively related.

Previously, both VL and log10 VL have been used as surro-
gates for infectiousness of influenza (5) and SARS-CoV-2
(6, 7). A quantitative understanding of the relationship is criti-
cal for both nonpharmaceutical and pharmaceutical interven-
tions. First, it would allow for more precise prediction of the
infectiousness of infected individuals, including children and
pre- or asymptomatic individuals, based on their VL measure-
ments (8, 9). This could in turn lead to quantification of their
contribution to the overall transmission in a community and
help to better inform public health policy decisions. Second, as
administration of vaccines may lead to lowered VLs in break-
through infections (10–12), a quantitative understanding will
inform how these reductions in VL impact infectiousness and
thus allow better predictions of how much transmission vacci-
nated individuals with breakthrough infection cause. Third, it
would provide better insight into a person’s infectiousness
throughout the course of infection and thus inform testing
strategies for work/school reopening, travel, etc. The effective-
ness of test, trace, and quarantine as control strategies heavily
depends on the sensitivity and specificity of the tests and rate of
testing being implemented (13). It was recently proposed that
antigen tests with low sensitivity are preferred over highly sensi-
tive RT-PCR tests because of their potential for wide coverage
and short turnaround time (6). However, the effectiveness of

this strategy has not been evaluated based on VL and infec-
tiousness dynamics inferred from data.

Here, we construct viral dynamic models of SARS-CoV-2
URT infection and a model linking VL to infectiousness. Math-
ematical modeling has been applied, by us and others, to
understand SARS-CoV-2 infection and the potential impact of
therapy (14–18). However, there were large uncertainties in
model parameter estimates because in almost all studies, viral
dynamic models were fit to data that were taken after symptom
onset without knowledge of the patients’ infection dates and
early VL dynamics. We resolve this issue by using two unique
datasets and by using clinical and epidemiological data to
inform the quantitative relationship between VL and infec-
tiousness. Using this relationship, we further evaluate the effec-
tiveness of testing strategies using either antigen or RT-PCR
tests at different testing frequencies.

Results
Datasets. We use two unique sets of URT VL data for model
inference. The first, the “German dataset,” contains VL meas-
urements from nine individuals in the first cluster of infections
in Germany (3). All individuals had mild symptoms. VLs were
measured longitudinally starting several days after symptom
onset. We excluded one individual (Patient 16 in ref. 19)
because their first VL measurement was long after infection. A
unique feature of this dataset is that the detailed transmission
history, including the infection dates and dates of symptom
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onset, were reported (19). However, this dataset does not have
good sampling during the initial VL expansion before the viral
peak. Thus, we include a second data set, the NBA (National
Basketball Association) dataset, which was taken from a study
where individuals (staff and players) were regularly tested dur-
ing an NBA tournament in 2020 (20). We selected nine individ-
uals sampled frequently, including during the virus expansion
phase. In Dynamics of Early Infection, we show that these
unique features of the two datasets allow us to jointly infer the
within-host SARS-CoV-2 dynamics in these individuals includ-
ing the time of infection.

Dynamics of Early Infection. The SARS-CoV-2 dynamics in the
URT are typical of an acute respiratory infection [i.e., VLs
increase to a viral peak and decline afterward (Fig. 1)]. Thus,
we constructed a target cell limited (TCL) model and an innate
immune response model using frameworks previously devel-
oped for influenza (21, 22) and SARS-CoV-2 infection (15, 18,
23) (Methods and SI Appendix). In the innate immune response
model, we assumed that innate immune mediators, such as
interferons, put target cells into an antiviral state (24) that is
refractory to viral infection (22, 25). We first fit these two mod-
els to the NBA dataset to estimate the time of infection.
Because multiple measurements were taken before peak VL in
the nine individuals we chose to study, the times of infection
can be estimated relatively reliably. Both the TCL and the

innate response model gave similar estimates of the infection
time (SI Appendix, Table S1).

We then fit the TCL model and the innate response model
to the data from both datasets simultaneously using a nonlinear
mixed effect modeling approach (Methods). We also tested var-
iants of these models that assume immune mediators block
infection of target cells or reduce virus production from
infected cells (SI Appendix). According to the Akaike informa-
tion criterion (AIC) scores, the best model overall is the model
assuming the innate immune mediators convert target cells into
refractory cells (SI Appendix, Table S2). This model fits both
datasets well (Fig. 1), and it describes both the upslope and
downslope of the viral dynamics in the NBA dataset. This gives
confidence in our model predictions of the early viral dynamics
for individuals in the German dataset. We then tested if there
is any difference in estimated parameter values between the
two datasets by including the source of the dataset (i.e., the
NBA or the German dataset) as a covariate in the model fit-
ting. We found that there was no statistical support for includ-
ing the origin of the datasets as a covariate (SI Appendix, Table
S2). Therefore, we use the innate immune response model
Eq. 5 (Methods) without the covariate for further analysis and
term this model the innate response model for short.

According to the best-fit parameter values, the infected cell
death rate δ is 1.7 d�1 on average (Table 1). Because the model
includes an eclipse phase of length 1/k, where k = 4 d�1, the

Fig. 1. Fitting results of the innate response model to the VL data from two studies. (A) Fitting results to data from eight individuals in the Germany
study [i.e., Wolfel et al. (3)]. The model (solid lines) was simulated using the best-fit individual parameter values estimated by a nonlinear mixed effect
modeling approach (Tables 1 and 2). The symbols (red dots and circles) show the data from pharyngeal swabs. The circles indicate data points below the
limit of detection (LoD). Vertical gray lines denote the time of symptom onset as reported in ref. 19. Horizontal dashed black lines show the LoD. (B) Fit-
ting results to data from nine individuals in the NBA study as reported in Kissler et al. (20) with symbols and colors as in A.
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average lifespan of infected cells is 1
kþ 1

δ ¼ 0:84 d. We estimated
that the within-host basic reproductive number, R0,within, varies
over a range between 2.6 and 14.9, with mean 7.4 (SD: ±3.8)
(SI Appendix, Table S3).

We further tested how robust our estimates are with respect
to variations in the fixed parameter values in the model by vary-
ing each of those in the ranges shown in Table 2 and then refit-
ting the model to the data. Across the scenarios examined, the
estimates of the death rate of infected cells were very consistent
between 1.6 and 1.9 d�1 and the mean R0,within ranged between
5.8 and 8.9 (SI Appendix, Table S4). Thus, the estimated param-
eters and viral dynamic characteristics were robust against var-
iations in the fixed parameters (SI Appendix, Table S4).

Probability of Transmission. We next examined how VL is related
to the infectiousness of a person by constructing a probabilistic
model to describe the various steps in viral transmission from
viral shedding to establishment of infection (see Fig. 2A for a
schematic). We define infectiousness as the probability that an
infected person (i.e., a donor) will shed one or more infectious
viral particles, leading to successful infection of a recipient for
a typical contact of relatively short duration, τ. The typical con-
tact here is defined as in the epidemiological survey study by
Mossong et al. (26). Note that the probability defined here only
characterizes the infectiousness of a person arising from virus
dynamics in the URT given a contact, and it does not assume
any frequency of typical contacts. The expected number of
transmissions that a person causes can be calculated if the con-
tact pattern of the person is known.

During a contact, the donor sheds both infectious and nonin-
fectious viruses, and a transmission event occurs when one or
more infectious viruses reach the recipient and establishes an
infection (Fig. 2A). We first consider the relationship between
the number of infectious viruses, Vinf , and the measured VL,
V , in a patient sample (e.g., a swab) using three sets of cell cul-
ture positivity data [i.e., Jaafar et al. (27), Jones et al. (28), and
Kohmer et al. (29)]. In these three datasets, a total of 3,790,
631, and 75 RT-PCR positive nasopharyngeal samples, respec-
tively, with known cycle threshold (Ct) counts or VLs were
tested for the presence of infectious virus using cell culture
assay.

We examined the following three models describing the rela-
tionship between Vinf and V: 1) the linear model: Vinf is propor-

tional to V; 2) the power-law model: Vinf ¼ ωVh, where ω and

h are constants; and 3) the saturation model: Vinf ¼ Vm
Vh

VhþKh
m
,

where Vm and Km are constants. The probability of a cell culture
testing positive can be expressed as ppositive ¼ 1� exp �Vinf ϱ

� �
,

where ϱ is the probability an infectious virus will establish infec-
tion in the cell culture (SI Appendix). Note that because ϱ always
appears as a product with ω or Vm in the expression of ppositive, ϱ
and the number of infectious particles, Vinf , cannot be indepen-
dently estimated from the data we used here. However, the esti-
mated values of h or Km describes how Vinf changes with V.

Fitting the three versions of this model to the datasets (SI
Appendix), we found that the linear model describes all datasets
poorly (Fig. 2B). The saturation model is the best model to
describe the data from Jaafar et al. (Fig. 2B and SI Appendix,
Table S5), and the best fit parameter values are h¼ 0:51 and
Km ¼ 8:9 × 106 RNA copies/mL (SI Appendix, Table S6). Both
the power-law model and the saturation model describe well
the data from Jones et al. and Kohmer et al. (Fig. 2B), which
have a smaller number of samples and thus, potentially, less
power to discriminate among the models. The parameter h is
estimated to be 0.53 and 0.45, respectively (SI Appendix, Table
S6), consistent with the exponent h estimated from fitting the
saturation model to the Jaafar et al. data. This strongly suggests
that the level of infectious viruses increases sublinearly with
increases in VL (with the exponent h likely being between 0.4
and 0.6). Because the saturation model describes all datasets
well, we will mainly use this model for the analyses that follow.
However, we caution that the evidence is not strong enough to
rule out the power-law model because the saturating behavior
observed in Jaafar et al. may arise from other factors that are
not part of the transmission process, such as assay limitations.
In addition, another study estimating transmissibility from VL
and contact tracing data did not find a saturation effect on VL
(30).

We next consider viral shedding from a donor and the
establishment of infection in a recipient. We used the satura-
tion function and assumed that the mean number of infec-
tious virions shed is proportional to the number in a sample,
Vinf , and that the exact number is Poisson distributed.
Because it is unlikely that a droplet contains more than one
SARS-CoV-2 virion (31), we assume that each infectious
virion acts independently, and the number of infectious viri-
ons that successfully infect the recipient follows a binomial
distribution with its probability parameter defined by the
probability an infectious virion establishes an infection, and
the number of “trials” parameter is the Poisson-distributed
number of infectious virus. Then, the probability of one or
more virions generating a successful transmission event for a
typical contact at time t is given by (Methods):

p tð Þ ¼ 1� e
�θ V tð Þh

V tð ÞhþKhm , [1]

Table 1. Estimated population parameter values from the best model (i.e., the innate response model)

Parameter Description Mean (population estimate) SD

β Infection rate constant 3.2 × 10�8 ml/RNA copy/d 0.50
δ Death rate of infected cells 1.7 /d 0.23
π Composite parameter for virus production and sampling 45.3 /mL/d 0.24
Φ Rate constant for the interferon-induced conversion of target cells to refractory cells 1.3 × 10�6 /cell /d 1.95
ρ Rate at which refractory cells become target cells again 0.0044 /d 0.20

The means and SDs are derived assuming that individual parameters follow log-normal distributions.

Table 2. The fixed parameters in the viral dynamic models and their values

Parameter Description Values Values tested in sensitivity analyses

T0 Total number of (infection free) target cells 8 × 107 cells NA
E0 Initial number of infected cells 1 cell 5, 10 cells
c Virus clearance rate 10/d 5 and 20/d
k 1/the eclipse phase duration 4/d 3 and 6/d

A
PP

LI
ED

M
A
TH

EM
A
TI
CS

PO
PU

LA
TI
O
N

BI
O
LO

G
Y

Ke et al.
In vivo kinetics of SARS-CoV-2 infection and its relationship with a person’s infectiousness

PNAS j 3 of 9
https://doi.org/10.1073/pnas.2111477118

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2111477118/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2111477118/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2111477118/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2111477118/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2111477118/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2111477118/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2111477118/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2111477118/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2111477118/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2111477118/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2111477118/-/DCSupplemental


where θ is a composite parameter incorporating the fraction of
infectious viruses reaching the recipient and the probability of
each establishing an infection (SI Appendix). Note that when θ is

small, p tð Þ can be approximated by the Hill function θ V tð Þh
V tð ÞhþKh

m

. A

Hill function was used previously to model the transmission prob-
ability for HIV (32), influenza (5, 33), and more recently SARS-
CoV-2 (16).

The values of h and Km are determined using cell culture
data. θ is a constant such that the maximum transmission prob-
ability (i.e., the maximum infectiousness) is 1� e�θ, which is
approximately θ for θ ≪1. Multiple epidemiological studies
indicate that the secondary attack rate per typical contact is low
(i.e., less than 20%) (34–36). We thus set θ¼ 0:20 in the analy-
sis that follows so that the maximum transmission probability is
∼20% for a typical contact.

Setting θ¼ 0:20, h¼ 0:51, and Km ¼ 8:9 × 106 RNA copies/
mL, we calculated how infectiousness depends on VL (Fig.
2C) and how infectiousness varies over time, p(t) (i.e., the

infectiousness profile) for each individual (Fig. 2D and SI
Appendix, Fig. S1). If we define the infectious period as the
period when the infectiousness, p(t), is above 0.02 (i.e., 10% of
the maximum probability), the infectious period ranges
between 1.9 and 7.9 d with a mean of 5.5 d across the 17 indi-
viduals (SI Appendix, Fig. S1). For the individuals in the Ger-
man dataset where the date of symptom onset is known, we
calculated the presymptomatic fraction of infectiousness by
dividing the area under the infectiousness curve p tð Þ before
symptom onset by the total area under the infectiousness curve.
This fraction represents the expected fraction of presympto-
matic transmissions (if a person is not rapidly isolated after
symptom onset). We found that the fraction ranges between 0
and 17% (Fig. 2D and SI Appendix, Fig. S1). Interestingly, there
is a statistically significant association between the duration of
the incubation period (i.e., the time between infection and
symptom onset) and the predicted probability of presympto-
matic transmission (Fig. 2D; P = 0.03). This suggests that the
longer the incubation period, the more likely presymptomatic

A

B

C D E

Fig. 2. The relationship between VL and host infectiousness. (A) A schematic of the probabilistic model describing the steps in a transmission event. A
donor sheds both infectious and noninfectious viruses, of which some infectious viruses may reach a recipient during a close contact and establish an
infection. (B) Best-fit of the three models [i.e., the linear model (gray), the power-law model (blue), and the saturation model (red)] to the data from Jaa-
far et al. (27), Jones et al. (28), and Kohmer et al. (29). The open circles denote the percentage of cell culture positivity reported, and vertical lines denote
the 95% CIs calculated assuming a binomial distribution for the number of positive cultures. For the datasets from Jones et al. (28) and Kohmer et al.
(29), VLs are binned into half-log10 intervals. Solid lines are used for models that describe the data well. (C) The predicted probability of transmission for
a typical contact as a function of log10 VL given by the saturation model in Eq. 1 with θ¼ 0:20,h¼ 0:51, and Km ¼ 8:9 × 106 RNA copies (red) or by the
power model in Eq. 2 with ϕ¼ 2:4 × 10�5 and h¼ 0:53 (blue). (D and E) The infectiousness profile for all individuals studied (lines in Upper) predicted by
the infectious model assuming a saturation function (Eq. 1) or a power-law function (Eq. 2), respectively. (Lower) The relationship between the duration
of the incubation period (x axis) and estimated presymptomatic area under the infectiousness curve. Irrespective of the model used, expected presympto-
matic transmission is more likely in individuals with a longer incubation period.
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transmission occurs, and presymptomatic transmission is mostly
driven by individuals who have an incubation period greater
than 5 d.

To further cross validate this choice of parameters in the
infectiousness model, we compared our model predictions with
epidemiological data not used to derive our model. First, from
the infectiousness profiles predicted by our model, we calcu-
lated using Eq. 6 (Methods) the expected serial interval for
each individual (assuming random contacts) and found the
mean serial interval across all 17 individuals studied to be 7.1 d.
This is consistent with a mean serial interval of 6.5 to 8 d in the
absence of active tracing and isolation efforts as estimated in
ref. 37. Second, from the infectiousness profile, we calculated
using Eq. 7 (Methods) the number of potential transmissions
for each individual assuming that there are on average 13.4 typ-
ical contacts per day according to the estimates from several
European countries reported in Mossong et al. (26). We then
estimated the expected reproductive number of SARS-CoV-2
at the epidemiological level, R0,epi, by taking the mean of the
numbers of potential transmissions. We estimated that R0,epi is
5.2 for the 17 individuals (Methods), within the range of R0,epi

values estimated previously for European countries (38).
Therefore, these independent validations support our infec-
tiousness model in Eq. 1.

Similarly, we derive the probability of transmission using the
power-law function as

p tð Þ ¼ 1� e�ϕV tð Þh , [2]

where ϕ is a constant. We estimated h¼ 0:53 and ϕ¼ 2.4 ×
10�5 from the data by Jones et al. (28) such that this version of
the model predicts a mean serial interval and R0,epi (6.9 and 5.1
d, respectively) that are consistent with epidemiological studies
(37, 38). In general, the model predictions of infectiousness are
similar to the predictions using the saturation model when the
VL is lower than 107 copies/mL; however, the predictions of
the two models diverge when the VL is higher (Fig. 2C). The
power-law model estimates similar levels of infectiousness to
the estimates of the saturation model, except for one individual
with a high infectiousness (Fig. 2 D and E and SI Appendix,
Figs. S2 and S3). It estimates a similar fraction of presympto-
matic infections as the saturation model (Fig. 2E). Again, the
model predicts that the fraction of expected presymptomatic
transmission increases with the length of the incubation period.

Lastly, we tested whether the linear model is consistent with
epidemiological data by assuming that Vinf is a constant fraction
of V (SI Appendix, Fig. S4). The model predicts that the fraction
of presymptomatic infections is extremely small (i.e., less than
8% in each of the patients in the German dataset [SI Appendix,
Fig. S4B]) inconsistent with epidemiological data (2, 4, 39).
Therefore, datasets from cell culture experiments as well as epi-
demiological studies suggest that the fraction of virus particles
that are infectious is not constant over the course of infection.

Log VL Is a Better Surrogate Measure of Infectiousness than VL.
There are two commonly used surrogate measures of infec-
tiousness (5): the VL or the logarithm of VL. The total infec-
tiousness of a person is then approximated by the area under
the VL curve (AUC) or the area under the log10 of the VL
curve (AUClog), respectively.

To identify the appropriate surrogate measure for SARS-
CoV-2 infection, we first compared the predictions of these two
measures with the epidemiological evidence that a large frac-
tion (>30%) of transmissions occur during the presymptomatic
stage of SARS-CoV-2 infection (2, 4, 39). Because the dates of
infection and symptom onset are only available in the German
dataset (3), we focused our analysis on this dataset. When
AUC is used as a surrogate for infectiousness, this is very

similar to using the linear model for infectiousness. Therefore,
AUC predict very small fractions of presymptomatic transmission
(i.e., less than 8% in each of the patients in the German dataset),
inconsistent with epidemiological data (2, 4, 39). This suggests
the VL and its AUC are not good surrogates for infectiousness.

In contrast, when AUClog is used as a surrogate, we predict
a sizable fraction of presymptomatic transmissions, between 2
and 27%, which is near the lower bound estimate in ref. 2. We
then correlated AUClog with the cumulative infectiousness
curve calculated from the probability model based on the satu-
ration function (i.e., Eq. 1) and found that there exists a strong
correlation between the two (SI Appendix, Fig. S5A, P = 0.002).
In addition, the fractions of presymptomatic infections pre-
dicted by AUClog are very close to those predicted using the
area under the curve of infectiousness from the probability
infectiousness model (SI Appendix, Fig. S5B). Therefore, the
logarithm of VL, and its corresponding AUClog, serve as a bet-
ter surrogate for infectiousness than the VL and its correspond-
ing AUC.

Implications for Testing Strategies. Using our best-fit model of
how VL (Fig. 1) and infectiousness (Fig. 2D) vary with time
since infection, we analyzed the impact of possible testing strat-
egies used to reduce the potential for SARS-CoV-2 transmis-
sion. We considered two different types of tests: 1) RT-PCR,
generally considered the gold standard because of its very high
sensitivity and specificity, although its performance depends on
the VL and on the quality of the sample collected (40); and 2)
antigen tests, which although less sensitive, generally have
faster turnaround time (minutes instead of hours to days) and
can be self-administered (see Methods and SI Appendix, Fig. S6
for details).

We studied a hypothetical medium-sized college setting [as
described in Paltiel et al. (41)]. In this scenario, during a 12-wk
semester in a cohort of 5,000 students/staff, we assume that
there were 500 people infected at random times. We imple-
mented four testing frequencies (every person every day, or
every 3, 5, or 7 d) using RT-PCR or antigen testing. We
assumed the sensitivity for each test varied with time since
infection as in SI Appendix, Fig. S6 (based on data from refs. 29
and 40), and that the turnaround time was 1 d for RT-PCR and
minutes for the antigen test. Given that whether infection is
detected or not, as well as the time of detection, is probabilistic,
for each scenario we ran 100 simulations using the best-fit
model parameter values for each of the 17 individuals. In Fig.
3, we summarized the fraction of the 500 infections detected,
the number of false negatives (some people may be false nega-
tives multiple times), the average time of infection until detec-
tion, as well as the fraction of total infectiousness averted by
detecting someone (assuming that person is then isolated). The
fraction of total infectiousness averted was defined as the area
under the infectiousness curve from time of detection until res-
olution of infection in detected individuals divided by their total
infectiousness (AUC) averaged over the 500 people infected.

We found that with a RT-PCT test, a large fraction (>80%)
of infected individuals can be detected even with a testing fre-
quency of every 7 d (Fig. 3A); whereas with an antigen test,
testing at least once every 3 d is needed to achieve >80% of
detection. Frequent tests (every 3 d for RT-PCR tests and every
day for antigen tests) are needed to identify and isolate infected
individuals early and thus avert a large fraction of infectious-
ness (Fig. 3 C and D).

Overall, the results of these simulations show that although
RT-PCR tests perform better than antigen tests in detecting
infected individuals and preventing transmission, more-
frequent antigen testing (e.g., every day or every 3 d) is compa-
rable to less-frequent RT-PCR tests, at the expense of many
more false-negative tests (Fig. 3B). This indicates that frequent
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antigen tests, potentially self-administered at home, could be
an important tool in combating spread of infection.

Discussion
In this study, we constructed mathematical models to describe
the VL kinetics of SARS-CoV-2 in the URTand their relation-
ship with the infectiousness of an individual. Fitting a viral
dynamic model that included an innate immune response to
data from refs. 3 and 20, we estimated several key parameter
values. The death rate of productively infected cells was esti-
mated to be around 1.7 d�1. Thus, once infected cells start pro-
ducing virus, they live on average 0.6 d. We estimated the mean
within-host reproductive number, R0,within, in the URT to be
7.4 with variation among individuals examined, ranging
between 2.6 and 14.9. For individuals with known dates of
infection and symptom onset, we found that longer incubation
periods had higher potential for presymptomatic transmission.
A similar finding was reported in a recent study estimating the
fraction of presymptomatic transmissions by the duration of the
incubation period from transmission pair data (42).

To model viral transmission, we estimated the relationship
between the number of infectious viruses in a sample and the
sample VL by fitting models to three datasets on infectious
virus cell culture positivity (27–29). This led to several interest-
ing findings. First, a consistent finding across the three datasets
was that the number of infectious viruses does not increase lin-
early with increases in VL, suggesting VL itself or the AUC is
not a good surrogate for infectiousness. Instead, we found that
the number of infectious viruses increases sublinearly with
increases in VL. This makes log VL or the AUClog good surro-
gates for infectiousness. Further experiments are needed to
understand this sublinear relationship. Second, a saturation
effect on the infectious viruses when VL is very high (e.g., >109

copies/mL) is needed to explain data from Jaafar et al. (27);
however, saturation is not needed to explain the data from
Jones et al. (28) and Kohmer et al. (29). The saturation effect,
if present, could be due to assay inaccuracies at very high VLs

or could arise from processes in vitro or in vivo that inactivate
the virus in high-VL samples. This inconsistency in results vis-
�a-vis saturation leads to uncertainties in predicting infectious-
ness when VL is very high. Further experiments measuring the
infectious virus concentration especially from samples with high
VLs is needed to address this issue. In our study, irrespective
of the model used, we found that the risk of transmission for a
typical contact of relative short duration becomes high when
the VL exceeds between 106 and 107 RNA copies/mL. This is
consistent with the results from Wolfel et al. (3), where infec-
tious viruses were recovered only when VL exceeded 2 × 105

RNA copies/swab and the results from ref. 43, where infectious
virus was mainly isolated from specimens with ≥106 virus N
gene copies/mL. The results are also consistent with the find-
ings in van Kampen et al. (44) where in hospitalized patients
with COVID-19, VLs > 107 copies/mL were associated with
isolation of infectious virus.

Using the predicted infectiousness over time for each indi-
vidual, we evaluated the effectiveness of two testing platforms:
RT-PCR and antigen tests. RT-PCR tests are highly sensitive;
however, they are costly and may take days to obtain the result.
On the other hand, antigen tests are less sensitive but are easy
to administer and provide results in less than an hour. Our
modeling suggests that RT-PCR tests are better than antigen
tests at both detecting infected individuals and effectively
reducing total infectiousness when testing is used as a tool for
safe reopening of schools and workplaces. However, when fre-
quent RT-PCR testing, say every 7 d, is not feasible due to its
high cost and complexity in properly administering these tests,
more-frequent antigen tests (i.e., every 1 to 3 d) could be used
instead; however, this will lead to higher number of false-
negative results due to the large number of antigen tests
performed.

Administration of vaccines or effective therapeutics may lead
to reduced VLs in the URT (10, 12). Our modeling approach is
well suited to quantify the impact of vaccination on the infec-
tiousness of a person. It is beyond the scope of this study to

Fig. 3. Comparison of eight testing protocols using RT-PCR or antigen tests. For each of these, we considered that every person is tested every 1, 3, 5, or
7 d, as indicated in the x axis by the number after the test type (e.g., A3 and P3 correspond to antigen and RT-PCR testing, respectively, every 3 d). We
plot the number of people detected (A), the number of false-negative tests (B; note that some people may be false negatives multiple times), the fraction
of total infectiousness averted (C), and the average time postinfection to detection (D).
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formally estimate infectiousness of vaccinated individuals who
had breakthrough infections. However, as an illustrative exam-
ple, we use VL data from participant 737 (Fig. 1B) to demon-
strate how our model can be used to make such predictions.
We considered two scenarios of how vaccination impacts viral
dynamics. In the first scenario (SI Appendix, Fig. S7), we
assumed for simplicity, that in breakthrough infections, full vac-
cination reduces VLs uniformly across time by 10-, 100-, or
1,000-fold (as seen in nasal swabs of some individuals in ref.
10). Our model then predicts the infectiousness of this partici-
pant would decrease by 62, 87, or 96%, respectively. In the
second scenario (SI Appendix, Fig. S7), we assumed that in
breakthrough infections, full vaccination reduces peak VLs by
10-, 100-, or 1,000-fold (as seen in nasal swabs of other individ-
uals in ref. 10). Our model then predicts the infectiousness of
this participant would decrease by 33, 68, or 87%, respectively.
These results demonstrate that the relationship between VL
reduction and infectiousness reduction is highly nonlinear. Fur-
ther modeling work that takes into consideration the possibility
that the relationship between VL and infectivity is different in
vaccinated and unvaccinated individuals is needed. For exam-
ple, virus isolated from vaccinated individuals may have
vaccine-induced antibodies bound to it, reducing its infectivity.
This is consistent with a recent report showing that messenger
RNA–vaccinated individuals have reduced infectious VLs that
correlate with respiratory antiviral IgG levels (45).

There are limitations to our models. First, the data we used
for model inference were from infected individuals with rela-
tively mild or no symptoms (3, 20), who rapidly cleared the
virus. The parameter values and relationships we estimated
between VL and infectiousness thus may be biased toward
mildly symptomatic and asymptomatic individuals. Further
work is needed to extend our analysis to individuals with differ-
ent levels of symptom severity (46) as well as to vaccinated indi-
viduals. However, we note that people with severe symptoms
will likely often be hospitalized and/or quarantined and contrib-
ute less to the spread of the virus. Second, the relationship
between VL and the number of infectious particles is inferred
from data aggregated from many individuals, and thus it
assumes homogeneity across individuals. Further work measur-
ing individual level heterogeneity in the relationship between
infectious viral shedding and VL (such as refs. 10 and 18) will
help to characterize heterogeneity in individual infectiousness
and help make more-precise predictions of the impact of test-
ing strategies on transmission.

Overall, our model linking within-host VL dynamics to infec-
tiousness provides a crucial tool for evaluating both nonphar-
maceutical and pharmaceutical interventions and aiding public
health policy decisions (47).

Methods
TCL Model. We first study a within-host model based on target cell limitation.
The model, which has been used for other viruses (21, 48), keeps track of the
total numbers of target cells (T), cells in the eclipse phase of infection (E) (i.e.,
infected cells not yet producing virus), productively infected cells (I), and
viruses measured in swab samples (V). The ordinary differential equations
(ODEs) describing the model are

dT
dt

¼ �βVT
dE
dt

¼ βVT � kE

dI
dt

¼ kE� δI
dV
dt

¼ πI� cV:

[3]

In this model, target cells are infected by virus with rate constant β. Cells leave
the eclipse phase and become productively infected at per capita rate k. Pro-
ductively infected cells die at per capita rate δ. We use V to describe viruses
measured in pharyngeal swabs, which we assume are a constant proportion

of the total virus in the URT. Therefore, the rate, π, is the product of the viral
production rate per infected cell and the proportion of virus that is sampled in
a swab. Viruses are cleared at per capita rate c. See SI Appendix for further
details.

From this model, we calculate the within-host reproductive number for
SARS-CoV-2, R0,within, as

R0,within ¼ βπ
cδ

T0, [4]

where T0 is the initial number of target cells.

Innate Response Model. We extend the TCL model by including a prototypical
innate response (e.g., type-I interferon) following the framework presented in
previousmodels for influenza infection dynamics (21, 22, 25). Immunemediators
are produced from infected cells and bind to receptors on target cells stimulat-
ing an antiviral response that makes cells refractory to viral infection (R). Such
cells are said to be refractory cells or cells in an antiviral state (24, 49). In addition
to the compartments in the TCL model, the innate response model keeps track
of cells refractory to infection (R). For simplicity and due to a lack of data, we do
not explicitly consider the specific immune mediators (e.g., cytokines) or their
concentration. Instead, we make the quasi–steady-state assumption that the
dynamics of these mediators are fast and thus their concentration is propor-
tional to the number of infected cells (see SI Appendix for details).

The ODEs for the innate responsemodel are

dT
dt

¼ �βVT � ΦIT þ ρR
dR
dt

¼ ΦIT � ρR
dE
dt

¼ βVT � kE

dI
dt

¼ kE� δI
dV
dt

¼ πI� cV,

[5]

where Φ is a constant describing the rate that innate signaling makes target cells
refractory, and ρ is the rate that refractory cells transition back into target cells.

Data, Estimating Time of Infection, Parameter Fitting, and Analysis. For the
German dataset, we digitalized longitudinal VL data from throat swabs of the
nine infected individuals reported in Wolfel et al. (3). The infected individuals
are young to middle-aged professionals, without underlying disease, who
were identified because of known close contact with an index case. All
patients were hospitalized but had a comparatively mild clinical course of dis-
ease. For the NBA dataset, we used data reported in Kissler et al. (20). We
included nine individuals for whom multiple detectible VL measurements
were available before the viral peak. Note that VLs were reported in copies/
swab byWolfel et al. (3) and in copies/mL in Kissler et al. (20). Since we did not
find significant differences in parameter estimates between the two datasets
(Results), the unit of choice/reporting may not strongly impact our results. For
consistency, we use copies/mL as the reporting unit.

We use a population approach, based on nonlinear mixed effect modeling
(unless specified otherwise), to fit the model simultaneously to VL data from
the two datasets, using the softwareMonolix (Lixoft SAS, Antony, France).We
calculated correlations between the incubation periods and the fractions of
predicted presymptomatic transmission using Pearson correlation.

The Model for Infectiousness. To calculate the probability of transmission
given a typical contact of duration τ, we assume that τ is small enough
(on the order of minutes or hours) that the total VL in the URT of the
donor and thus the level of infectious viruses, Vinf , is approximately cons-
tant during the contact between time t and tþ τ. We then assume that
the number of infectious viruses shed per unit time is μVinf , where μ is a
constant. Of these, a fraction, φ, reaches the URT of the recipient. Then
on average, the total number of infectious viruses reaching the recipient
for a contact of duration, τ, is n¼ φμτVinf . Airborne pathogens tend to be
randomly distributed in the air (50). Thus, we assume the number of
infectious viruses reaching the recipient during a contact is a random var-
iable X that is Poisson distributed with parameter n. We further assume
that each infectious virus that reaches the recipient has a probability ν to
successfully establish infection and that if X viruses reach the recipient
the probability to establish an infection is given by the binomial distribu-
tion Bin(X, ν). However since X follows a Poisson distribution, one can
show the distribution of the number of viruses that successfully establish
an infection follows a Poisson distribution with parameter

λ¼ nν¼ φμτVinfν¼ θ VT tð Þh
VT tð ÞhþKh

m
, for the saturation model where θ¼ φμτVmν.
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Then, the probability of one or more virions generating a successful
transmission event for a typical contact at time t is given by Eq. 1.

Estimating the Expected Serial Intervals and R0,epi from Infectiousness
Profiles. To calculate the expected serial interval (or the generation interval),
we assume that contacts are randomly distributed over time. Then, the
expected serial interval for the ith individual, SIi, can be calculated as

SIi ¼
∫ ∞
0 t pi tð Þdt
∫ ∞
0 pi tð Þdt , [6]

where pi tð Þ is the probability of transmission (Eq. 1) given a typical contact for
individual i. The mean serial interval across all individuals in our study is calcu-
lated as the mean of the SIi values calculated for all the individuals in the
two datasets.

To calculate the expected epidemiological reproductive number, we
assume that there are on average 13.4 contacts of a relatively short duration
per day according to the estimates in Mossong et al. (26). Then, the expected
epidemiological reproductive number for individual i is calculated as

R0,epi,i ¼ 13:4 ∫
∞

0
pi tð Þdt: [7]

The mean epidemiological reproductive number across all individuals in the
two datasets, R0,epi, is calculated by taking the average of R0,epi,i across all
individuals.

Note that the calculation of R0,epi above is a rough approximation because
it implicitly makes the simplifying assumption that contacts are randomly dis-
tributed over time and every individual has the same number of contacts per
day. This is used in our study to show that the choice of parameter values (for
θ,h and Km) are broadly consistent with estimates of epidemiological parame-
ters such as the mean serial interval and R0,epi. However, it should not be
treated as an exact expression. See ref. 51 for discussion of formally calculating
R0,epi in the context of SARS-CoV-2 transmission.

Model and Assumptions for Evaluating Testing Strategies. Several studies
have remarked that testing sensitivity in clinical practice can be much lower
than the theoretical detection limit would indicate. For example, Kucirka et al.

(40) suggested that the sensitivity of a RT-PCR test depends on the time since
infection (a reflection of the VL) and that it is never more than 80%. Although
there are many RT-PCR test platforms and protocols in use, the general sensi-
tivity over the infection duration is likely not substantially different. To exam-
ine testing protocols under the best of circumstances, we assume much better
performance for RT-PCR tests than suggested by Kucirka et al. (40), with no
detection if the VL is below 103 copies/mL but 90% sensitivity for any VL above
that (SI Appendix, Fig. S6B). We compare this test with an antigen test with
characteristics as presented in Kohmer et al. (29), who compared the perfor-
mance of several antigen tests with the results of RT-PCR. Based on their data
for the SARS-CoV-2 Rapid Antigen Test (Roche Diagnostics) versus the VL in
the sample, we fit the performance of the test to a logistic type relation
between VL and positivity detection yielding the curve shown in SI Appendix,
Fig. S6C (see SI Appendix for further details). An infected person’s probability
of being detected is a Bernoulli trial based on the sensitivity of the test (as in SI
Appendix, Fig. S4).

Data Availability. There are no original data underlying this work. Only previ-
ously published data were used for this study (3, 20, 27–29).
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