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Abstract

Various peripheral receptors provide information concerning position and movement to the central nervous system to
achieve complex and dexterous movements of forelimbs in primates. The response properties of single afferent receptors to
movements at a single joint have been examined in detail, but the population coding of peripheral afferents remains poorly
defined. In this study, we obtained multichannel recordings from dorsal root ganglion (DRG) neurons in cervical segments
of monkeys. We applied the sparse linear regression (SLiR) algorithm to the recordings, which selects useful input signals to
reconstruct movement kinematics. Multichannel recordings of peripheral afferents were performed by inserting multi-
electrode arrays into the DRGs of lower cervical segments in two anesthetized monkeys. A total of 112 and 92 units were
responsive to the passive joint movements or the skin stimulation with a painting brush in Monkey 1 and Monkey 2,
respectively. Using the SLiR algorithm, we reconstructed the temporal changes of joint angle, angular velocity, and
acceleration at the elbow, wrist, and finger joints from temporal firing patterns of the DRG neurons. By automatically
selecting a subset of recorded units, the SLiR achieved superior generalization performance compared with a regularized
linear regression algorithm. The SLiR selected not only putative muscle units that were responsive to only the passive
movements, but also a number of putative cutaneous units responsive to the skin stimulation. These results suggested that
an ensemble of peripheral primary afferents that contains both putative muscle and cutaneous units encode forelimb joint
kinematics of non-human primates.
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Introduction

Peripheral inputs contribute to kinesthesia, the sense of joint

position and movements, and blocking peripheral primary

afferents impairs the perception of limb position and movements

[1,2,3,4]. More directly, artificial activation of muscle tendons or

surface cutaneous receptors induces a powerful illusion of

movement [5,6,7,8,9]. Human studies have shown that peripheral

deafferented patients showed error in hand movements without

visual feedback [10,11]. In monkeys that have had the dorsal root

transected at the level of the cervical spinal cord, precision grip is

severely impaired [12]. Thus, positional information arising from

inputs of peripheral afferents is critical to achieve accurate and

dexterous movements of the hands and arms of primates.

Microneurographical recordings from humans or single fiber

recordings from animals have been conducted to examine the

responses of peripheral afferents to mechanical stimuli

[13,14,15,16]. Individual sensory receptors were found to respond

to movements of the hand or arm [17,18]. However, recording

from a single afferent neuron has limitations for examining the

sensory processing from an ensemble of peripheral receptors

during the dynamic movements. To understand the neural

processing of natural movements, it is requisite to simultaneously

record the activity of a population of peripheral afferents and to

investigate the computation required for those multiple receptors

to represent the kinesthesia.

Recent advances in multichannel recordings allow the simulta-

neous detection of the activity of neuronal ensembles at nerve

bundles or dorsal root ganglions (DRGs) [19,20,21]. Analysis of

the activity of peripheral afferent populations in cat lumbar DRGs

allowed the reconstruction of the kinematic state of the leg

accurately using the linear regression model [22,23,24]. The

results of these studies demonstrate that populations of sensory

receptors contain rich information that represents various

kinematics of each joint in the hindlimb during movements in

two dimensional space. However, it remains unclear whether

linear models can be used to encode complex and dexterous

movements in primates from DRG recordings.

To elucidate the encoding of forelimb position and movements

by a population of DRG neurons, we performed multichannel

PLOS ONE | www.plosone.org 1 October 2012 | Volume 7 | Issue 10 | e47749



recordings from the DRGs in the lower cervical segments of

anesthetized monkeys. We applied the sparse linear regression

(SLiR) algorithm to encode the forelimb joint kinematics from

activities of DRG neuronal ensembles. The SLiR effectively and

automatically selected appropriate feature sets from thousands of

parameters to attain an improved generalization of performance

over that obtained from other ordinary linear regression models

[25,26]. By selecting the optimal ensemble from recorded units,

the analysis may reveal the underlying physiology in encoding of

joint kinematics. We classified the recorded units into two groups,

putative muscle and cutaneous units, by the response property to

peripheral mechanical stimulations. We then analyzed neuronal

populations selected by the SLiR, and examined the contribution

of the two groups to the encoding of joint kinematics.

Materials and Methods

Two adult male monkeys (Macaca mulatta, body weight; 4.6 and

9.6 kg, respectively) were used in this study. The experiments were

approved by the animal experimental committee of the National

Institute of Natural Sciences (Approved Nos.: 09A196, 10A203,

11A168) and were performed in accordance with the Weatherall

report, ‘‘The use of non-human primates in research’’. Before the

experiments, the animals were housed individually on a 12-hour

light/dark cycle and provided a rubber toy. They were not food

and water deprived.

Preparation
The monkeys were sedated using a mixture of xylazine (0.4 mg/

kg; Bayer Health Care, Monheim, Germany) and ketamine

(5 mg/kg; Daiichi Sankyo, Tokyo, Japan), and then anesthetized

with isoflurane (exhaled level; 1–2%) and nitrous oxide gas (1–

2%). Atropine (0.1 mg/kg; Mitsubishi Tanabe Pharma, Osaka,

Japan) and dexamethasone (0.15–0.3 mg/kg; Banyu, Tokyo,

Japan) were administered intramuscularly immediately after the

anesthesia. The animals were paralyzed using pancuronium

bromide (Mioblock; 0.2 mg/kg/h; Schering-Plough Corporation,

Kenilworth, NJ), and artificial pneumothorax was introduced and

artificial respiration was provided. Expiratory CO2 levels were

monitored continuously and maintained within the physiological

range (3.3–4.2%). Blood pressure was maintained above

80 mmHg. The depth of anesthesia was monitored continuously

by checking the stability of blood pressure, heart rate and lack of

pupillary reflex.

After shaving the hair on the back and the left forelimb, a partial

laminectomy was performed to expose the DRGs at the C7 and

C8 segments. A lateral mass of C5–Th1 segments was dissected.

Two multi-electrode arrays (Blackrock Microsystems, Salt Lake

City, UT) were inserted with a high-velocity inserter [27] through

the dura into the C7–C8 DRGs on the left side (Fig. 1A).

Reference wires were placed into the back muscles. After surgery,

the monkeys were suspended in a spinal frame and radiant heat

was used to maintain body temperature near 37uC. After finishing

the recording session, the animals were deeply anesthetized using

pentobarbital sodium (100 mg/kg, intravenous injection) and

perfused transcardially with 0.1 M phosphate buffered saline

and 10% formalin (Nacalai tesque, Kyoto, Japan), and the

placement of the electrode arrays into the DRGs was confirmed.

Neural Recording and Spike Detection
The implanted arrays consisted of 48 platinized-tip silicon

electrodes (100–1,000 kV at 1 kHz), arranged in a square grid

(400 mm on center), 1 mm in length, and in a 5610- configuration

[28]. The size of the array covered a DRG of 2–3 mm in diameter

and 4 mm in length. The electrode arrays were connected to a

128-channel amplifier (Cerebus; Blackrock Microsystems) with a

gain of 1000, and signals from each electrode were sampled at

30 kHz. Filtered waves (250–7500 Hz) above the amplitude

threshold, which is 5 times the estimated background noise based

on the median of the absolute value of the bandpass filtered signals

[29], were extracted from 0.33 ms before to 0.73 ms after

threshold crossing. Spikes with similar features on the principal

component analysis (PCA) projection were grouped into clusters

by semi-automatic spike sorting methods (Offline sorter; Plexon,

Dallas, TX). If an interval between two consecutive units was less

than 1 ms, we used first spikes for analysis of unit activity, even

though these constituted a small population. Although a portion of

the units (14.3% in Monkey 1, 8.7% in Monkey 2) responded to

stimulation of distinct areas located far from one another, and

were considered to be mixtures of more than one neuron, most of

the units were the activity of one neuron.

In some analyses, we excluded the contamination of multi

neuronal activity by setting the amplitude threshold as larger

values in each channel. Inter-spike intervals of units isolated by the

sorting method were more than 1 ms, which implied no

contamination from other neurons. Neuronal firing rates for each

unit were computed at 5-ms bins, corresponding to the sampling

rates of the motion capture system.

Motion Capture
Movements of the upper limb, from shoulder to fingers, were

recorded using reflective markers tracked with an optical motion

capture system (Eagle-4 Digital RealTime System; Motion

Analysis, Santa Rosa, CA) and synchronized with the neural

recordings. The system used 9 or 6 infrared cameras operating at

200 frames/s to track the position of multiple reflective markers (6-

mm-diameter spheroids) with submillimeter accuracy in Monkey 1

and 2, respectively. A total of 7 markers were attached to the

dorsal side of the forelimb using mild adhesive (Fig. 1B), and a

comprehensive catalog of 3 anatomically defined upper extremity

joint angles (elbow, wrist, finger) were analyzed (Fig. 2). In

particular, Euler angles were used to represent relative joint

rotations. Elbow joint angles were calculated from two vectors (one

from marker 2 to marker 1 and the other from marker 2 to marker

4 in Monkey 1; one from marker 2 to marker 1 and the other from

marker 2 to marker 3 in Monkey 2). Wrist joint angles were

calculated from two vectors (one from marker 4 to marker 2, a

cross product of a vector from marker 4 to marker 6, and the other

from marker 4 to marker 5). Finger joint angles were calculated

from two vectors (one from marker 6 to marker 7, a cross product

of a vector from marker 4 to marker 6, and the other from marker

4 to marker 5). The trajectory of an endpoint of the limb was

obtained by subtracting the position of marker 1 from that of

marker 7 in the Cartesian coordinate system (from caudal to

cranial (CC), from distal to proximal (DP), and from ventral to

dorsal (VD)). To reduce noises from various sources, temporal

changes in the joint angles and the position of the endpoint of the

limb were smoothed using a 5 Hz cutoff frequency in a low-pass

digital filter. For convenience, we refer to the first and second time

derivatives of joint angles and the position of the endpoint as

‘velocity’ and ‘acceleration’, respectively.

Mechanical Stimulations
The left forelimb, from forearm to digits, was moved manually.

In single joint movements, passive movements were applied to one

of the 3 forearm joints: the elbow, wrist, and metacarpophalangeal

(MCP) joints of digit 5 (D5). These joints were repeatedly moved

from the neutral position (elbow joint angle 90u, wrist 90u, finger
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90u) toward the extension or flexion direction and back to the

original position. Monkey 2 also underwent pronation. One trial

took 5 s in Monkey 1 and 3 s in Monkey 2, from 2 s and 1 s before

the stimulation onset, respectively. One session was composed of

26–30 trial repetitions. To investigate more complex, compound

movements, the left forearm of Monkey 1 was moved sequentially

and arbitrarily by an experimenter at 7 forearm joints, including

the elbow, wrist, and MCP joints of the 5 digits for 10 min.

Compound movements of the forearm were performed in 2

Figure 1. Experimental setup. A, Dorsal view of the spine and dorsal root ganglions (DRGs) in the cervical segments of a monkey. The cervical (C2)
through thoracic (Th3) vertebrae are shown. Microelectrode arrays were implanted in the left C7 and C8 DRGs. B, Marker placements on the left arm
and hand.
doi:10.1371/journal.pone.0047749.g001

Figure 2. Simultaneous recording of DRG neuronal ensemble activities and elbow/wrist/finger joint kinematics from an
anesthetized monkey. (top) Elbow, wrist, and digit 5 (D5) MCP joint angles. Extension is represented by an upward deflection (arrow) of the traces
shown. Length of the arrow represents magnitude of the angle. (bottom) Activities of 112 simultaneously recorded units in the C7 and C8 DRGs
during simple extension and flexion movements of the finger joint.
doi:10.1371/journal.pone.0047749.g002
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sessions. Tactile stimulations were applied 29–30 times to the skin

surface of the forelimb at various sites with a paint brush.

Linear Regression
Joint angle, velocity, and acceleration were modeled as a

weighted linear combination of neuronal activity using a

multidimensional linear regression as follows:

yj(t)~
X

k,l

wj,k,l|xk tzldð Þzbj

where; yj(t) is a vector of kinematic variables j (joint angle, velocity,

acceleration of elbow, wrist, finger) at time index t. xk(t+ld) is an

input vector of unit k at time index t and time-lag ld (d = 5 ms).

wj,k,l is a vector of weights on unit k at time-lag ld, and bj is a vector

of bias terms to yj. The units that showed no more than one spike

in the training data sets were omitted before the regression

analysis. Because external stimulation was the cause of any afferent

activity, time-lag was set at future, positive values. According to

the goodness of reconstruction of the kinematic data from the

neural activity as a function of the input-signal duration, we set the

duration of signals at 100 ms (maximum l = 20). When we

changed the length of the time window, the plateau level in the

accuracy of estimation of joint kinematics was achieved at 100 ms.

If we consider the conduction velocity of afferent nerves to be

more than 10 m/s [30] and their length to be ,30 cm, 100 ms is

presumed to be sufficient. This is probably because good

prediction of the encoding of joint kinematics for 3-dimensional

movements required sufficient amounts of DRG activity, but the

firing frequency of individual DRG neurons was quite low. A set of

linear weights were estimated by the linear regression method

from a set of training input (unit activity) and output (kinematic

variables) data. For comparison with the SLiR method, we also

adopted a regularized linear regression method. The regulariza-

tion parameter was determined from the data using a Bayesian

estimation method. After low-pass filtration of the acquired

reconstruction at 5 Hz, we compared the predicted kinematics

to the observed kinematics for validation of the model.

Sparse Linear Regression (SLiR)
An SLiR algorithm used in other studies [26,31,32,33,34,35,36]

was applied to analyze the population coding of DRG neurons.

The SLiR effectively and automatically selected appropriate

feature sets and pruned less important signals from thousands of

explanatory variables to attain a better generalization performance

compared to the regularized linear model. This is because having

too many parameters relative to the limited number of training

data sets is known to lead to poor generalization performance

(over-fitting problem) [37,38]. We used a Bayesian SLiR algorithm

that introduced sparse conditions only for the unit dimension, and

not for the temporal dimension (see 35). This method estimated

the weight and the automatic relevance determination (ARD)

parameters, which represented how much the weight contributes

to the reconstruction. Based on the values of the ARD parameters,

relevant features were selected automatically and irrelevant

features were discarded.

Data Analysis
In regression analyses of single joint movements, an SLiR model

was generated for each of the kinematic parameters investigated

(joint angle, velocity, and acceleration). The models generated in

the training data sets were tested against a test data set. The

training data sets were composed of 40 randomly selected trials (20

extension movement trials and 20 flexion movement trials) for

each joint movement (a total of 120 trials). The test data sets were

composed of 6 randomly selected trials (3 extension trials and 3

flexion trials) in each joint movement (total of 18 trials). As the

detection of some reflective markers were missed in Monkey 2,

data of wrist flexion, pronation, and digit 5 joint extension and

flexion movements were used in wrist joint encoding, and data of

wrist flexion and digit 5 joint extension and flexion movements

were used in digit 5 joint encoding. In regression analyses of

compound movements, continuously recorded data were parti-

tioned into 20 trials (one trial for 25 s data). Among the 20 trials,

17 randomly selected trials were used for the training data sets,

and the remaining 3 trials for the test data sets.

To assess model generalization, we used data from 3 different

movement blocks (single joint movements and compound

movement sessions 1 and 2) of Monkey 1. The test data sets

were built from the different movement blocks of the training

data sets. For example, a model was constructed from compound

movement session 1, and the model was tested using a data set

from session 2.

In characterizations of units selected by the SLiR, we surveyed

the training and test data sizes to evaluate the test performance.

When the test performance was evaluated using a limited number

of data samples, there were trade-offs between the test perfor-

mance and accuracy of the evaluation. The test performance

increased as the training data size increased, while the accuracy of

the test performance evaluation increased with increasing test data

size. Therefore, we evaluated the balance between the training

and the test data sizes by changing the sizes of the training and test

data sets. To do this we constructed data sets from combinations of

the different movement blocks of Monkey 1, using 150 5-s trials

from the single joint movements and 100 5-s partial trials from

each session of compound movements to construct pooled data

totaling 350 trials.

To quantify the generalization and survey the training and test

data sizes, we applied simultaneously the SLiR to data composed

of 9 joint kinematics data (angle, velocity and acceleration of each

of 3 joints). In other cases, we applied individually the SLiR to the

kinematics data of each joint.

Prediction accuracy was evaluated as the correlation coefficient

between the observed kinematics of test data sets and the

predictions from the model. The root mean squared error (RMSE)

between the observed kinematics and the predictions from the

model was also calculated to assess the prediction accuracy in

some analyses (Figs. 3, 4, 5 and 6). To assess the model, 5 pairs of

training and test data sets were generated, and a 5-fold cross-

validation was performed in all the analyses. In control analyses of

model prediction, we created surrogate training and test data sets

in which temporal firing profiles of individual neurons were

shuffled independently across different trials and tested subse-

quently for their prediction of each kinematic parameter.

To infer the importance of individual neurons in reconstruction,

we defined two indices: (i) the corresponding weight value

determined through the regularized linear regression analysis with

population data and normalized by the power of the unit activity

in the training data sets, and (ii) the correlation coefficient between

the observed kinematics and the predictions derived from single

unit activity and corresponding weight values.

In encoding of the joint kinematics by an individual class of

sensory neurons, the number of putative muscle units used in the

model training was matched to that of the putative cutaneous units

to compare the contribution of the putative muscle and cutaneous

units. Using random selection, we produced 20 data sets of

identical numbers of putative muscle and cutaneous units. We

Forelimb Kinematics Coded by Peripheral Afferents
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then fit the SLiR using individual data sets and generated a new

prediction.

Statistical Analysis
The data were analyzed using a two-way analysis of variance

(ANOVA), the non-directional unpaired- or paired Student’s t-

test, with Bonferroni correction if necessary. An alpha level of

significance was set at 0.05 for all statistical tests. Data are

expressed as the mean 6 standard deviation (mean 6 S.D.) or the

mean 6 standard error (mean 6 S.E.). We found 95% confidence

intervals for proportions based on the inverse of the appropriate

cumulative Beta distribution. We used Matlab (Mathworks,

Natick, MA) for the statistical analysis.

Results

Recordings were obtained from the DRGs at the C7 and C8

segments with two multi-electrode arrays. A total of 112 units (39

from C7, 73 from C8) were discriminated from 43 channels in

Monkey 1 and 92 units (38 from C7, 54 from C8) were

discriminated from 44 channels in Monkey 2.

Reconstruction of the Forelimb Joint Kinematics from
Activities of the DRG Neuronal Ensembles using the SLiR
Model

Population recordings during passive movements showed that

the temporal discharge patterns of individual isolated units were

correlated with temporal changes in the joint angles and that

the temporal changes in the firing of each unit varied among the

isolated units (Fig. 2).

To examine whether neuronal ensembles in the DRGs convey

rich information about joint kinematics, we applied the SLiR

model to the encoding of kinematic variables from the activities of

all the single and multiple units. As the activation of peripheral

afferents was induced by external stimulation, we considered that

the peripheral afferents carried information concerning limb

position immediately before their firing. Therefore, the kinematic

variables were defined as a weighted sum of neural firing for the

upcoming 100 ms (here grouped into 20, 5-ms bins) in the SLiR.

Figure 3A shows the result of the encoding of elbow joint angle,

velocity, and acceleration in a test data set composed of multiple

single joint movements, from the activities of a neuronal ensemble.

The SLiR provided accurate predictions of the joint kinematics.

The prediction performance of the test data sets (test performance)

from the actual neural firing pattern was much better than that

from the shuffled data (paired student’s t-test; p,0.0001; Fig. 3B).

Next, we applied the SLiR to neuronal activities recorded

during compound movements of the forelimb to encode temporal

changes of the joint kinematics. Figure 4A illustrates the results of

encoding of the elbow joint angles, velocity, and acceleration from

ensemble activities in a test data set of compound movements.

Even in complicated, three-dimensional movements, prediction of

the joint kinematics was accurate. The test performance from the

actual neural firing pattern was much better than that from the

shuffled data (paired Student’s t-test; elbow and wrist; p,0.0001,

finger; p,0.05; Fig. 4B). In the compound movements, a more

accurate prediction of the joint kinematics was obtained the

Figure 3. Performance of the SLiR in predicting joint kinematics from DRG activity in single joint movements. A, Observed kinematics
of the elbow joint (blue) and their prediction using the SLiR model (red) during 6 different single joint movements in Monkey 1: elbow extension and
flexion (Elbow ext.), elbow flexion and extension (Elbow flex.), wrist extension and flexion (Wrist ext.), wrist flexion and extension (Wrist flex.), D5
extension and flexion (D5 ext.), D5 flexion and extension (D5 flex.). Shown from top to bottom are the angular changes at the elbow, and its time
derivatives (‘Vel.’ and ‘Accel.’). The correlation coefficient (R) and the RMSE (Er) between the observed kinematics and the predicted ones are shown in
the lower right corner of each graph. The scale bar shown in the lower left of figures represents 5 s, which is identical to the intervals of two
neighboring ticks on the horizontal axis. B, Test performance (correlation coefficient (R) and RMSE (Er)) of the SLiR model in predicting various
kinematics of the elbow (E), wrist (W), and D5 MCP joints (D). Indicated values are averages of the results of 10 pairs of training and test data sets from
2 monkeys. To assess the test performance of the recorded data (closed circles), data sets composed of shuffled unit activities were used for the
control prediction (open circles). Asterisks indicate that the performance of the SLiR model was significantly different from that of the shuffled data
(paired Student’s t-test, p,0.0001). Error bars represent the standard error of the mean (n = 10).
doi:10.1371/journal.pone.0047749.g003
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Figure 4. Performance of the SLiR in predicting joint kinematics from DRG activity during compound movements. A, Observed
kinematics of the elbow joint (blue) and their prediction using the SLiR model (red) during compound movements. Shown from top to bottom are
the angular changes at the elbow, and its time derivatives (‘Vel.’ and ‘Accel.’). The correlation coefficient (R) and the RMSE (Er) between the observed
kinematics and the predicted ones are shown in the lower right corner of each graph. B, Test performance (correlation coefficient (R) and RMSE (Er))
of the SLiR model in predicting various kinematics of the elbow (E), wrist (W), and D5 MCP joints (D). Indicated values are averages of the results of 10
pairs of training and test data sets from 2 sessions. To assess the test performance of the recorded data (closed circles), data sets composed of
shuffled unit activities were used for control predictions (open circles). Asterisks indicate that the performance of the SLiR model was significantly
different from that of the shuffled data (paired Student’s t-test, p,0.0001 or p,0.05). Error bars represent the standard error of the mean (n = 10).
doi:10.1371/journal.pone.0047749.g004

Figure 5. Performance of the SLiR in predicting kinematics of a limb endpoint from DRG activity. A, Observed kinematics of a limb
endpoint on the caudal-cranial axis (blue) and their prediction using the SLiR model (red) during single joint movements. Shown from top to bottom
are the position, and its time derivatives (‘Vel.’ and ‘Accel.’). The correlation coefficient (R) and the RMSE (Er) between the observed values and the
predicted ones are shown in the lower right corner of each graph. B, Test performance (correlation coefficient (R) and RMSE (Er)) of the SLiR model in
predicting the endpoint kinematics in the Cartesian coordinate system (caudal-cranial (CC), distal-proximal (DP), ventro-dorsal (VD)). Indicated values
are averages of the results of 10 pairs of training and test data sets in single joint movements. To assess the test performance of the recorded data
(closed circles), data sets composed of shuffled unit activities were used for control predictions (open circles). Asterisks indicate that the performance
of the SLiR model was significantly different from that of the shuffled data (paired Student’s t-test, p,0.0001 or p,0.05). Error bars represent the
standard error of the mean (n = 10).
doi:10.1371/journal.pone.0047749.g005
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greater the distance the joint was from the end of the limb (Fig. 4B).

In both the single joint movements and the compound

movements, the prediction accuracies of angle and velocity were

higher than that of acceleration at the three joints. These results

demonstrate that neuronal ensembles in the DRG conveyed rich

information about joint kinematics, especially for angle and

velocity.

Finally, we tested whether kinematics of the limb endpoint in

the Cartesian coordinate system were encoded by the DRG

neuronal activity using the SLiR. Examples of encoded kinematics

of the endpoint are shown in Figures 5A and 6A in single joint

movements and compound movements, respectively. The SLiR

also provided accurate predictions of kinematics of the limb

endpoint in both movements. The test performance from the

actual neural firing pattern was much better than that from the

shuffled data (paired student’s t-test; p,0.001; Figs. 5B and 6B).

These results demonstrate that the activity of neuronal ensembles

in the DRGs also carried rich information about the kinematics of

the limb endpoint.

Improved Generalization in Reconstruction of the
Forelimb Joint Kinematics using the SLiR

The SLiR reduced the number of inputs used in the prediction

(Fig. 7). Note that the numbers of selected units were higher in the

prediction of angle and velocity than that of acceleration (paired

Student’s t-test with Bonferroni correction (n = 3); p,0.0001),

which were correlated with the prediction accuracies of the

respective kinematics. In any case, the SLiR accurately encoded

temporal changes in the joint kinematics from activities of the

DRG neuronal ensembles using reduced numbers of units.

To validate the importance of the units selected by the SLiR, we

compared the extent of generalization between the SLiR and the

regularized linear regression, which used all of the recorded units

to encode the joint kinematics. We used data from 3 different

movement blocks (single joint movements and compound move-

ment sessions 1 and 2) of Monkey 1. To assess the generalization of

the encoder, an encoder was tested using data sets from the

Figure 6. Performance of the SLiR in predicting kinematics of a limb endpoint from DRG activity. A, Observed kinematics of a limb
endpoint on the ventro-dorsal axis (blue) and their prediction using the SLiR model (red) during compound movements. Shown from top to bottom
are the position, and its time derivatives (‘Vel.’ and ‘Accel.’). The correlation coefficient (R) and the RMSE (Er) between the observed values and the
predicted ones are shown in the lower right corner of each graph. B, Test performance (correlation coefficient (R) and RMSE (Er)) of the SLiR model in
predicting the endpoint kinematics in the Cartesian coordinate system (caudal-cranial (CC), distal-proximal (DP), ventro-dorsal (VD)). Indicated values
are averages of the results of 10 pairs of training and test data sets in compound movements. To assess the test performance of the recorded data
(closed circles), data sets composed of shuffled unit activities were used for control predictions (open circles). Asterisks indicate that the performance
of the SLiR model was significantly different from that of the shuffled data (paired Student’s t-test, p,0.0001 or p,0.05). Error bars represent the
standard error of the mean (n = 10).
doi:10.1371/journal.pone.0047749.g006

Figure 7. Selection of a subset of DRG neurons by the SLiR. The
proportion of units selected by the SLiR in the encoding of joint angle
(Angle), velocity (Vel.), and acceleration (Accel.) of the elbow, wrist, and
D5 MCP joints. Error bars represent confidence intervals for proportions.
doi:10.1371/journal.pone.0047749.g007
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different movement blocks. When an encoder was constructed

from compound movement session 2 and the performance of the

encoder was tested using data sets from compound movement

session 1, the SLiR predicted the joint kinematics more accurately

than did the regularized linear regression (Fig. 8A and B). When

training data sets were built from approximately 85% of the total

data, model performance of the SLiR was statistically better than

that of the regularized linear regression model in 5 combinations

of training and test data sets (paired Student’s t-test; p,0.05)

(Fig. 8C). Thus, the SLiR extracted a limited number of units from

the DRG ensemble to encode the joint kinematics with an

improved generalization performance.

Extraction of Appropriate Units to Reconstruct Forelimb
Joint Kinematics using the SLiR

Based on a high encoding accuracy with a limited number of

units selected by the SLiR, we examined which units were selected

from the total sets of recorded neurons. In the following analysis,

we used units which were isolated using the more strict sorting rule

to reduce the possibility of contamination of any other neuronal

activity into isolated single neurons (69 units in Monkey 1 and 74

units in Monkey 2). Using this data set, superior generalization

performance of the SLiR was also achieved (Fig. 8D).

We first surveyed the training and test data sizes to evaluate the

test performance. We analyzed the entire data sets from Monkey

1, because we obtained a larger amount of data sets from this

animal than the other. The relationship between the size of the

training data sets and the prediction accuracy indicated that the

performance achieved a plateau at 140 trials (corresponding to

recording for 700 s) per training data set (Fig. 9A and B). At the

data size, the superior generalization performance of the SLiR was

also confirmed (Fig. 9B).

Using 140 trials as the size of the training data set, we calculated

two indices based on univariate statistics, (i) weight value

normalized to the power of the unit activity and (ii) the correlation

coefficient between the observation and the prediction by

individual single neuron activity. Figure 9C and D show the

Figure 8. Generalization performances of the SLiR and the
regularized linear regression. A, Relationship of the number of

training data sets to the correlation coefficient between the prediction
and the observation for encoding of the elbow joint angle by the SLiR
(red closed circles) and the regularized linear regression (open circles). A
decoder was constructed from compound movement session 2, and
performance of the decoder was tested using data sets from compound
movement session 1. The number of trials in the training data sets was
changed as indicated on the horizontal axis. Asterisks indicate
significant difference between the performance of the SLiR and the
regularized linear regression (paired Student’s t-test, p,0.05). Error bars
represent the standard error of the mean (n = 5). B, Relationship of the
number of training data sets to the correlation coefficient for encoding
of the joint kinematics by the SLiR (red closed circles) and the
regularized linear regression (open circles). Indicated values are
averages of results in the 9 joint kinematics (angle, velocity, and
acceleration of 3 forelimb joints). Asterisks indicate significant
difference between the performance of the SLiR and the regularized
linear regression (paired Student’s t-test, p,0.05). Error bars represent
the standard error of the mean (n = 45). C, Prediction accuracy using the
SLiR (red bars) and the regularized linear regression (white bars), when
approximately 85% of total trials were used in the training. The
movement blocks from which the training and test data sets were built
are shown on the horizontal axis. Asterisks indicate significant
difference between the performance of the SLiR and the regularized
linear regression (paired Student’s t-test, p,0.05). Indicated values are
averages of the results in the 9 joint kinematics (angle, velocity, and
acceleration of 3 forelimb joints). Error bars represent the standard error
of the mean (n = 45). D, The same analysis as shown in C using units
sorted by the more strict sorting rule.
doi:10.1371/journal.pone.0047749.g008
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distributions of the respective indices for individual single neurons.

In both the normalized weight values and the correlation

coefficient, units selected by the SLiR were statistically larger

than those of the pruned units (Student’s t-test; p,0.0001). The

SLiR selected mainly units that contributed to the reconstruction

of joint kinematics or determined the outline of temporal changes

of these kinematics. Note that some of the selected units had low

scores in the univariate analysis, indicating that they contributed

less to the reconstruction individually, but might still play

important roles as part of the ensemble.

Finally, we examined what DRG neurons were selected by the

SLiR. We classified the recorded units into two groups based on

their response property to the peripheral stimulations. We first

determined whether units responded to the peripheral stimulation

by experimenters and then confirmed the presence of statistical

significance (p,0.05) between before and during the stimulation

using the Wilcoxon signed-rank test. If units responded to a soft

brush, they were classified as the putative cutaneous units, while

units that responded to passive movements only were classified as

the putative muscle units (Fig. 10A). When units did not fire

sufficiently for us to categorize them into either of two classes, they

were classified as unidentified units. The numbers of units

belonging to putative muscle units, putative cutaneous units and

unidentified units were 26, 14 and 29, respectively, in Monkey 1,

and 41, 22 and 11, respectively, in Monkey 2. The composition of

modalities selected by the SLiR for encoding of joint kinematics

using 140 training data sets are shown in Figure 10B. Compared

to the composition of the originally recorded units, putative muscle

units comprised the majority of the selected units (original, 37.7%;

selection, 58.0% (50.0 to 65.6 as confidence intervals for

proportions)). The SLiR selected a majority of the putative muscle

units that were recorded (66.9% (58.4 to 74.4)). These results

Figure 9. Contribution of units extracted by the SLiR to
encoding of the joint kinematics. A, Relationship between the
number of trials per training data set and the correlation coefficient
between the prediction and the observation for encoding of joint
kinematics by the SLiR. Thin gray lines indicate results in encoding of 9
joint kinematics (angle, velocity, and acceleration of 3 forelimb joints),
and the thick black line indicates the averages of these results. The
number of trials in the training data sets was changed as indicated on
the horizontal axis and the remaining trials (the total trial number was
350) were used for the test data sets. Error bars represent the standard
deviation. B, Relationship between the number of trials per training
data set and the correlation coefficient between the prediction and the
observation for encoding of joint kinematics by the SLiR (red circles)
and the regularized linear regression (black circles). Each point indicates
the averages of results in encoding of 9 joint kinematics. The number of
trials in the training data sets was changed as indicated on the
horizontal axis and the remaining trials (the total trial number was 350)
were used for the test data sets. Error bars represent the standard
deviation. C, Distribution of normalized weight values for individual
single neurons selected for predicting elbow angle by the SLiR.
Histograms are shown for the units selected by the SLiR (red) and the
pruned units (white). The total number of analyzed units is 345 (69 x 5
data sets). D, Distribution of the correlation coefficient between the
prediction and the observation for encoding of elbow angle from single
neurons. Prediction was conducted from the firing rate of each unit and
weighted values determined by the regularized linear regression with
population data. Histograms are shown for the units selected by the
SLiR (red) and the pruned units (white). The total number of analyzed
units is 345 (69 x 5 data sets). E, Plots of normalized weight values and
correlation coefficient for individual single neurons in encoding of the
elbow angle. Each dot represents the result of one single neuron in one
block. Plots are shown for the selected units by the SLiR (red) and the
pruned units (black). The total number of analyzed units is 345 (69 x 5
data sets).
doi:10.1371/journal.pone.0047749.g009
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Figure 10. Response property of units selected by the SLiR. A, Peri-stimulus time histograms (bin width 50 ms) for two units recorded during
joint movements and skin brushing. Elbow joint angle and positions of the paint brush are shown in the bottom row, in which black lines and dark
gray areas represent the mean and standard deviation, respectively. A light gray area represents duration in which the paint brush touched to skin
surface. B, Number of all recorded units (original) and those selected units by the SLiR (selected) belonging to the respective class in Monkey 1.
doi:10.1371/journal.pone.0047749.g010
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suggest that putative muscle units contributed much to the

encoding of joint kinematics. Although the proportion of putative

cutaneous units was reduced following the SLiR selection (21.4%

(13.5 to 32.4)), the selected units included a number of putative

cutaneous units, suggesting that they also contributed substantially

to the encoding of joint kinematics.

Contribution of the Putative Muscle Units and the
Putative Cutaneous Units to Encoding of Joint
Kinematics

To confirm that the putative muscle units or the putative

cutaneous units individually encode joint kinematics, we applied

the SLiR to encoding of joint kinematics from neuronal activities

of each category (Fig. 11). Two-way ANOVA revealed significant

main effects of category (F(2, 243) = 8.2, p = 0.0004) and kinematics

(F(8, 243) = 5.1, p,0.00001) with no significant interaction (F(16,

243) = 0.76, p = 0.73). A post-hoc test showed that the prediction

accuracy for encoding of elbow joint kinematics by the putative

muscle units activity was higher than that from the putative

cutaneous units (paired Student’s t-test with Bonferroni correction

(n = 3); p,0.05). To examine the contribution of the putative

cutaneous units to encoding of joint kinematics, we compared the

prediction accuracy by the SLiR using neuronal activities of both

the putative muscle and the putative cutaneous units to that of the

putative muscle units alone. By adding the neuronal activity of the

putative cutaneous units to those of the putative muscle units, the

SLiR selected both the putative muscle and cutaneous units

(Tables 1, 2 and 3) and the prediction accuracy in all the

kinematics was significantly improved (paired Student’s t-test with

Bonferroni correction (n = 3); p,0.05) (Fig. 11). These results

suggest that, while a great deal of elbow joint kinematic

information was conveyed by the putative muscle units, the

putative cutaneous units provided the central nervous system with

joint kinematic information that the putative muscle units may not

code, such as subtle forelimb movements accompanied with skin

deformation.

In encoding of wrist and finger joint kinematics, the prediction

accuracy from the putative cutaneous units was similar to that

Figure 11. Encoding of joint kinematics from the activities of individual class or combinations of classes. The correlation coefficient
between the observation and the prediction by the SLiR using single units of putative cutaneous units only (C), single units of putative muscle units
only (M), and their combination (M+C). Indicated values are averages of the results of 10 pairs of training and test data sets from single joint
movements of both monkeys and error bars represent the standard error of the mean. Prediction accuracy in the angle is shown in magenta, velocity
in green, and acceleration in blue. Asterisks at the top of graphs indicates a significant difference (paired Student’s t-test with Bonferroni correction
(n = 3), p,0.05) in the prediction accuracy among neuronal activities of the respective classes.
doi:10.1371/journal.pone.0047749.g011

Table 1. Total number of units used in the model and number of units selected by SLiR using single units of putative cutaneous
units only.

Joint Elbow Wrist D5

Angle Vel. Accel. Angle Vel. Accel. Angle Vel. Accel.

Total 1367.1 1367.1 1367.1 1367.2 1367.2 1367.2 1366.3 1366.3 1366.3

Selected
cutaneous

8.465.8 7.463.6 6.363.1 5.862.8 9.063.2 7.564.2 6.863.6 6.962.5 6.363.2

The values in the columns are total number of units used in the model (Total) and number of putative cutaneous units selected by the SLiR (Selected cutaneous) in
encoding of joint angle (Angle), velocity (Vel.), and acceleration (Accel.) of the elbow, wrist, and D5 MCP joints. Data are expressed as the mean 6 standard deviation
(n = 10).
doi:10.1371/journal.pone.0047749.t001
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from the putative muscle units or superior in encoding of finger

velocity (paired Student’s t-test with Bonferroni correction (n = 3);

p,0.05). Comparison of the prediction accuracy by the SLiR

using neuronal activities of both the putative muscle and the

putative cutaneous units to that of the putative muscle units alone

also indicated contribution of the putative cutaneous units to

encoding of some joint kinematics (paired Student’s t-test with

Bonferroni correction (n = 3); p,0.05) (Fig. 11). Furthermore, in

the prediction of joint kinematics by the SLiR using neuronal

activities of both the putative muscle and the putative cutaneous

units, the SLiR selected both of them (Tables 1, 2 and 3). These

results suggest that, in wrist and finger joints, the putative

cutaneous units provided the central nervous system with joint

kinematic information as did the putative muscle units.

Discussion

The results of the present study demonstrate that temporal

changes in angle, velocity, and acceleration of various forelimb

joints can be reconstructed from the population activities recorded

from cervical DRGs in monkeys using the SLiR. The analysis

provided improved generalization performance in the reconstruc-

tion of various joint kinematics from a subset of somatosensory

neural activity. The analysis elucidated that, not only the putative

muscle units, but a number of the putative cutaneous units also

contributed to reconstruction of joint kinematics. The result was

confirmed by reconstruction of joint kinematics from activity of

individual classes of units. The putative muscle units contributed

greatly to encoding of elbow joint kinematics, but the putative

cutaneous units provided additional information regarding the

joint kinematics, especially at wrist and finger joints.

Multichannel Recording from the Cervical DRGs
The activity of peripheral afferents have been recorded by single

fiber recordings in human and animals, in which isolated afferent

nerves were recorded by inserting a single microelectrode into the

peripheral nerve [13,14,15,16,17,39,40]. These studies identified

the response properties of each recorded afferent fiber to various

external stimulations or voluntary movements. However, to

produce kinesthesia, the sensory information is thought to be

assembled in the central nervous system. The coding of positions

and movements of the ankle joint by populations of sensory

neurons was examined by collecting a number of separate

microneurographical recordings during similar movements

[41,42,43,44]. Although these studies discriminated movement

directions in two dimensional space at a single joint of a leg from

the collected recording data, application of the same methodology

to the prediction of more complicated natural movements of hand

and arm is difficult. For the first time, we recorded simultaneously

from approximately 100 sensory neurons using multi-electrode

arrays from the cervical DRGs of non-human primates. High

variability in the ensemble recording enabled us to calculate

various joint kinematics in three dimensional space, especially of

compound multi-joint movements. Furthermore, while the micro-

neurographical recording is technically difficult to be performed

on subjects who are moving their limbs, we recorded neuronal

activity during dynamic movements of the entire forelimb. Thus,

the recoding of sensory neural activity using multi-electrode arrays

from the DRGs in monkeys affords a new experimental paradigm

to explore sensory coding by peripheral afferents as one possible

alternative for microneurography.

A series of studies examined the encoding of cat hindlimb

movements from ensembles of lumbar DRG neurons [22,23,24],

calculating position and velocity of the foot in two dimensional

space from up to 100 discriminated sensory neurons. We applied a

Table 2. Total number of units used in the model and number of units selected by SLiR using single units of putative muscle units
only.

Joint Elbow Wrist D5

Angle Vel. Accel. Angle Vel. Accel. Angle Vel. Accel.

Total 1367.1 1367.1 1367.1 1367.2 1367.2 1367.2 1366.3 1366.3 1366.3

Selected muscle 8.464.2 7.563.1 7.463.5 6.962.8 7.964.6 7.864.0 6.462.5 6.263.2 6.063.0

The values in the columns are total number of units used in the model (Total) and number of putative muscle unitsselected by the SLiR (Selected muscle) in encoding of
joint angle (Angle), velocity (Vel.), and acceleration (Accel.) of the elbow, wrist, and D5 MCP joints. Data are expressed as the mean 6 standard deviation (n = 10).
doi:10.1371/journal.pone.0047749.t002

Table 3. Total number of units used in the model and number of units selected by SLiR using combination of single units of
putative cutaneous units and single units of putative muscle units.

Joint Elbow Wrist D5

Angle Vel. Accel. Angle Vel. Accel. Angle Vel. Accel.

Total 27614 27614 27614 26614 26614 26614 26613 26613 26613

Selected
cutaneous

7.965.2 7.363.4 6.464.0 6.463.4 8.262.9 6.864.0 6.363.3 6.862.1 5.062.1

Selected muscle 7.663.5 7.463.1 6.862.9 5.761.9 6.463.1 7.763.6 5.561.6 4.661.7 5.462.4

The values in the columns are total number of units used in the model (Total) and number of putative cutaneous (Selected cutaneous) or muscle units (Selected muscle)
selected by the SLiR in encoding of joint angle (Angle), velocity (Vel.), and acceleration (Accel.) of the elbow, wrist, and D5 MCP joints. Data are expressed as the mean 6

standard deviation (n = 10).
doi:10.1371/journal.pone.0047749.t003
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similar recording technique to the DRG neurons at the cervical

segments of monkeys, but the forelimb movements in three

dimensional space were more complicated than those in the cat

studies. Since prediction of movements in three dimensional space

from neural activity is more difficult than that in two dimensional

space, the prediction accuracy was slightly lower than in the

encoding of cat hindlimb movements. On the other hand,

prediction of forelimb joint angle or trajectory of the limb

endpoint in reaching and grasping movements in three dimen-

sional space from ensemble recordings of the motor cortex provide

correlation coefficient values around 0.7 [45,46], which is similar

to the prediction accuracy in our results. Thus, we succeeded in

reconstructing elbow, wrist, and finger joints kinematics during

movements in three dimensional space using DRG population

activity.

Encoding using SLiR
We demonstrated encoding of forelimb joint kinematics from

multichannel recordings of DRG neurons. The elbow and wrist

joint kinematics were estimated with higher accuracy than that of

the finger. It is possible that higher correlation between the elbow

and wrist motions accounts for the higher accuracy in estimation

of kinematics of these joints. When the joint movements were

correlated, it is difficult to evaluate prediction of kinematics at each

joint independently. However, the elbow and wrist motions were

not more correlated with each other (0.13 and 0.09 in session 1

and 2, respectively) than other combinations (elbow and finger;

0.33 and 0.32, respectively, wrist and finger; 20.26 and 20.20,

respectively). Furthermore, a principal component analysis of joint

movement trajectory showed that three joint motions were almost

independent in compound movement session 1 (Table 4). In

compound movement session 2, their motions were coupled, but

the degree of freedom for their motions were three (Table 4).

Thus, we conclude that the result of encoding properties of each

joint was not dependent on their movement profile, but due to the

discharge pattern of recorded ensembles.

The forearm trajectory of the monkey was predicted previously

with high accuracy from activities of subsets of motor cortical

neurons obtained by multichannel recordings using the SLiR [47].

The authors showed that the SLiR outperformed that of the

conventional Wiener filter, which is consistent with our analysis.

Their and our present studies suggest that the SLiR selected

important units as an ensemble. The ensemble selected by the

SLiR was different from units ranked by the conventional

univariate analysis, which contained units whose activities were

less correlated to joint kinematics as individual units (Fig. 9D).

Although some units with weaker correlation showed high

contribution to the prediction of joint kinematics (Fig. 9E), these

units did not contribute to the whole structure of the joint

kinematics but may be relevant to local changes within them. The

improved generalization performance of the sparse method has

also been accounted for by the correlation structures among

ensemble components from the analysis of fMRI data [48].

Reduction of input parameters without any deterioration of

coding performance gives a benefit to BMI systems that require

less computational burden due to a limited hardware. Arm

trajectory can be predicted from the activity of a small number of

neurons in the primary motor cortex of primates [49,50,51]. The

optimal number of neurons to achieve high model performance

has been determined by neuron dropping analysis [49,51]. In this

analysis, the linear models were generated from the remaining

units after randomly removing a single unit until one neuron was

left. The procedure was repeated many times for each ensemble to

obtain an optimal ensemble size. One problem is that the method

requires significant computational resource and has less practical

use in the situation in which composition of chronically recorded

units was variable during the experimental period. The SLiR

automatically selected important units from the entire recoded

population without affecting model performance through machine

learning. Thus, the SLiR is a practical method in analyzing data

containing an enormous number of recorded neurons.

Encoding of Joint Kinematics by the Putative Muscle
Units and the Putative Cutaneous Units

We classified recorded units into two classes based on their

response properties to the peripheral stimulations. Identification of

the unit modalities and receptive fields of approximately one

hundred units individually as in single afferent recordings is very

time consuming. Therefore, we did not apply the identification

method to the multichannel recording. Instead, we applied the

mechanical stimulation to most of the surface skin of forelimb with

a paint brush, and analyzed the response property of each unit

after recording. Although the latter offline analysis was not so strict

to identify fine receptive field, we considered that the units that

responded to tactile stimulation were classified as putative

cutaneous units. These units were assumed to be equivalent to

cutaneous receptors. The rest of the units that responded to joint

movement were classified as putative muscle units, thought to

contain muscle spindle, tendon or joint receptors, while muscle

spindles may be more commonly encountered. The putative

muscle units tended to be more sensitive to passive movements

than the putative cutaneous units. Chronic implantation of array

electrodes into the DRGs may allow us to identify unit modalities

and receptive field definitively.

Muscle receptors are generally considered to be the major

source of movement perception. The notion partially stems from

the evidence that tendon vibration induces a strong illusion of

position and movements [6,7,8,9,52]. In this study, we showed

that the putative muscle units were the major components that

encoded the joint kinematics and test performance of elbow joint

Table 4. Results of principal component analysis on joint motions in the compound movements.

Compound movement session 1 Compound movement session 2

PC1 PC2 PC3 PC1 PC2 PC3

Elbow 0.13 0.85 20.50 20.33 0.64 20.69

Wrist 0.96 0,02 0,29 0.63 20.70 0.34

D5 20.25 0.52 0.82 20.70 20.32 0.64

The values in the columns are the eigenvectors of principal component analysis for joint motions. Eigenvalues of three principal components (PC) are (0.49, 0.37, 0.14) in
session 1 and (0.44, 0.37, 0.19) in session 2.
doi:10.1371/journal.pone.0047749.t004
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kinematics prediction was higher from the putative muscle units

than the putative cutaneous units. The richness of kinematic

information encoded by muscle spindle receptors may be of great

value in human psychophysical studies. Nevertheless, cutaneous

receptors also encoded additional important positional informa-

tion. Human experiments showed that specific activation of

cutaneous receptors by local stretch and electrical stimulation

induced movement illusion [5,53,54,55]. Simultaneous skin stretch

and tendon vibration increased the illusory movement compared

with vibration only [54]. Thus, the present results that both the

putative cutaneous and muscle units contribute to encode joint

kinematics are consistent with the results in psychophysical

experiments.

Ensembles of cortical neurons in the primary somatosensory

cortex in macaque monkeys have provided accurate information

about limb kinematics [49,56,57]. Cortical neurons in the primary

somatosensory cortex are divided mainly into two classes in their

receptive fields, cutaneous and proprioceptive receptive fields.

Weber and colleagues showed that two classes of cortical neurons

contributed equally to encoding of kinematics of the limb endpoint

[57]. In the present study, both the putative cutaneous and muscle

units also contributed to encoding of joint kinematics at the

peripheral level. These results suggest that information about limb

kinematics coded by both cutaneous and proprioceptive afferents

is conveyed to the cortical neurons with each modality in the

primary somatosensory cortex, respectively.

Position sense may be different between distal and proximal

regions, especially in the forelimb. The extent of contribution of

the putative cutaneous units to encoding of joint kinematics tended

to be higher in distal forelimb region than proximal one (Fig. 11).

This may be explained by the physical structure of forelimb

muscles. As finger muscles, such as the extensor digitorum muscle,

control multiple digits, tendon vibration to the finger extensor

induces simultaneous illusory movements of these digits [53,54].

Additional skin stretch to the tendon vibration focuses the

sensation of movement to the stretched digit. These results

suggested that cutaneous receptors contributed to the positional

sense of fingers to a substantial extent. It is well known that two-

point discrimination threshold is lower in distal body parts than

proximal ones [58]. One explanation of this is that distal parts of

the human forelimbs are much more densely innervated by

mechanoreceptors than the proximal parts [59]. On the other

hand, the number of muscle spindles acting on the joints decreases

toward the end of the limbs [60]. Relative high density of

peripheral mechanosensory receptors and low density of spindles

in the distal forelimb compared to the proximal one may increase

the contribution of cutaneous receptor activation to distal

kinesthesia compared to those in proximal parts of the body. In

addition, results of the present study showed that the putative

cutaneous units encoded joint kinematics of distal forelimbs to a

greater extent, which suggests that single distal cutaneous units are

more important in sensing body position and movements than

proximal cutaneous units. These features may constitute high

sensitivity to skin deformation in the distal body parts for dexterous

manipulation.
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