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Abstract

Background: Network inference is an important tool to reveal the underlying interactions of biological systems. In
the liver, a complex system of transcription factors is active to distribute signals and induce the cellular response
following extracellular stimuli. Plenty of information is available about single transcription factors important for the
different functions of the liver, but little is known about their causal relations to each other.

Results: Given a DNA microarray time series dataset of collagen monolayers cultured murine hepatocytes, we
identified 22 differentially expressed genes for which the corresponding protein is known to exhibit transcription
factor activity. We developed the Extended TILAR (ExTILAR) network inference algorithm based on the modeling
concept of the previously published TILAR algorithm. Using ExTILAR, we inferred a transcription factor network based
on gene expression data which puts these important genes into a functional context. This way, we identified a
previously unknown relationship between Tgif1 and Atf3 which we validated experimentally. Beside its known role in
metabolic processes, this extends the knowledge about Tgif1 in hepatocytes towards a possible influence of
processes such as proliferation and cell cycle. Moreover, two positive (i.e. double negative) regulatory loops were
predicted that could give rise to bistable behavior. We further evaluated the performance of ExTILAR by systematic
inference of an in silico network.

Conclusions: We present the ExTILAR algorithm, which combines the advantages of the regression based inference
algorithm TILAR, like large network sizes processable and low computational costs, with the advantages of dynamic
network models based on ordinary differential equation (i.e. in silico knock-down simulations). Like TILAR, ExTILAR
makes use of various prior-knowledge types such as transcription factor binding site information and gene interaction
knowledge to infer biologically meaningful gene regulatory networks. Therefore, ExTILAR is especially useful when a
large number of genes is modeled using a small number of experimental data points.
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Background
One of the aims in systems biology is to reveal functions
and uncover causalities in the behavior of biological sys-
tems. As these systems are usually a composition of mul-
tiple processes, mathematical modeling is often applied
to investigate processes of interest. The understanding of
the parts contributes to the understanding of the system
as a whole. One biological process of interest is the reg-
ulation of gene expression which is mostly influenced by
transcription factors (TFs). These regulating proteins can
have an activating or repressing effect on the expression
of a gene. The extend of regulation largely depends on the
activity of the TF which is determined on multiple levels,
mostly the post-translational level [1]. Therefore, the gene
expression profile of a TF can generally not be consid-
ered as its activity profile. However, the target genes, their
regulators (TFs) and the relations between these enti-
ties constitute a gene regulatory network (GRN) which
gives information about the functions of the individual
genes. This network is commonly represented as a graph
where nodes correspond to the genes and edges are the
regulatory relations between them.

To reconstruct GRNs, gene expression data-based net-
work inference is a widely accepted approach. Although
high-throughput technologies such as microarrays and
RNA-seq have become more accessible (in terms of qual-
ity of the measurements, decreasing costs and advanc-
ing standard operating procedures) there are still central
problems that hamper their inference. A major difficulty
is that the number of available measurements is usually
lower than required. Often, more genes than the number
of available measurements are included in the model. This
leads to an underdetermined system with a large amount
of possible solutions. When dealing with time series data,
a low temporal resolution of measurements contributes to
this problem making it more difficult to obtain a reliable
solution. Additionally, the usually low number of repli-
cates does not account for the variability introduced by
the methods of measurement and the natural biological
variation. Hecker et al. [2] highlighted the relationship
between the complexity of the model, the data required
to explain the observed behavior and the quality of the
inference result. Different algorithms have been proposed
that cope with the aforementioned problems in various
ways. For reviews on the different approaches see [2,3].
Depending on the purpose of the model, we can distin-
guish these approaches by splitting them into two groups,
algorithms that produce models that are able to quantita-
tively describe the dynamic behavior of the network, and
algorithms which do not. Algorithms that belong to the
first group are usually based on difference or differential
equations. Although these models offer advantages such
as the simulation of the dynamics and the modeling of
complex relations between the components of a network,

there are also drawbacks like an increased computational
effort for network structure and parameter optimization.
As a consequence, the number of genes that can be
modeled is limited. Therefore, pre-selection of genes is
required which supposes a vast prior-knowledge about the
relevant genes and processes. One of the freely accessible,
ready-to-use algorithms that falls into this category is the
successfully applied [4-6] NetGenerator algorithm [7,8].

Depending on whether or not the utilized model is
based on linear or non-linear differential equations the
number of free parameters and therefore the detail of
the model, but also the complexity of the inference prob-
lem is increasing drastically [2]. There is always a trade
off between the simplification of the real biological sys-
tem under observation and the loss of important mecha-
nisms of regulation [9]. The high degree of detail enables
non-linear models to represent the dynamic behavior of
biological and biochemical systems in an adequate man-
ner. Due to the high number of free parameters how-
ever, these models are often used under presumptions
such as the availability of large amounts of data [10], a
known network structure, constrains regarding the net-
work structure [11,12], or additional kinetic knowledge
[13] or assumptions (such as nonlinear sigmoidal activa-
tion functions as used by Mjolsness et al. [14] or Toepfer et
al. [8]). A lack of these presumptions may force modelers
to choose linear over non-linear models to minimize the
number of parameters to estimate and reduce the search
space. However, despite the loss of detail linear models
have been shown to successfully represent regulatory net-
works that are able to effectively uncover causal relations
between the entities of biological processes such as in
[5,15].

In the second group of algorithms, there is a trade-
off between the flexibility and possibility for quantita-
tive, dynamic modeling and the advantage of processing
larger network sizes. There are regression-based algo-
rithms such as LASSO [16], Least Angle RegreSsion
(LARS) [17] or Transcription Factor binding site inte-
grating LARS (TILAR) [18], correlation-based algorithms
[19] and information theory-based algorithms such as the
Algorithm for the Reverse engineering of Accurate Cel-
lular Networks (ARACNE) [20], MRNET [21] or Context
Likelihood of Relatedness (CLR) [22], which are able to
infer large networks. Regression based algorithms were
successfully used to infer full genomic networks [23,24].
These algorithms use simple models and are known to be
fast. Some of the methods were also shown to construct
networks that tend to fulfill structural properties such as
scale-freeness [25], which has been observed in real, exist-
ing biological networks [26]. Furthermore, the ARACNE
algorithm was extended to the Time-Delay ARACNE
(TD-ARACNE) [27] algorithm, which is able to consider
temporal information.
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In the following, we present an algorithm which com-
bines the advantages of both of these classes, fast inference
of medium size networks that can quantitatively model
the dynamic behavior of the inferred network. We extend
the existing TILAR algorithm that uses a linear network
model based on the LARS algorithm. Networks inferred
with TILAR consist of two types of nodes, the genes with
measured expression profile to model and the regulat-
ing TFs, that connect these genes. Due to this concept of
modeling, the algorithm makes use of various biological
knowledge sources such as transcription factor binding
site (TFBS) information and gene interaction knowledge.
This information decreases the number of possible net-
work structures and therefore, allows fast inference of reli-
able, biologically meaningful networks. While the TFBS
knowledge is represented by the network edges that go
from a regulating TF to a target gene (TF-to-gene rela-
tions), the gene interaction knowledge is represented by
the edges that connect the target genes with the regulating
TFs (gene-to-TF relations).

Extended TILAR (ExTILAR) adapts this modeling con-
cept to produce network models that are based on linear
ordinary differential equations. This allows the inference
of networks from time series data, which can be used to
uncover the most important unknown relations between
genes and to identify potential key regulators. Linear
models represent approximations close to a steady state
(operating point) of non-linear models that are adequate
for living systems in principle. Non-linear terms can and
should be included in the proposed modeling algorithm
if prior knowledge about the type of non-linearity is
available and if the number of experimental data is suffi-
cient to identify the increased number of model param-
eters. However, the automatic identification of additional
non-linear model terms in general requires more inde-
pendent experimental data in order to ensure a stable
convergence of the algorithm to a unique model struc-
ture (see in [2] section 3.3.2). ExTILAR makes use of all
replicate-measurements at once, which produces stable
networks that are robust to small variations in the data.
To assess the performance of ExTILAR, the algorithm was
applied to in silico data. The results were compared to
those obtained by the published network inference tool
NetGenerator [7,8].

ExTILAR was applied to data from Zellmer et al. [28]
which monitors the response of murine primary hepato-
cytes to the exchange of culture medium after a period of
starvation. We investigated a set of differentially expressed
genes for which the corresponding proteins are known to
exhibit transcription factor activity (DETF). For some of
these DETFs, little about their function in hepatocytes or
liver in general was found in literature. By inferring a tran-
scription factor network (TFN) (a GRN consisting of only
TFs) with ExTILAR using the extracted DETFs, we study

their potential roles in the cellular response and identify
new causal relations. Subsequently, processing of the data
and knowledge extraction will be described. Consecu-
tively, the modeling concept of TILAR will be outlined,
followed by the introduction of ExTILAR and a detailed
description of its modified modeling concept. Finally, the
results of the inference will be presented and analyzed.
For validation, a knock-down experiment was performed
which confirmed the predicted relation between the TFs
Tgif1 and Atf3, and Dbp and Atf3.

Results and discussion
Inference from biological data
Data of primary murine hepatocytes from Zellmer et al.
[28] were used to investigate the cellular response to the
change of culture medium after a period of starvation
(24 hours). Originally, a time series experiment (t = 3,
24, 27, 30, 36, 48 hours after isolation) with 2 biological
replicates at the first time point and 3 biological repli-
cates at the remaining time points was performed using
17 Affymetrix MOE4302 microarrays. For this study, we
investigated only the second phase of the experiment
(24 hours to 48 hours). Therefore, the time points will be
subsequently referred to as 0, 3, 6, 12 and 24 hours after
the change of culture medium. The workflow consists
of 7 steps (Figure 1), data pre-processing, identification
of differentially expressed genes, clustering and extrac-
tion of DETFs (genes included in the model), extraction
of regulatory relations between TFs and the DETFs (TF-
to-gene relations), extraction of prior-knowledge for the
DETFs and the TFs (gene-to-TF relations), the network
inference, the interpretation and analysis of the inferred
TFN and finally, experimental validation of the extracted
hypotheses.

Pre-processing and gene filtering
The latest custom chip definition file from Brainarray
[29] (version 15) based on Entrez gene ID’s was used
to annotate the microarrays. Pre-processing was per-
formed using the standard robust multi-array aver-
age (RMA) [30,31] procedure. Detection calls [32]
were calculated and used for filtering of probe sets
(see Methods). This resulted in 6306 genes that were
analyzed for differential expression using a 2-fold-
change criterion. This resulted in 950 identified dif-
ferentially expressed genes (DEGs) (Additional file 1).
The enrichment analysis using GOstats [33] showed that
the DEGs are associated with various metabolic pro-
cesses such as organic acid metabolism, steroid and lipid
metabolic processes (Additional file 2).

Clustering
To identify groups of similarly regulated genes, the DEGs
were clustered according to their expression profile using
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Figure 1 Workflow used to analyze the response of murine primary hepatocytes to the change of culture medium after a period of
starvation. The workflow of the ExTILAR inference study presented here can be roughly divided into 7 single steps. After pre-processing of the the
raw data (step 1), the gene expression profiles were clustered and DETFs were extracted (step 2). Over-represented TFBSs for the clusters were
determined. Regulating TFs for the selected DETFs were extracted from literature knowledge (step 3). In step 4, the information of the two previous
steps were pooled to extract prior-knowledge and validation knowledge. Using the expression profiles of the DETFs, the mean cluster expression
profiles, the information about the regulating TFs and the prior-knowledge, ExTILAR was applied to infer a TFN (step 5). The resulting network was
checked for present validation knowledge, analyzed and interpreted to extract testable hypothesis (step 6). The extracted hypotheses were
validated experimentally (step 7).

the self-organizing tree algorithm (SOTA) [34,35]. This
resulted in six clusters denoted as up, slow-up, fast-down,
down, slow-down and middle-peak-down (Figure 2).
GOstats was used to perform an enrichment analysis
for each cluster (Additional file 3). The results show an
increasing tendency over time in the expression pro-
file of genes associated with oxidation-reduction pro-
cesses and glutathione metabolic processes (cluster 3),
translation activity and the ribosome (cluster 2). Genes
associated with other metabolic processes such as the
fructose, glucose, lipid and steroid metabolic process
(cluster 1 and 4) decreased in their expression level over
time.

Extraction of DETFs
A total of 22 DETFs were extracted by filtering all DEGs
associated with the GO-category “sequence-specific DNA
binding transcription factor activity” (GO:0003700).
According to the Gene Ontology (GO) terms obtained
from the MGI database [36], it was found that almost all
extracted DETFs can be connected to either metabolic
processes or differentiation/cell faith processes (Table 1).

Extraction of prior-knowledge
oPOSSUM was used to identify possible regulators for
each cluster [37,38]. Therefore, the promoter region from
the transcription start site to 2000bp upstream was used
to find over-represented TFBSs using the binding site
information from the Jaspar database [39]. This resulted
in a total of 79 TFs for the six clusters.

Transfac [40] and Pathway Studio 8.0 [41] were used to
identify regulating TFs that are known to have an influ-

ence on the expression of the extracted DETFs of the
data set (TF-to-gene relations). While Transfac contains
experimentally validated TFBS for most of the identi-
fied TFs, Pathway Studio was applied to extend the list
of potential regulators using literature knowledge derived
by text-mining. This way, 215 TF-to-gene relations were
extracted for 16 DETFs. However, no TFBS information
was retrieved for six DETFs (Gatad1, Csrnp1, Dbp, Klf16,
Maff and Tsc22d1) using either of the two approaches. To
make them available for the network inference process, an
artificial TF was added for each of them. This is neces-
sary as the modeling concept of TILAR-based algorithms
allows to model gene regulation exclusively via TFs and
not directly between the genes. Each DETF should have at
least one TF to act not only as the regulating source, but to
be also available as a target of regulation. This resulted in
a total of 323 TF-to-gene relations for the clusters as well
as for the DETFs. prior-knowledge was obtained using
Pathway Studio 8. 543 gene-to-TF relations were extracted
where a DETF was identified to modulate the expression
of a potentially regulating TF.

Extraction of validation knowledge
PathwayStudio 8.0 was used to extract known, direct rela-
tions between the DETFs included in the model. As these
36 relations are not used for the network inference pro-
cess, they can be used to validate the final network.

TFBS integrating LARS (TILAR)
TILAR uses a linear network model to construct GRNs
based on LARS [18]. A particular feature of the method
is the ability to integrate multiple sources of knowledge
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Figure 2 Results of the SOTA clustering. Clustering of the 950 differentially expressed genes resulted in 6 clusters denoted as slow down (cluster
1), fast up (cluster 2), up (cluster 3), down (cluster 4), fast down (cluster 5) and middle peak down (cluster 6). Shown are the median scaled log2-FC
expression profiles (’Expr.Level’). The results of the enrichment analysis for each cluster are outlined in the Additional file 3.

into the inference process, namely TFBS information (TF-
to-gene relations) as well as text-mining knowledge about
the regulation of TFs by the genes (gene-to-TF rela-
tions). TILAR prohibits the direct interaction of genes
but allows interaction via TFs. In that, a regulating gene
modulates the activity of a TF, which in turn regulates
the expression of the target gene (Figure 3A-D). This
concept is more biologically realistic than concepts that
rely only on direct gene-to-gene interactions and copes
with the known problem that the activity of transcrip-
tion factors is not only regulated on the transcriptional
level but also through various other mechanisms such
as (de)phosphorylation and dimerization [1]. Based on
expression data only, the modeling of TF activity can lead
to falsely inferred interactions. Therefore, TILAR does not
model the TF activity but uses the TFBS knowledge to
model them as “bridges” between the genes. This way,
regulating TFs are included in the model but no addi-
tional information such as expression or activity profiles
have to be known. Additionally, the number of possi-
ble network structures is reduced as multiple genes can
share the same TF. This concept can be expressed in the
following equation:

x̂i =
F∑

k=1

N∑
j=1

(1 − bkj)wkjxjbki

with

bkj =
{

1, if gene j possesses a binding site for TF k
0, else

(1)

The predicted expression level x̂i of the regulated gene i
is the result of the sum of the weighted expression levels
wkjxj of all regulating genes j (j = 1 . . . N) via the tran-
scription factor k (k = 1 . . . F) if (i) the gene i has a binding
site for the TF k and (ii) the gene j is not regulated by the
TF k.

To use regression for the estimation of the parameters
wkj, equation 1 has to be expressed in the basic regression
model form ŷ = XM×N ∗β where ŷ is the prediction vector
that contains the predicted values corresponding to the
observed values in the response vector y = x, β denotes
for the parameters wkj and X corresponds to the regres-
sion matrix that contains the observed measurements xij
(with i = 1, . . . , N and j = 1, . . . , M) where N is the num-
ber of variables and M is the number of measurements.
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Table 1 Detailed information about the DETFs

DETF Cluster Associated biological processes

Atf3 5 gluconeogenesis; regulation of cell prolifera-
tion

Cebpa 4 liver development; fat cell differentiation;
regulation of cell proliferation; urea cycle

Cebpb 6 cell differentiation; anti-apoptotic

Cebpd 4 fat cell differentiation

Csrnp1 5 apoptotic process; platelet-derived growth
factor receptor signaling pathway

Dbp 6 rhythmic processes

E2f6 2 regulation of transcription involved in G1/S
phase of mitotic cell cycles;

Egr1 6 BMP signaling; Il1 mediated signaling path-
way; regulation of Wnt signaling pathway;
regulation of cell-death; response to glucose
stimulus; response to insulin stimulus

Fos 6 cellular response to extracellular stimuli;
response to stress

Foxa1 2 glucose homeostasis; chromatin remodeling

Gatad1 2 -

Id3 3 regulation of cell cycle; regulation of apopto-
sis

Irf1 3 cellular response to Il1; regulation of cell-
death

Klf16 6 -

Maff 5 epidermal cell-differentiation

Nr1h4 2 bile acid metabolic process; regulation of
carbohydrate- and urea metabolic process;

Ppara 4 Glucose metabolic process; lipid metabolic
process; response to insulin stimulus

Srebf1 4 Steroid metabolic process; response to glu-
cose stimulus; lipid metabolic process;

Srf 4 actin filament organization; cell-cell adhe-
sion; developmental growth;

Tgif1 3 regulation of cell proliferation; regulation of
retinoic acid receptor signaling pathway

Tsc22d1 2 regulation of apoptotic process; regulation
of cell proliferation

Zbtb16 4 positive regulation of apoptosis; negative
regulation of proliferation

DETF cluster membership and associated biological functions based on the
information of GeneOntology. For all but Gatad1 and Klf16 it was found that the
TFs can either be associated with metabolic processes and/or cell faith.

Therefore, given a gene i (i = 1, . . . , N) which possesses at
least one TFBS, the equation 1 can be expressed in matrix
form:

ŷi = Xi
M×(NF−Bi)

∗ β i for i = 1 . . . N , where

(i) ŷi = xi

(ii)
Xi

M×(NF−Bi)
=

(
x1, . . . , xj, . . . , x(NF−Bi)

)
with xj = (

x1j, . . . , xMj
)T

(iii)
β i =

(
β1, . . . , βk , . . . , βF

)T ∀k that can bind to i with

βk = (
wk1, . . . , wkj, . . . , wkN

) ∀j that do not possess
a TFBS for k

(2)

The predicted expression value ŷi of gene i is calcu-
lated using the vector of regression coefficients β i and the
regression matrix Xi which contains the observed expres-
sion values xj of the genes j (j = 1 . . . N). Xi is composed
of M rows and NF − Bi columns, where M is the num-
ber of measurements and Bi denotes for the number of
TF k to gene relations where (i) the TF k is not regu-
lating the gene i or (ii) the TF k is regulating gene j or
both. To estimate all parameters at once, the equations
for the N genes can be jointly expressed in matrix
form:

ŷ = XM′×N ′ ∗ β

with M′ = MNr and N ′ = FN − B , where
(i) ŷ = x
(ii) XM′×N ′ =(x1, . . . , xj, . . . , xN ′)with xj =(x1j, . . . , xM′j)

T

(iii)
β =

(
β1, . . . , βk , . . . , βF

)T
with

βk = (
wk1, . . . , wkj, . . . , wkN

) ∀j that do not possess
a TFBS for k

(3)

The regression matrix X is composed of MNr rows and
FN − B columns where Nr is the number of genes that
possess at least one transcription factor binding site and B
denotes for the number of TF-to-gene relations.

Variable selection and estimation of the regression coef-
ficients can be performed by using the least shrinkage and
selection operator (LASSO) algorithm, a constraint ordi-
nary least square (OLS) approach [16]. Selecting a candi-
date vector of regression coefficients β̂ = (β̂1, . . . , β̂N ′ )T

(with β̂ ∈ B̂) of the set of all possible candidate regression
coefficient vectors B̂, we calculate the prediction vector ŷi

(with yi = xi and i = (1, . . . , M′ ) :

ŷi =
N ′∑
j=1

xijβ̂j with

XM′× N ′ = (x1, . . . , xi, . . . , xM′)T and
xi = (

xi1, . . . , xij, . . . , xiN ′
)

(4)

with the residual sum of squares (RSS)

RSS(β̂) =
M′∑
i=1

(
yi − ŷi)2 (5)
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Figure 3 Concept of modeling of TILAR (A-D) compared to ExTILAR (E-G). A-D) The modeling concept of the TILAR algorithm. The genes are
labeled with their expression values. A) In TILAR, a gene can only be regulated by another gene via a TF k if the regulating gene does not possess a
TFBS for the TF k itself (TF-to-gene realtions). B) This decreases the number of possible network topologies and therefore serves as a additional source
of prior-knowledge (gene-to-TF relations). C) LARS is used to infer a sparse network which explains the measured expression values of the genes in
the best possible way. A constrained ordinary least square (OLS) approach is used to estimate the parameters using the final structure obtained
from LARS. D) This way, new hypotheses about gene to gene relations can be obtained. E-G) The extended concept of modeling used by ExTILAR.
Since the algorithm estimates the change of expression of each gene over time, the nodes are labeled with ŷi = �xi

�t where �xi = xi[ tm] −xi[ tm−1]
and �t = 1 is outlined in the labels of the corresponding genes. E) The number of possible network structures is lowered by the TFBS information.
Additionally, auto-regulation and modeling input perturbations are introduced and increase the number of regression coefficients to estimate. F)
One possible model is selected from the full set of models returned by LARS. A OLS approach is used to find the parameters, given the network
structure of the selected model. G) The gene expression dynamics of the final network can be simulated using standard ODE-solvers.

LASSO chooses the vector of regression coefficients β̂∗
which minimizes the RSS

β̂∗ = arg min
β̂

RSS(β̂) (6)

with the additional constrain
N ′∑
j=1

δj|β̂j| ≤ s (7)

that the sum of the absolute regression coefficients is
lower than a certain threshold s (equation 7). This con-
trols the sparseness of the resulting model. When using
the adaptive LASSO approach, an additional weighting

parameter δj (j = 1 . . . N ′ ) is specified (within the range of
[ 0, 1]) to shrink the regression coefficient β̂j and thus, sup-
port the insertion of the corresponding prior-knowledge
gene-to-TF edge into the model. The modified Least
Angle Regression (LARS) algorithm was shown to pro-
duce the full set of the LASSO estimates with an increased
computational efficiency [17]. Therefore, the adaptive
LARS is used instead of the adaptive LASSO.

Extended TILAR (ExTILAR)
TILAR was extended to enable the inference of gene reg-
ulatory networks from time resolved data by a system of
differential equations approximated by a set of difference
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equations with the time interval �t = tm − tm−1. By
approaching �t towards zero, the difference equations
become differential equations which can be numerically
solved with standard algorithms. In ExTILAR, the possi-
bility to model the systems response to external pertur-
bations as well as the possibility of auto-regulation were
added to the modeling approach of TILAR. It is impor-
tant to note that the auto-regulation term as it is used
in the model does capture the sum of all effects that
might influence the abundance of the transcript such as
self-regulation and RNA-degradation. In that, a gene may
be regulated by (i) other genes via TFs, (ii) the sum of
auto-regulatory effects and (iii) the input of one or more
external perturbations (Figure 3E-G). Thus, the parame-
ters to estimate are assigned to gene-to-TF interactions,
auto-regulation and input signal to gene interactions. The
modeling concept of ExTILAR can be expressed as:

xi [tm] − xi [tm−1]
tm − tm−1

= G(i, m) + A(i, m) + I(i, m)

G(i, m) =
F∑

k=1

N∑
j=1

(
1 − bkj

)
wkjxj [tm−1] bki

A(i, m) = aixi [tm−1]

I(i, m) =
C∑

c=1
dciuc [tm−1]

with

bkj =

⎧⎪⎨
⎪⎩

1 , if gene j possesses a
binding site for TF k

0 , else
(8)

According to this equation, the quotient of difference of
expression �xi

�t = xi[tm]−xi[tm−1]
tm−tm−1

of the gene i (i = 1 . . . N)
from the time point tm−1 to tm is the sum of three terms.
The first term (G(i, m)) describes the weighted influence
wkj of the regulatory genes j (j = 1 . . . N) at tm−1 on the
expression level xi of gene i at tm−1 via the TF k (k =
1 . . . F). The gene i is regulated by the genes j via the TF
k if, (i) i possesses a TFBS for k and (ii) j is not regulated
by k. This term equals the original TILAR model shown in
equation 1. The second term (A(i, m)) describes the auto-
regulatory effect ai at the expression level xi of gene i at
tm−1. The third term (I(i, m)) describes the influence of
the input perturbation uc (c = 1 . . . N) at tm−1. As out-
lined in the TILAR section, equation 8 has to be expressed
in regression model form to allow parameter estimation
using LARS in the aforementioned way. The full set of

equations for all genes is a N-coupled system and can be
expressed in matrix form:

ŷ = XM′ ′×N ′ ′ ∗ β with

M
′ ′ = (M − 1)N

′
rR and N

′ ′ = N ′ + U + A, where

(i) ŷ = �x
�t

,

(ii) XM′ ′×N ′ ′ =(
x1,. . . , xj, . . . , xN ′ , u1, . . . , ul, . . . , uU , x1, . . . , xh, . . . , xA

)
with

xj =
(

x1j, . . . , xM′ ′ j

)T

ul = (
u1l, . . . , uM′ ′ l

)
xh = (

x1h, . . . , xM′ ′ h
)

,

(iii)β =
(
β1, . . . , βk, . . . , βF, β1, . . . , βc, . . . , βC , a1, . . . , aA

)T

with

βk = (
wk1, . . . , wkj, . . . , wkN

)T ∀j that do not possess
a TFBS fork,

βc = (
dc1, . . . , dcj, . . . , dcU

) ∀j that can be
regulated byc

(9)

Here, the regression matrix X is composed of M′ ′ =
(M − 1)N ′

rR rows and N ′ ′ = (N ′ + U + A) columns. N ′
r

denotes for the number of genes which have at least one
TFBS (Nr) or at least one input to gene relation. Because
temporal information is considered in equation 8, given an
experiment with M time points, we calculate y as the quo-
tient of difference of expression �x

�t , which leaves us with
M − 1 measurements for each gene i (i = 1, . . . , N ′

r).
Experiments often have biological replicates for the

measurements at each time point. This leads to the same
time series being measured R times. As ExTILAR makes
use of these replicates by including them in the regression
matrix X, there is a total of M − 1 measurements for each
gene i for each of the time-series replicates R. Compared
to equation 3, U + A columns are added to the regression
matrix X where U is the number of input-to-gene relations
and A denotes for the number of genes which are auto-
regulated. Since only genes, which possess at least one
TFBS or at least one input-to-gene relation are considered
in the rows of X, A equals N ′

r .
LARS can now be used to efficiently perform automatic

variable selection and simultaneous regression coefficient
estimation (equations 4-7). However, for the adaptive
LARS it is important to notice that the δj parameter in
equation 7 is now determining the integration of the gene-
to-TF prior-knowledge edges, as well as the input-to-gene
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edges and the auto-regulatory edges. This way, not only
prior-knowledge but also auto-regulation as well as regu-
lation by the input can be soft-integrated into the model.
The δ parameter can be set between one and zero with
increased integration for values close to zero.

Although the introduction of these input parameters
offers greater possibilities for fine-tuning of the algo-
rithm, parameter identification is a crucial step for the
inference of networks from biological data. A major prob-
lem is that the true underlying structures and processes
are often unknown and the mathematical model that
the inference algorithm is based on can always only be
an abstraction of the truth. Therefore, a good set of
parameters needs to be found which leads to inferred
networks that maximize the amount of integrated bio-
logical prior-knowledge and adequately reproduce the
observed dynamics. Regarding the integration of prior-
knowledge a requirement is that the knowledge used to
infer the network must be different from the knowledge
that is used for its validation. An advantage of the TILAR-
family algorithms is that gene-to-TF knowledge is used
during the inference, which can be obtained by litera-
ture text-mining. The gene-to-TF relations together with
the TF-to-gene relations implicitly define gene-to-gene
interaction information which can also be derived from
literature. Therefore, this concept of modeling makes use
of two distinct prior-knowledge sets, one that is used
during the network inference and one that is used for
validation purposes only. The advantage of using these
multiple prior-knowledge sources was shown by Hecker
et al. [2]. Comparing the TILAR inferred static networks
with the results obtained from comparable inference algo-
rithms such as ARACNE, CLR or LASSO, they were able
to show that already the introduction of TFBS knowledge
yielded to better performance. Moreover, they showed
that an additional soft-integration of prior-knowledge fur-
ther increased the reliability of the inferred gene-to-gene
relationships.

Network inference using ExTILAR
For the network inference, the measured expression pro-
files for the 22 DETFs as well as the mean gene expression
profile for each cluster were scaled to an absolute max-
imum value of 1. Linearly interpolated data was added
to provide equidistant measurements (�t = 1 hour). An
exponentially decreasing input function was defined to
model the change of culture medium.

In an initial parameter study the auto-regulation weight
and the input weight were tuned by testing 25 combina-
tions of these two parameters. The best results in terms of
quality of the fit (deviation from the measured data, RSS),
number of included prior-knowledge edges and number
of the total edges was found when using an input weight
of 0.5 and an auto-regulation weight of 0.75 (Figure 4).

The delta parameter (δ of equation 7) which regulates the
integration of prior-knowledge was set to 0.5. This setting,
which corresponds to a moderate knowledge integration
ensured that the prior-knowledge is not the driving force
for determining the structure but is still respected. In
the second analysis we tested the influence of the delta
parameter on the quality of the predicted network in
terms of prior-knowledge integration, the total number
of inferred edges and the fit of the simulation to the mea-
sured data. Seven networks with decreasing delta value
(1, 0.75, 0.5, 0.25, 0.1, 0.05 and 0.01) were inferred and the
resulting networks were compared. Table 2 shows how
the prior-knowledge is soft-integrated into the network
with decreasing delta and highlight that a delta value of
0.1 offers the best balance between a high precision and
a low RSS. A further decrease of delta (like 0.05 and 0.01)
leads to over-fitting of the network to the prior knowledge
which results in a strong decrease of quality of the sim-
ulated kinetics to the measured gene expression profiles
(strong increase of RSS). The ExTILAR-inferred network
(subsequently referred to as TFN) using these param-
eters is outlined in Figure 5 (for Cytoscape session see
Additional file 4), the simulated gene expression dynam-
ics are plotted in Figure 6. In Figure 5, the input node and
all input-to-gene edges were removed for better visualiza-
tion. The input-to-gene edges and their weights are listed
in Table 3.

Network interpretation
The inferred TFN (Figure 5) is composed of clusters,
DETFs and TFs. The clusters can be seen as functional
modules representing biological processes the enclosed
genes are involved in while the DETFs resemble measured
genes for which the corresponding protein is known to
exhibit transcription factor activity. The TFs are bridging
elements that connect clusters and DETFs among each
other. The ExTILAR inferred TFN consists of 91 inferred
edges, four auto-regulatory edges, 27 input-to-gene edges
(Table 3) and 60 gene-to-TF edges. 47 out of the 60 gene-
to-TF edges are supported by prior-knowledge, which was
given for the inference (green edges). The 13 remain-
ing edges are predicted, novel interactions (gray edges).
15 relations of the extracted validation knowledge were
found to be integrated in the network (waved edges).
The negative auto-regulation edge of Egr1 however was
found to be contrary to literature knowledge from smooth
muscle cells [42].

In Figure 5, the node size of the modeled DETFs is
determined by the number of outgoing relations. Notably,
most of the DETFs have a low outdegree while only a
few of them are highly connected. This observation is
an important structural property which was found to be
common for biological networks. In the TFN, this hub-like
role is accomplished by Egr1 and Cebpa. They are highly
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Figure 4 Results of the parameter study optimizing the parameter values for the input weight and the auto-regulation weight. Outlined is
the ratio of the number of included prior-knowledge relations to the total number of inferred relations excluding the input-to-gene relations
(precision). Based on this result and whether or not numerical simulation of the inferred network led to dynamics comparable to the observed ones,
the auto-regulation weight was set to 0.75 while the input weight was set to 0.5.

connected to DETFs associated with diverse biological
roles. Sorting the absolute weights of the input-to-gene
relations (Table 3) reveals that Egr1 has the highest abso-
lute weight (-0.294) just before Fos(-0.257), Cl6 (-0.242),
Cl5 (-0.241) and E2f6 (0.223). Cebpa appears only at the
18th position (-0.156). This data shows that, according
to the network, Egr1 but not Cebpa is one of the DETFs
initially affected by the exchange of culture medium.
This finding in the network is supported by current lit-
erature knowledge which identifies especially Egr1 as a
distributing TF rather then a direct effector of physiolog-
ical changes [43]. The DETFs of the TFN can roughly
be divided into 2 groups describing the main biological
functions observed as a response upon the exchange of
the culture medium. The first group contains genes which
are known to affect metabolic processes during the sec-
ond 24 h cultivation period of primary mouse hepatocytes
(Cebpa, Dbp, Foxa1, Nr1h4, Ppara, Srebf1, Srf, Tgif1). The
second group consists of DETFs that can be associated
with proliferation and regulation of the cell cycle (Atf3,
Cebpb, Cebpd, Dbp, E2f6, Fos, Irf1, and Tsc22d1).

Regulation of metabolic processes
Regulation of metabolic processes is mainly exerted by
Cebpa, Foxa1, Nr1h4, Ppara, Srf, Srebf1 and Tgif1. Of
these DETFs, Cebpa plays a distributing role within
this group. This is consistent with literature as the

Table 2 Knowledge analysis results

Delta # of # prior-knowledge Precision RSS
edges edges

1 56 5 0.0893 29.07801

0.75 54 12 0.2223 23.07626

0.5 47 27 0.5744 23.62479

0.25 49 25 0.5102 25.50705

0.1 64 47 0.7344 23.79333

0.05 81 60 0.7407 69.28333

0.01 119 77 0.6471 14233.39749

Results of the knowledge analysis using 7 different delta values (Delta) showing
the total number of inferred relations (# of edges) excluding the input-to-gene
edges, the number of integrated prior-knowledge gene-to-TF relations (#
prior-knowledge edges), their ratio (Precision) and the deviation of the
simulated data to the measured ones (the RSS as defined in equation 5).
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Figure 5 Transcription factor network describing the cellular response of murine primary hepatocytes to the addition of fresh medium.
The ExTILAR-inferred transcription factor network consists of 3 types of nodes differentiated by their shape, the target DETFs (circle), the regulating
transcription factors (diamond) and clusters (octagon). The color of the nodes denote for the corresponding cluster membership, while the rim
color reflects the general tendency of the expression profile (increasing: red; decreasing: green). The size of the nodes corresponds to the number of
outgoing edges (higher numbers equal more outgoing edges) and highlights DETFs with a hub-like role. TF-to-gene interactions are outlined using
blue edges. Inferred gene-to-TF edges are either green or gray, depending on whether they are supported by prior-knowledge (green) or not (gray).
The regulating function of these edges is reflected by the target arrow. A red bar denotes for repression while a green arrow represents activation.
Waved edges represent inferred direct gene-to-gene relations which were found in literature. As this information was not used during the inference,
the presence of these relations within the inferred network supports the validity of the constructed TFN.

TF was described to be an important regulator of the
energy metabolism [44]. The connection to cluster 4 fur-
ther highlights the importance of Cebpa for processes
such as the lipid and glucose metabolism [45-47]. Clus-
ter 4 genes are significantly over-represented in these
biological processes. Interestingly, Srebf1, Nr1h4 and
Foxa1 are three genes which were found to be inter-
connected in two double negative loops. The first loop
between Srebf1 and Nr1h4 is partially supported by val-
idation knowledge as Nr1h4 is known to inhibit Srebf1
expression [48]. To our knowledge, they have not been
considered in a loop jet. Srebf1 is affecting the lipid
metabolism [49-51] and was found to be affected by
the feeding regime [52-54]. Controversially to the exper-
imental in vitro data given here, in vivo experiments
showed that the TF is decreased during fastening and
increased upon re-feeding [51]. Like Srebf1, Nr1h4 is also
important for the lipid metabolism [55,56] and glucose
homeostasis [57-59]. Additionally, the TF was found to
regulate the bile acid metabolism and the metabolism
of xenobiotics [60-63]. Interestingly, Nr1h4 is thought
to modulate the fasting-re-feeding transition in mice
[58].

The second loop, which is supported by prior-
knowledge regarding the gene-to-TF interactions is
formed by Foxa1 and Nr1h4. Foxa1 is also associated with
metabolic processes and plays a central role in the glucose
homeostasis [64-67].

Loops, where both edges are negatively regulating can
exert a switch like function. This can lead to interesting
biological features such as bistability of the system.

Tgif1 is one of the DETFs of which less is known so far.
This TF was found to repress transcription of RXR and
LXR target genes [68-71]. Both of these nuclear recep-
tors are known to play important roles in the regulation of
diverse metabolic functions such as the lipid and glucose
metabolism. Interestingly, expression of Tgif1 is negatively
related to the expression of Atf3, a TF that is associated
to cell cycle regulation and proliferation as described in
the next section. Therefore, Tgif1 might play a greater
role then currently known, affecting metabolic as well as
proliferative processes within hepatocytes.

Proliferation and regulation of the cell cycle
Hepatocytes remain in the quiescent G0 phase in the
liver under normal conditions. Events that lead to the



Vlaic et al. BMC Systems Biology 2012, 6:147 Page 12 of 19
http://www.biomedcentral.com/1752-0509/6/147

Figure 6 Measured and simulated expression profiles. The dots represent the measured mean log2-FC of the three replicates and the error-bars
denotes for the standard deviation of the log2-FCs. The simulation results (solid lines) show the fit of the model to the measured data. The simulated
dynamics are always close to the mean log2-FC and mostly within the bounds of the standard deviation.

loss of liver mass result in the release of cytokines and
the subsequent activation of TFs that prime the hepa-
tocytes for proliferation. Zellmer et al. [28] showed that
hepatocytes, cultured on collagen monolayers are primed
through a cytokine independent activation of MAPK sig-
naling within 24 hours after isolation. They identified Etf,
E2f1 and Sp1 as having a potentially pronounced role in
mediation of the proliferative effect within the first 24
hours after isolation. Since the present study uses the
data of Zellmer et al. but focuses on the second phase
of the experiment (24 hours after the exchange of culture
medium), the aftereffects of the proliferation initiation
and cell cycle regulation were monitored as well.

Among the DETFs modeled in the inferred network,
regulation of proliferation and the cell cycle is mainly
exerted by Atf3, Cebpb, Cebpd, Dbp, E2f6, Fos, Irf1 and

Tsc22d1. Within this group, Fos is highly connected and
regulated by seven other DETFs including Egr1. More-
over, Fos was found to have the second largest input-to-
gene weight. This central function is supported by the
finding that Fos expression is a pre-requisite for the reen-
try of quiescent cells into the cell cycle [72]. In the TFN,
Fos is positively regulating Irf1 and Cebpd, both of which
were found to be involved in proliferation and the cell
cycle [73-75]. Interestingly, these two TFs can be found to
negatively regulate Fos expression in turn. Irf1 is a gene for
which the expression levels were found to be lowered after
serum induced growth of serum starved cells in G0, and
increased before and during the S phase [73]. Altogether,
the decreasing expression profile of Fos and the contin-
uously increasing expression profile of Irf1 supports the
finding by Zellmer et al. that induction of proliferation
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Table 3 Inferred input-to-gene edges of the GRN

Network nodes Input-to-gene weight

Egr1 -0.294

Fos -0.257

Cl6 -0.242

Cl5 -0.241

E2f6 0.223

Dbp -0.184

Cl2 0.184

Gatad1 0.184

Atf3 -0.181

Maff -0.179

Ppara -0.178

Foxa1 0.178

Cebpd -0.174

Srebf1 -0.171

Csrnp1 -0.168

Zbtb16 -0.167

Cebpb -0.159

Cebpa -0.156

Cl4 -0.148

Nr1h4 0.136

Klf16 -0.132

Srf -0.098

Irf1 0.088

Cl3 0.067

Id3 -0.051

Tsc22d1 0.034

Cl1 -0.025

Tgif1 0

Inferred input-to-gene edges which were removed from Figure 5 for better
visualization. The network nodes (DETFs and clusters) are ordered according to
their absolute input-to-gene weight.

happens in the first 24 hours after isolation. During the
second phase however, the hepatocytes seem to be in the
transition towards, or already in the S phase. The increas-
ing expression profile of E2f6 is concordant with the
identification of E2f1 as an important TF in the prolifera-
tion process. E2f6 was identified to repress E2f-activated
transcription during the S phase, therefore balancing cell
cycle control of E2f-family members such as E2f1 [76].

Id3, Atf3 and Tsc22d1 are rather terminal nodes within
the inferred network and are (beside Tsc22d1) not regu-
lating any other DETFs. This could be due to the missing
available prior-knowledge regarding these DETFs. Atf3 is
a transcriptional repressor that was found to delay cell
cycle progression by slowing down the transition of the
cell from G1 to S phase. It was shown that the TF also

mediates positive and negative effects on proliferation
[77,78]. Tsc22d1 is rather poorly investigated. Knock-
down experiments of Tsc22d1 might reveal important
functions associated to cell cycle control and proliferation
in hepatocytes.

Experimental validation
For experimental validation, we were interested whether
or not a relation between Tgif1 and Atf3 expression exists.
It is known that the two TFs are related as Atf3 has a pro-
moter binding site for Smad3 [79]. Tgif1 was reported to
act as a corepressor by binding to the activated Smad-
complex (Smad2 and Smad3 can be bound) [70,80]. Alto-
gether, this suggests that there might be a causal relation
between Tgif1 expression and Atf3 expression in hepato-
cytes. However, to our best knowledge, a relation between
these two TFs has not been shown so far.

To investigate the effect that a Tgif1 knock-down might
have on the system, we performed an in silico knock-down
using the inferred TFN (Additional file 5). Therefore, the
logarithmized expression profile of Tgif1 was replaced by
a linear decreasing function ranging from 0 at the 0h time
point to -1 at the 24 h time point. Simulation of the net-
work predicted an increase in Atf3, Cebpb and Klf16, and
a decrease in Dbp. Analysis of the network shows that the
increase in Cebpb and Klf16 both result from the decrease
of Dbp, whereas the predicted increase in Atf3 is a result of
the loss of repression by Tgif1 and the increase in Cebpb.
Therefore, we also looked at Dbp expression, as this TF is
directly regulated by Tgif1 in the network.

For validation, a real siRNA-mediated knockdown of
Tgif1 in cultured hepatocytes was carried out. At 6, 12 and
24 hours after transfection of the Tgif1 siRNA, expression
levels of Atf3 and Dbp were measured using quantita-
tive real time PCR (qRT-PCR).An unambiguous upregu-
lation of Atf3 and a downregulation of Dbp were detected
(Figure 7). Regarding the inhibition of Atf3 expression,
this indicates that Tgif1 does not only play a role in alter-
ing metabolic processes such as lipid metabolism but
might also positively affect hepatic proliferation and cell
cycle regulation. The exact mechanism of repression how-
ever remains to be resolved, as three different modes of
repression are currently known [80]. The downregulation
of Dbp, although less severe, is of strong interest as it
was shown that the expression of important cytochrome
P450 family members is partially under the regulation of
Dbp [81].

Conclusions
In this work, the linear model of the recently published
network inference algorithm TILAR was extended to
infer ODE based network models. With this approach,
the ExTILAR algorithm combines the benefits of the
regression based TILAR (low computational costs, large
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Figure 7 Expression profiles of Atf3 and Dbp in response to the
siRNA-mediated knock-down of Tgif1. epatocytes were cultured
for 24 hours and then transfected with siRNA against Tgif1 (referred to
as zero time point) as described in Methods. After further incubation
for 24 hours, RNA was extracted and expression levels of Atf3 (black
squares) and Dbp (open circles) were determined by qRT-PCR.

network size processable, incorporation of various knowl-
edge sources, partial separation of network structure iden-
tification and parameter estimation) with the possibilities
that ODE based models offer (in silico simulations of the
response to external perturbations, re-use in other mod-
els, possibility of integration into multi-scale modeling).
Using a 5-node network to create in silico data we were
able to show that ExTILAR and NetGenerator inferred
networks are of high quality with a performance advan-
tage of ExTILAR over the NetGenerator (Additional file
6). To make the algorithm easily accessible to the scien-
tific community, we implemented ExTILAR in R. Together
with the additional material, ExTILAR can be downloaded
from http://www.hki-jena.de/index.php/0/2/490.

Applying the algorithm to biological data, we were
able to present a TFN that models the main biological
processes induced in hepatocytes upon culture medium
exchange. We highlighted two possible regulatory loops
between Srebf1, Nr1h4 and Foxa1. The function of these
interesting network motifs will be motivation for further
studies. Using a knock-down experiment read out by
qRT-PCR, the biological relevance of the inferred net-
work was shown by the validation of two hypothesized
relations between Tgif1 and Atf3, and between Tgif1
and Dbp. Thereby, we detected new, potential functions
of Tgif1 and further highlight the TF’s importance in
the hepatic transcription factor network. Although the
exact mechanism of regulation remains to be clarified,
this example highlights how ExTILAR can be success-
fully used combining various prior-knowledge sources
to infer biologically relevant, data supported regulatory
networks.

Methods
All analysis were performed using the biological data
analysis package Bioconductor [82] for the statistical pro-
gramming language R [83].

Microarray pre-processing and gene filtering
Analysis of Affymetrix microarrays involves the initial
annotation of the probe sets of the chips. A custom chip
definition file is used to map the probes on the microar-
ray to a genomic sequence and thus, to the transcript of a
certain gene. However, it is well known that a large num-
ber of probe sets includes probes which match multiple
transcripts and also probes which do not match any tran-
script [84]. Therefore, the custom chip definition file from
Brainarray (Molecular and Behavioral Neuroscience Insti-
tute, University of Michigan) [29] based on Entrez-IDs
was used for this analysis to obtain the gene expression
intensity levels.

Detection calls of the raw data were obtained and used
as an additional filter to remove uncertain probe sets.
The method is used to remove transcripts for which the
expression level is below the threshold of detection. This
is described in detail in the Affymetrix Statistical Algo-
rithms Description Document [32].

The mas5calls function of the affy package [85] was used
with default settings to compute the detection calls. Probe
sets declared as present or marginal in less then 80 per-
cent of the analyzed microarrays were removed from the
data set.

RMA [30] was used for pre-processing the data. This
involved RMA background correction, quantile normal-
ization and summarizing.

The pre-processed dataset was analyzed for DEGs using
the two-fold criterion. A gene was called differentially
expressed if its mean expression profile exhibited an abso-
lute log2-FC of 1 or greater with respect to the 0 hour
sample.

Clustering and identification of over-represented TFBSs
The data was prepared for clustering by scaling each mean
expression profile to the absolute maximum fold-change
value of 1. The clustering algorithm and the number of
clusters was determined by using the clValid package for R
[86]. In total, nine clustering algorithms (hierarchical clus-
tering, k-means, diana, fanny, SOM, PAM, SOTA, clara
and model) were compared for 2 to 14 possible clus-
ters regarding three internal validation measures (Dunn
index [87], average silhouette width [88] and connectivity
[89]) and stability validation measures (average propor-
tion of non-overlap, average distance and average distance
between means). These measures are outlined in detail
in [86]. The SOTA algorithm was found to perform best
using six clusters. The cluster enrichment analysis was

http://www.hki-jena.de/index.php/0/2/490
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performed using the GOStats package for R [33] based on
the org.Mm.eg.db package [90].

oPOSSUM was used to search for over-represented
TFBS among the genes of each cluster [37,38]. The top
14 TFBSs (ordered by the Z-Score) identified using a
promoter region of 2000 base pairs upstream to the tran-
scription start site were selected if they achieved a Z-Score
of at least 4.8.

ExTILAR GRN inference
The log2-FC profiles for the genes as well as the mean
cluster log2-FC profiles were standardized to a maximum
absolute log2-FC of 1. To obtain equidistant measure-
ments for the regression based on difference equations,
missing measurements were added using linear inter-
polation. An exponential decreasing input function was
defined. This choice is based on the assumption that the
change of culture medium is an initially strong stimulus
that the cells adapt to. Over time, the stimulus becomes
less severe as the effects induced in response to the stim-
ulus become the dominating stimulus. Also, the supplied
nutrients are consumed by all cells in the culture and thus,
are decreased. However, together with the extracted TF-
to-gene relations, the regression matrix was constructed
according to equation 9. LARS was used to select and
estimate the variables and calculate the Cp. As outlined
in the original TILAR publication, we selected the model
that minimizes the Cp statistic as sparse networks are
favored [18]. A stepwise forward selection procedure was
chosen to optimize the model structure. Starting from
a network using no TF-to-gene relation, this procedure
iteratively adds the edges that minimize the RSS of the
inferred network compared to the RSS of the inferred net-
work from the previous iteration. This iterative addition
of TF-to-gene relations is stops if (i) there are no more
TF-to-gene relations to add, or (ii) the RSS of the previ-
ous iteration is not undercuted. After the last iteration,
the final network model was selected using the Pm mea-
sure described in the next section. We then performed an
OLS fit of the final model using only the selected vari-
ables. Therefore, variable selection was performed using
LARS but the actual estimation of the coefficient was
obtained by a OLS fit. For details see the original TILAR
publication [18].

Model selection
Regardless of the implementation of LASSO used, the
result is always a set of models with a differing number of
variables (regression coefficients) and their estimates. The
user has to apply a criterion to find a model with good
quality. The quality of the network selection is always a
trade-off between the data-fit and the number of parame-
ters used in the network. One way to define the quality of a
model is how well a model fits to the measured data, disre-
garding the number of parameters used. This is described
by minimization of the RSS, which is defined in equation
5. Models, which are selected using the RSS criterion tend
to include lots of parameters. This often results in a good
fit but to the expense of interpretability due to a high
number of edges in the network.

Another model selection criterion is the Mallows Coef-
ficient Cp [91]. The Cp is penalizing model complexity
by considering the RSS with respect to the number p of
variables used.

Cp = RSSp
S2 − M′′ + 2p with S = RSSpmax

pmax
(10)

where RSSp is the residual sum of squares of the model
with p (p = 1 . . . N ′′) variables and RSSpmax denotes for
the mean full model RSS using all variables (pmax = N ′′).

The Pm is a third measure which is adding the scaled
number of used regression coefficients p to the weighted
(α with α ∈ R ; α ≥ 1), scaled RSS.

Pm = α
RSSp

RSSmax
+ p

pmax
(11)

The model which minimizes the Pm is selected, as the
inclusion of more variables into the model does not lead
to a significant decrease of the RSS. The decrease is signif-
icant if the RSS diminishes faster then the variable size is
increasing. Adjusting alpha to higher values increases the
number of edges included in the model.

Experimental procedure Tgif1-knock-down
Hepatocyte isolation, cultivation and transfection
Primary hepatocytes from C57BL/6-N mice were iso-
lated by collagenase perfusion of the liver according
to Gebhardt et al., 2003 [92]. Hepatocytes were sus-
pended in Williams Medium E containing 10% fetal calf

Table 4 Primers used for qRT-PCR analyses

Gene Primer forward 5’ → 3’ Primer reverse 5’ → 3’

Tgif1 -GAAACCCCAGCTTCACCTCT- -GCCAGATGCTGCAACAAG-

Atf3 -GCTGGAGTCAGTTACCGTCAA- -CGCCTCCTTTTCCTCTCAT-

Dbp -CTTTTGACCCTCGGAGACAC- -TGGCTGCTTCATTGTTCTTG-

β-Actin -CATCCGTAAAGACCTCTATGCCAAC- -ATGGAGCCACCGATCCACA-
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serum, 0.1 μM Dexametasone, 2mM Glutamine and
Penicillin/Streptomycin mix [28,93], and were plated onto
12-well plates pre-coated with collagen type I (0.1 Mio
cells/well, sample replicates of three wells). Cells were
incubated at 37°C and 5% CO2. After 2 hours, the cells
were cultured with a serum-free medium for further 22
hours.

After 24 hours total cultivation time, the serum-
free medium was renewed and chemically synthe-
sized siRNA for Tgif1 (20 nmol) was transfected
with INTERFERinTM purchased from Peqlab (Erlangen,
Germany) according to the manufacturer’s instruc-
tions. Tgif1-specific siRNA (Gene Solution siRNA; tar-
get sequence CACCTACAGTCTAATGAGTAA) and the
respective scrambled control siRNA was purchased from
Qiagen (Hilden, Germany). The cells were incubated with
the siRNA for additional 6, 12 and 24 hours. Total RNA
from hepatocytes was isolated with RNeasy plus Mini
Kit (Qiagen, Hilden, Germany) from three wells and
pooled.

Quantitative qRT-PCR
RNA was reverse transcribed using oligo(dt) primers and
IM Promm II reverse transcriptase (Promega, Mannheim,
Germany). The levels of the mRNA transcripts for Atf3,
Dbp and β-actin as housekeeping gene were determined
using gene-specific primers (Table 4). qRT-PCR mea-
surements were carried out in duplicate using the Light
Cycler� 2.0 Instrument and the LightCycler� FastStart
DNA Master PLUS SYBR Green I (Roche, Grenzach-
Wyhlen, Germany) or the Rotor Gene 6000� real-time
PCR cycler and SYBR Green I (Qiagen, Hilden, Germany).
The absolute quantitative analysis of the target genes were
normalized to β-actin.
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Hans-Knöll-Institute, Beutenbergstr. 11a, D-07745 Jena, Germany. 2Institute for
Biochemistry, Faculty of Medicine, University of Leipzig, Johannesallee 30,
D-04103 Leipzig, Germany. 3Department of Scientific Computing, Florida State
University, Tallahassee, Florida 32310-4120, USA. 4German Federal Institute for
Risk Assessment, Max-Dohrn Str. 8-10, D-10589 Berlin, Germany.

Received: 31 July 2012 Accepted: 12 November 2012
Published: 29 November 2012

References
1. Calkhoven CF, Ab G: Multiple steps in the regulation of

transcription-factor level and activity. Biochem J 1996,
317(Pt 2):329–342.

2. Hecker M, Lambeck S, Toepfer S, van Someren E, Guthke R: Gene
regulatory network inference: data integration in dynamic
models-a review. Biosystems 2009, 96:86–103. [http://dx.doi.org/10.
1016/j.biosystems.2008.12.004].

3. Cho KH, Choo SM, Jung SH, Kim JR, Choi HS, Kim J: Reverse engineering
of gene regulatory networks. IET Syst Biol 2007, 1(3):149–163.

4. Linde J, Wilson D, Hube B, Guthke R: Regulatory network modelling of
iron acquisition by a fungal pathogen in contact with epithelial cells.
BMC Syst Biol 2010, 4:148. [http://dx.doi.org/10.1186/1752-0509-4-148].

5. Linde J, Hortschansky P, Fazius E, Brakhage AA, Guthke R, Haas H:
Regulatory interactions for iron homeostasis in Aspergillus
fumigatus inferred by a Systems Biology approach. BMC Syst Biol
2012, 6:6. [http://dx.doi.org/10.1186/1752-0509-6-6].

http://www.biomedcentral.com/content/supplementary/1752-0509-6-147-S1.xls
http://www.biomedcentral.com/content/supplementary/1752-0509-6-147-S2.xls
http://www.biomedcentral.com/content/supplementary/1752-0509-6-147-S3.doc
http://www.biomedcentral.com/content/supplementary/1752-0509-6-147-S4.cys
http://www.biomedcentral.com/content/supplementary/1752-0509-6-147-S5.png
http://www.biomedcentral.com/content/supplementary/1752-0509-6-147-S6.pdf
http://dx.doi.org/10.1016/j.biosystems.2008.12.004
http://dx.doi.org/10.1016/j.biosystems.2008.12.004
http://dx.doi.org/10.1186/1752-0509-4-148
http://dx.doi.org/10.1186/1752-0509-6-6


Vlaic et al. BMC Systems Biology 2012, 6:147 Page 17 of 19
http://www.biomedcentral.com/1752-0509/6/147

6. Tierney L, Linde J, Müller S, Brunke S, Molina JC, Hube B, Schöck U, Guthke
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