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ABSTRACT

Motivation: Identifying drug–drug interactions (DDIs) is a critical
process in drug administration and drug development. Clinical
support tools often provide comprehensive lists of DDIs, but they
usually lack the supporting scientific evidences and different tools
can return inconsistent results. In this article, we propose a novel
approach that integrates text mining and automated reasoning
to derive DDIs. Through the extraction of various facts of drug
metabolism, not only the DDIs that are explicitly mentioned in text can
be extracted but also the potential interactions that can be inferred
by reasoning.
Results: Our approach was able to find several potential DDIs
that are not present in DrugBank. We manually evaluated these
interactions based on their supporting evidences, and our analysis
revealed that 81.3% of these interactions are determined to be
correct. This suggests that our approach can uncover potential
DDIs with scientific evidences explaining the mechanism of the
interactions.
Contact: luis.tari@roche.com

1 INTRODUCTION
One of the challenges in drug administration and drug development
is the need to identify and avoid potential drug–drug interactions
(DDIs). When several drugs are being administered, there is a
possibility of adverse drug reactions as one drug can increase or
decrease the effect of another drug. During the course of drug
development, it is vital to identify possible drug interactions with
the new drug compound that is being investigated. Revealing the
mechanism behind the drug interactions can provide the necessary
scientific evidences for further investigation of the drug compound.
The ability to find DDIs and their scientific evidences efficiently and
economically can have an impact on the current approach in drug
administration and drug development.

A common source of finding DDIs is through the use of
commercial databases such as the Thomson Micromedex DrugDex
System (Micromedex) or online freely available drug databases such
as DrugBank (Wishart et al., 2006). While such databases provide
extensive lists of DDIs, it is typical that scientific evidences are
not provided as part of the information for DDIs. This becomes
an issue when a recent study showed that there are ∼25% of
disagreements between two drug compendia (Wong et al., 2008).
The lack of scientific evidences complicates the process of verifying
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the discrepancies. An ideal resource not only should provide
a comprehensive list of DDIs in a cost-efficient manner but also
the mechanism behind the interactions. Text mining of Medline
abstracts is a logical choice to identify DDIs, as much of the
scientific information is frequently available in biomedical articles.
In addition, text mining has the potential of finding large number of
DDIs from text in a cost-effective manner.

In this article, we propose a novel approach of discovering DDIs
through the integration of ‘biological domain knowledge’ with
‘biological facts’ from Medline abstracts and curated sources. Our
work is one of the few that utilizes biological domain knowledge
in their applications, such as the generation of metabolic networks
based on stoichiometric constraints (Mavrovouniotis et al., 1990),
hypothesis generation in signaling pathways (Tran et al., 2005) and
synthesis of pharmacokinetic pathways (Tari et al., 2010). In this
work, the biological domain knowledge includes the mechanism of
how drug A influences the effect of drug B through the induction
or inhibition the enzymes that are responsible for the metabolism
of B. With the domain knowledge, the other component is to
find the biological facts to support specific DDIs. Examples of
biological facts from Medline abstracts include the identification
of which enzymes are induced or inhibited by drugs as well as
the enzymes that are responsible for the metabolism of drugs.
Curated sources such as UniProt (http://www.uniprot.org) and
Gene Ontology (GO) annotations (http://www.geneontology.org)
are utilized to identify protein families such as enzymes and
transcription factors. Integrating the biological domain knowledge
with the biological facts allows us to derive DDIs. This step is
achieved through the use of logic representation of the domain
knowledge and automated reasoning. It is important to note that our
approach differs from typical extraction approach, which focuses
on the extraction of interactions that are stated explicitly in the text.
In our approach, various properties can be extracted from different
publications so that the system utilizes the extracted properties to
derive potential DDIs. This enables us to discover potential DDIs
that are yet to be annotated in comprehensive resources about DDIs
such as DrugBank.

The rest of the article is outlined as follows. We describe the
basic properties of DDIs that we encode in our system in Section 2.
In Section 3, the processes of acquiring the necessary facts and
interactions from existing knowledge bases and Medline abstracts
are described. In addition, the reasoning component is illustrated
in how the properties of drug metabolism are encoded in order
to derive DDIs. In Section 4, we describe the possible scenarios
of applying our approach to drug administration and drug design.
We demonstrate the feasibility of our approach by illustrating the
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correctness of the DDIs derived by our approach in Section 5.
We conclude in Section 6.

2 DDIs
Common DDIs involve how drugs are metabolized by the body.
Metabolism-based interactions mainly happen in the liver as most
of the drugs are metabolized by enzymes that reside in the liver.
A drug is expected to be eliminated by the body within a certain
amount of time after being taken. In case when the drug elimination
process takes longer than expected, toxicity can be accumulated
or the pharmacological effect of the drug can be exaggerated. The
induction or inhibition of enzymes can affect the drugs directly or
indirectly through transcriptional regulation. If the enzymes that are
responsible for the metabolism of drug A get inhibited or induced
by other drugs, then the bioavailability of drug A will be higher or
lower than expected, rendering it toxic or less effective.

Inhibition of enzymes is a common form of DDIs (Boobis, 2009).
Such kind of ‘direct inhibition’ happens when drug A inhibits
enzyme E, which is responsible for metabolism of drug B. Such drug
interactions lead to the decrease of the activity level of enzymes,
and this in turn may increase the bioavailability for the drug B.
Alternatively, this may reduce the formation of metabolites of the
inhibited enzyme and leads to therapeutic failure of the affected
drug. An example of such direct inhibition is the interaction between
quinidine and CYP2D6 substrates such as codeine, as quinidine
is responsible for the inhibition of CYP2D6. On the other hand,
CYP2D6 substrates such as codeine are metabolized by CYP2D6.
The inhibition of CYP2D6 by quinidine increases the bioavailability
of drugs metabolized by CYP2D6. Such increase can potentially lead
to adverse side effects of the affected drug.

Another form of drug interactions is through the induction of
enzymes (Boobis, 2009). One form of induction is known as direct
induction when drug A induces enzyme E, which is responsible
for metabolism of drug B. An example of such direct induction is
between warfarin and phenobarbital. Such drug interaction occurs
due to the fact that warfarin is metabolized by CYP2C9, while
CYP2C9 is subject to induction by phenobarbital. This leads to the
increase of enzyme activity of CYP2C9, which increases the rate of
metabolism of warfarin by CYP2C9. Such increase of metabolism
decreases the bioavailability of warfarin. While direct induction is
possible, it is not the most common form of drug interactions due
to induction. A more common form is through transcription factors
that regulate the drug-metabolizing enzymes. An alternative form
is indirect induction through transcription factors. Such interaction
occurs when drug A activates transcription factor ‘TF’, which
regulates and induces enzyme E, and enzyme E is responsible for
the metabolism of drug B. Such transcription factors are referred as
regulators for xenobiotic-metabolizing enzymes. Examples of such
regulators are aryl hydrocarbon receptor AhR, pregnane X receptor
PXR and constitutive androstane receptor CAR. Figure 1 illustrates
how the induction or inhibition of transcription factors and enzymes
contribute to drug interactions.

Other than metabolism-based interactions, drug interactions can
also occur due to the induction or inhibition of transporters.
Transporters are mainly responsible for cellular uptake or cellular
efflux of drugs. Transporters play an important role in drug
disposition as drugs can only be metabolized after they are
transported into the liver cells. However, transporter-based drug

Fig. 1. The effects of drug A on drug B through (A) direct
induction/inhibition of enzymes; (B) indirect induction/inhibition of
transcription factors that regulate the drug-metabolizing enzymes.

interactions are not as well studied as metabolism-based interactions
(Boobis, 2009). In this article, we emphasize on the extraction of
metabolism-based drug interactions.

3 METHODS
Our approach in identifying DDIs can be described in two phases: (i) natural
language extraction phase; (ii) reasoning phase. We start with performing an
offline one-time parse of the documents and store a structured representation
of unstructured text in the form of syntactic structures into a database called
the ‘parse tree database’. Such structured information includes grammatical
structures of sentences known as ‘parse trees’ and the biological entities
involved in the sentences. The stored information of the sentences are used
for extraction by means of database queries in the form of ‘parse tree query
language’ (PTQL). PTQL (Tu et al., 2008) is a flexible query language that
is designed for extracting various kinds of relations. While these extracted
relations provide the necessary knowledge to identify DDIs, the extracted
relations alone are not sufficient to derive DDIs. By ‘representing the general
knowledge about drug metabolism and interactions’ in the form of logic rules,
the extracted relationships are then applied to the logic rules in order to reveal
DDIs in the ‘reasoning phase’. An overview of our approach is illustrated in
Figure 2. Here we describe the main components of our approach in details.

3.1 Parse tree database and PTQL
A parse tree is composed of a constituent tree and a linkage. A constituent
tree is a syntactic tree of a sentence with the nodes represented by part-of-
speech tags and leafs corresponding to words in the sentence. A linkage
represents the syntactic dependencies (or links) between pairs of words
in a sentence. The parse trees are produced by the Link Grammar parser
(Sleator and Temperley, 1993), while BANNER (Leaman and Gonzalez,
2008) is used to recognize gene/protein names and MetaMap (Aronson,
1996) for drug names. To disambiguate gene mentions, GNAT (Hakenberg
et al., 2008) is applied to identify the official gene symbols for each gene
mentions identified by BANNER. The syntactic and semantic information of
sentences are stored in our parse tree database and extraction is performed by
means of database queries. By storing the syntactic and semantic information,
this avoids the need of reprocessing the document collection every time
extraction is performed. This also allows on-the-fly extraction that is suitable
for extracting various kinds of interactions as needed in the purpose of
identifying drug interactions.

Our parse tree database is managed by MySQL containing ∼17 million
Medline abstracts. Due to the hierarchical nature of the syntactic and
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Fig. 2. An overview of our approach in extracting drug interactions. (A) In
the ‘extraction phase’, queries are applied to the parse tree database for the
extraction of various interactions. (B) By utilizing the extracted interactions,
the ‘reasoning phase’ applies the interactions to the logic rules to derive
drug–drug interactions.

semantic information of sentences, writing SQL queries for extraction can
be complicated with the use of numerous table joins. Our approach is to
develop a query language called PTQL that enables generic extraction of
relations. A PTQL query is made up of four components: (i) tree patterns;
(ii) link conditions; (iii) proximity conditions; and (iv) return expression. The
components in a PTQL query are separated by the symbol ‘:’. We illustrate
PTQL queries with examples in the later sections. In the extraction phase,
the ‘PTQL query evaluator’ takes PTQL queries and transforms them into
SQL queries. The translated SQL queries are evaluated against the parse tree
database so that the returned information is the intended interactions from
abstracts.

3.2 Natural language extraction
Our strategy of extraction can be categorized as explicit and implicit
extraction of DDIs from text. ‘Explicit extraction’ refers to the extraction
of a DDI that is described within a sentence, while ‘implicit extraction’
requires the extraction of various properties of drug metabolism that can
lead to a DDI. These properties include the identification of protein families
and the interactions that are involved in drug metabolism. Such information
is stored in the database tables.

3.2.1 Extraction of explicit drug interactions Description of DDIs can
sometimes be found in Medline abstracts. Being able to extract such
explicit description of interactions between drugs is essential. The following
sentences are example sentences from Medline abstracts that describe drug
interactions within the individual sentences.

• S1: ‘Ciprofloxacin’ strongly inhibits ‘clozapine’ metabolism (PMID:
19067475).

• S2: Enantioselective induction of ‘cyclophosphamide’ metabolism by
‘phenytoin’ (PMID: 10423284).

We used two extraction queries that utilize the keywords ‘induce’, ‘induces’,
‘induction’ to extract how one drug decreases the effect of another drug.
Similarly, we used the keywords ‘inhibit’, ‘inhibits’, ‘inhibition’ to find the
increase of the effect of one drug by another drug. Here we illustrate below
one of the queries as PTQL query.

//S{//?[Tag=‘Drug’](d1) =>
//?[Value IN {‘induce’, ‘induces’, ‘inhibit’,

Table 1. Triplets representing various properties relevant to the extraction
of implicit drug interactions and their description

<actor1, relation, actor2> Description

<p, metabolizes, d > Drug d is metabolized by protein p
<d, inhibits, p> Drug d inhibits the activity of protein p
<d, induces, p> Drug d induces the activity of protein p
<p1, regulates, p2> Protein p1regulates the activity of protein p2

‘inhibits’}](v) => //?[Tag=‘Drug’](d2) =>
//?[Value= ‘metabolism’](w)} :: [d1 v d2 w]5 :
d1.value, v.value, d2.value

The tree pattern of the above query specifies that a drug (denoted as d1) has
to be followed by (denoted as the operator =>) one of the keywords ‘induce’,
‘induces’, ‘inhibit’, ‘inhibits’, which is then followed by another drug
(denoted as d2) with the keyword ‘metabolism’. The proximity condition
[d1 v d2 w]5 indicates that these words have to appear within five words
of each other in the matching sentences. The return expression d1.value,
v.value, d2.value specifies the return of the values for the triplet <d1,
v, d2>. The triplet <d1, induce/induces, d2> implies that drug d1 decreases
the effect of drug d2 (i.e. <d1, decreases, d2>), while <d1, inhibit/inhibits,
d2> for the increase of the effect of d2 by d1(i.e. <d1, increases,d2>). With
the PTQL query, sentence S1 matches the criteria of the query and the triplet
<ciprofloxacin, increases, clozapine> is formed.

3.2.2 Extraction of implicit drug interactions There are cases when the
experimental findings of drug interactions have yet to be published but
they can be inferred based on various properties of drug metabolism. It
is important to notice that such properties can be originated from different
publications. Our approach is to extract the relevant properties and utilize the
extracted interactions to infer drug interactions through automated reasoning.

Table 1 illustrates the various kinds of interactions that are necessary to
infer drug interactions. Different PTQL queries are used for extraction. As an
example, the following PTQL query is used to extract <protein, metabolizes,
drug> triplets:

//S{/?[Tag=’DRUG’](kw2) => //VP{//?[Value IN
{’metabolised’,’metabolized’}](kw1) =>

//?[Tag=’GENE’](kw0)}} :::
kw0.value, kw1.value, kw2.value

The tree pattern of the above query specifies that a drug (denoted as
kw2) is followed by a verb phrase (denoted as VP), such that the verb
phrase includes one of the keywords ‘metabolized’ or ‘metabolized’ and
it is followed by a gene mention (denoted as kw0). The return expression
ensures that the triplets <protein, metabolizes, drug> are returned from
the matching sentences. Table 2 illustrates the sample triplets and their
supporting evidences for the extraction of various kinds of interactions.

3.3 Knowledge representation and reasoning
As the interactions themselves do not reveal any kind of ordering, the goal is
to represent the fundamental behavior and properties of pharmacokinetics so
that the representation can be utilized to assign ordering of the interactions
through reasoning. Implementation of the reasoning component requires a
language that is ideal in specifying what kind of reasoning to be performed
rather than how the reasoning is performed. This is analogous to declarative
programming language such as SQL, in which the users specify what is
intended to be found rather than how the search mechanism of the database
system should be performed to answer the queries. AnsProlog (Gelfond and
Lifschitz, 1988, 1991) is a declarative language that is useful for reasoning,
as well as capable for reasoning with incomplete information. It is important
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Table 2. Sample extracted interactions for each kind of relations and their
support evidences

PMID Evidence and extracted interaction

8689812 Lovastatin is metabolized by CYP3A4.
<cyp3a4, metabolizes, lovastatin>

8477556 Inhibition by fluoxetine of cytochrome P450 2D6 activity.
<fluoxetine, inhibits, cyp2d6>

10678302 Phenytoin induces CYP2C and CYP3A4 isoforms, but not
CYP2E1.

<phenytoin, induces, cyp2c>, <phenytoin, induces, cyp3a4>

11502872 The CYP2B6 gene is directly regulated by PXR
<pxr, regulates, cyp2b6>

Table 3. Logic facts transformed from the extracted interactions in Table 1
after data cleaning

Logic facts and their description

metabolized(d, p): transformed from <p, metabolizes, d > to
represent that drug d is metabolized by enzyme p

inhibits(d, p): transformed from <d, inhibits, p> to represent that
drug d inhibits the activity of enzyme p

induces(d, p): transformed from <d, induces, p> to represent that
drug d induces the activity of enzyme p

regulates(p1, p2): transformed from <p1, regulates, p2> to
represent that transcription factor p1 regulates the activity of enzyme p2

to notice that AnsProlog is a declarative language different from Prolog.
While Prolog is a programming language with roots in logic, it includes
many non-logical features that are not declarative, making it unsuitable for
knowledge representation. Here we give a brief introduction to the syntax of
AnsProlog.

An AnsProlog rule is of the form:

l :- l0, …, lm, not lm+1, …, not ln.

where lis are literals and not represents negation as failures. The intuitive
meaning of the above rule is that if it is known that literals l0, …, lm are
to be true and if lm+1, ...,ln can assume to be false, then l must be true. A
literal is defined as either an atom or an atom preceded by the symbol ¬ that
indicates classical negation. If there is no literal l in the head of a rule, then
the rule is referred as a constraint. An answer set program is composed of
a set of AnsProlog rules, and the interpretation of an answer set program is
called answer sets. Readers can refer to Baral (2003) for more details on the
syntax and semantics of AnsProlog.

3.3.1 Formation of logic facts To utilize the extracted interactions for
reasoning purpose, each of them has to be first translated into their
logic forms. The extracted interactions in the form of triplets <actor1,
relation, actor2> as in Table 3 are represented as extr(actor1,
relation, actor2). For instance, the triplet <protein, metabolizes,
drug> is represented as extr(Protein, metabolizes, Drug),
where Enzyme and Drug are variables for the domain enzyme and drug.
For instance, the triplet <cyp3a4, metabolizes, lovastatin> is represented
by the logic facts extr(cyp3a4, metabolizes, lovastatin),
protein(cyp3a4) and drug(lovastatin).

3.3.2 Data cleaning In the extraction phase, drug-protein interactions
such as <protein, metabolizes, drug> and protein–protein interactions such

as <protein, regulates, protein> are extracted from the parse tree database.
However, it is necessary to include an extra step to ensure that these extracted
interactions correspond to the properties of drug metabolism before they
can be applied to derive DDIs. For instance, the proteins involved in the
triplet <protein, metabolizes, drug> have to be enzymes in order for the
drug to be metabolized. Therefore, the extracted relations have to be refined
into <enzyme, metabolizes, drug> for the triplet <protein, metabolizes,
drug>. Likewise, the triplet <protein, regulates, protein> has to be refined
into <transcription factor, regulates, enzyme>. Such refinement for the
extracted interactions requires a process called ‘data cleaning’. This includes
identifying the protein families for the proteins involved in the extracted
interactions and extracting negative interactions. Such information is utilized
to refine the interactions by means of AnsProlog rules. We first describe the
details of identifying protein families using UniProt, the GO and Entrez Gene
summary.

A protein p is considered as an ‘enzyme’ if either one of the following
holds (in the given order of precedence):

• p belongs to the CYP, UGT or SULT gene families, i.e. official gene
symbol starts with CYP, UGT or SULT;

• p is annotated under UniProt as having keywords ‘hydrolase’, ‘ligase’,
‘lyase’ or ‘transferase’;

• p is annotated under the GO term ‘metabolic process’ (GO: 0008152);

• the Entrez Gene summary (provided by RefSeq) of p contains the
key phrase ‘drug metabolism’ or the regular expression ‘enzyme*’ or
‘catalyz*’.

A protein p is considered as a ‘transcription factor’ if (in the given order
of precedence):

• p is annotated under UniProt as having keywords ‘transcription’,
‘transcription-regulator’ or ‘activator’;

• p is annotated under the GO term ‘transcription factor activity’ (GO:
0003700);

• the Entrez Gene summary of p contains the keyword ‘transcription
factor’.

Enzymes and transcription factors are represented in the form
of enzyme(Protein) and transcription_factor(Protein),
where Protein is a variable for the domain ‘protein’. For instance, enzyme
CYP3A4 is represented as enzyme(cyp3a4) and protein(cyp3a4).

In the extraction of interactions, there are times that negative interactions
are extracted. Consider the following sample sentence:

S3. … oxybutynin is predominantly metabolized by CYP3A4 and
CYP3A5 but not by CYP2D6 (PMID: 9584328).

By considering the negation words such as ‘not’ in the extraction
queries, the negative interaction <CYP2D6, not_metabolizes, oxybutynin>

is extracted.
With the identification of protein families and extraction of negative

interactions, we perform data cleaning on the extracted interactions by using
AnsProlog logic rules to refine the interactions. We used the following
AnsProlog rule to illustrate the idea of data cleaning.

metabolized(D, P) :- extr(P, metabolizes, D),
drug (D), enzyme(P),
not extr(P, not_metabolizes, D).

The above AnsProlog logic rule refines the <protein, metabolizes, drug>

relations in the form of extr(P, metabolizes, D) into <enzyme,
metabolizes, drug> in the form of metabolized(D, P), provided that D
is a drug and P is known to be an enzyme, which are represented asdrug(D)
and enzyme(P). Another condition for such refinement is that it is not
known to have a negative interaction for this particular interaction among
the extracted interactions. This condition is enforced by not extr(P,
not_metabolizes, D). Similar data cleaning logic rules are written to
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achieve the logic facts from their corresponding extracted interactions, as
illustrated in Table 3.

Using sentence S3 as an example, the logic rule turns the extracted
interactions extr(cyp3a4, metabolizes, oxybutynin) and
extr(cyp3a5, metabolizes, oxybutynin) into the logic facts
metabolized(oxybutynin, cyp3a4), metabolized(oxybu-
tynin, cyp3a5), provided that logic facts enzyme(cyp3a4) and
enzyme(cyp3a5) are stored in the database of extracted results.
On the other hand, extr(cyp2d6, metabolizes, oxybutynin)
cannot be turned into metabolized(oxybutynin, cyp2d6) if
extr(cyp2d6, not_metabolizes, oxybutynin) is among the
interactions.

3.3.3 Representing knowledge on drug metabolism We encode the rules
that represent various properties of drug metabolism and how the properties
lead to DDIs. Rule 1 encodes the effect of the activity of a protein through
the induction by a drug. On the other hand, Rule 2 describes the effect of
the activity of a protein that is regulated by a transcription factor, which in
turns induced by a drug. Rules 1 and 2 describe the necessary steps involved
in direct and indirect DDIs. The decrease of the effects of a drug by another
drug is determined by Rule 3. Similar rules are written for changes in the
activity of proteins due to inhibition by a drug.

• Rule 1: Changes in the activity of protein P due to induction by a
drug Dr

affects(Dr, level(P, high)) :-
induces(Dr, P), drug(Dr), protein(P).

• Rule 2: Changes in the activity of protein P due to induction of the
regulating transcription factor TF by drug Dr

affects(Dr, level(P, high)) :-
affects(Dr, level(TF, high)), protein(P),
regulates(TF, P), drug(Dr),
transcription_factor(TF).

• Rule 3: Drug interactions through induction of enzymes

result(Dr1, decreases, Dr2) :-
affects(Dr1, level(P, high)), enzyme(P),
metabolized(Dr2, P), drug(Dr1), drug(Dr2).

3.3.4 Reasoning Given a set of drugs D of interest, the goal is to find
interactions among D. This involves the extraction of various facts as listed
in Table 1. These facts are represented in the form of logic facts as described
in Section 3.3.1. The reasoning phase involves the use of data cleaning as
described in Section 3.3.2 together with the rules describing the properties
involved in drug metabolism as described in Section 3.3.3. An AnsProlog
solver called clingo (Gebser et al., 2009) is then utilized to compute the
answer sets that infer the DDIs among D.

4 SCENARIOS
We illustrate our system with scenarios for drug administration and
drug development.

4.1 Drug administration
We illustrate how our system can be used to oversee drug
administration. Suppose a patient is about to be prescribed with
two drugs phenytoin and gefitinib, a medical doctor or pharmacist
needs to know if these two drugs can trigger any interactions.

Among the extracted interactions, the triplets <phenytoin,
induces, cyp3a4> and <cyp3a4, metabolizes, gefitinib> are
supported by the following evidences.

• Phenytoin induces CYP2C and CYP3A4 isoforms, but not
CYP2E1 (PMID: 10678302).

• Gefitinib is extensively metabolized in the liver by cytochrome
P450 3A4 enzyme (PMID: 14977817).

With the fact enzyme(cyp3a4), the data cleaning rule is
triggered and produces the following logic facts:

• metabolized(gefitinib, cyp3a4)

• induces(phenytoin, cyp3a4)

The logic fact induces(phenytoin, cyp3a4) triggers one
of the logic rules about the effects of the expression level of an
enzyme. This results in the following logic fact.

• affects(phenytoin, level(cyp3a4, high))

The logic facts in turn trigger one of the drug interaction rules,
and the system indicates that the drug phenytoin decreases the effect
of gefitinib with the following logic fact.

• result(phenytoin, decreases, gefitinib)

The resulting logic fact prompts the medical doctor or pharmacist
that phenytoin and gefitinib can have potential drug interaction. It
is interesting to note that this phenytoin–gefitinib interaction is also
annotated in DrugBank, but our approach provides the scientific
evidences to explain the mechanism behind the interaction.

4.2 Drug development
Identifying potential drug interactions with the new chemical
compound in hand is critical in the drug development process.
Suppose we know that the new chemical compound we are
investigating is known to be an inhibitor for an enzyme. With this
information, we want to identify what known drugs can be affected
by this new compound. Suppose our new compound (denoted as
new_drug) is a CYP3A4 inhibitor, we represent such information
in the form of logic facts as the input to our system.

• inhibits(new_drug, cyp3a4)

This fact triggers one of the logic rules about the effects of
the enzyme activity. In this case, the expression level of CYP3A4
becomes low due to the influence of the CYP3A4 inhibitor. This
results in the following logic fact.

• affects(new_drug, level(cyp3a4, low))

Among the extracted interactions, terfenadine is found to be one
of the drugs that are metabolized extensively by CYP3A4. This
leads to the logic fact extr(terfenadine, metabolized,
cyp3a4). Together with the fact enzyme(cyp3a4) and no other
logic facts in the database of extracted interactions indicates that
terfernadine is not metabolized by CYP3A4, these trigger one of the
data cleaning rules and the following logic fact is formed.

• metabolized(terfernadine, cyp3a4)

The newly formed facts affects(new_drug,
level(cyp3a4,low)) and metabolized(terfernadine,
cyp3a4)in turn trigger one of the drug interaction rules, and the
system indicates that the new CYP3A4 inhibitor may increase the
effect of terfenadine with the following logic fact.
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Table 4. Correctness of the DDIs for the extraction of explicit DDIs,
implicit DDIs as a result of direct inhibition/induction and indirect
inhibition/induction of enzymes

Relations Correctness based on
supporting
evidences, % (n)

Overlap with
drugbank, % (n)

Explicit DDIs 77.7 (132/170) 11.8 (20/170)a

Implicit direct DDIs 81.3 (256/315) 2.60 (108/4154)a

Implicit indirect DDIs 100 (30/30) 1.5 (15/979)a

aRepresent the number of interactions that match with ‘DrugBank gold standard’. The
unmatched interactions are verified manually based on their supporting evidences in
the second column.

• result(new_drug, increases, terfenadine)

This scenario shows that our system can not only alert
the investigators for DDIs, but also the mechanism behind
the interactions so that the clinical trials can be adjusted
accordingly.

5 RESULTS
We used DrugBank to assess the performance of our approach in
finding DDIs. We selected 265 drugs and found the interactions
among these drugs. This results in a gold standard of 494 DDIs with
description stating that one drug increases or decreases the effect of
another drug. We call these set of drug interactions as the ‘DrugBank
gold standard’.

We first evaluated the performance of the extraction of explicit
DDIs. The results are summarized in Table 4. An explicit drug
interaction is extracted from a single sentence in a Medline abstract.
Our extraction queries for explicit drug interactions are specific to
the 265 drugs that we selected as the DrugBank gold standard, and
the extraction queries result in 170 drug interactions. We found that
132 of the extracted drug interactions (i.e. a precision of 77.7%)
are indeed correct based on their originating sentences, and 20 of
them (i.e. an overlap of 11.8%) are annotated in the DrugBank gold
standard. The results indicate that there is a potentially large number
of published drug interactions that are not captured by DrugBank.
On the other hand, the small overlap between our extracted drug
interactions and the interactions in the DrugBank gold standard
also indicates that there is room for improvement in extracting drug
interactions.

With the extraction of implicit DDIs, we expect to achieve a higher
number of inferred interactions and overlap with the DrugBank gold
standard. The extraction of implicit DDIs is divided into two parts:
(i) direct inhibition or induction of enzymes; (ii) indirect inhibition
or induction of enzymes. The extraction of implicit DDIs of (i)
and (ii) from 17 million Medline abstracts result in 4154 and 979
interactions. Among the extracted interactions in (i), 108 interactions
coincide with the interactions in the DrugBank gold standard. For the
ones that are not found in the DrugBank gold standard, we manually
evaluated the interactions based on their supporting evidences. In
particular, we evaluated 315 interactions that are supported by at
least two evidences for <drug, induces/inhibits, protein> relations
and four evidences for <protein, metabolizes, drug> relations.
We realized that 256 or 81.3% of the interactions are extracted
with the correct evidences to support the DDIs. Among the 256

Table 5. Performance of the extracted interactions from 13K Medline
abstracts with number of true positives (denoted as number of TP) and false
negatives (denoted as number of FN)

Relations Precision
(number of
TP), % (n)

Recall
(number of
FN), % (n)

F-measure, %

<protein, metabolizes, drug> 93.1 (54) 26.7 (148) 41.5
<drug, induces, protein> 61.8 (42) 30.7 (95) 41.0
<drug, inhibits, protein> 58.6 (99) 48.5 (105) 53.1
<protein, regulates, protein> 68.7 (46) 100.0 (0) 81.4
negation 84.4 (38) – –

correct interactions, CYP3A4 is involved in 171 of them, which is
reasonable as CYP3A4 is known to be involved in the metabolism
of a majority of drugs. Most of the falsely inferred DDIs are
due to the extraction of incorrect <drug, induces, protein> and
<drug, inhibits, protein> relations. On the other hand, we selected
interactions for (ii) that are supported by at least two evidences
for each of the underlying relations. We realized that these 30
interactions are supported by correct evidences, and 21 of the
interactions involved the change of effect of CYP3A4 substrates
through the induction of CAR (NR1I3) and the regulation of
CYP3A4 by CAR.

As our approach in finding DDIs heavily relies on the extraction
of relevant interactions, we first evaluated the correctness of the
interactions extracted from 13K Medline abstracts. We first created
a gold standard for each of the interaction specified in Table 1.
As an example, in the case of creating the gold standard for
<protein, metabolizes, drug> relations, we extracted sentences with
co-occurrences of drug and gene mentions together with one of the
keywords ‘metabolized’, ‘metabolize’, ‘metabolized’, ‘metabolize’,
‘substrate’ in the individual sentences. We then examined which
of the sentences indeed indicate <protein, metabolizes, drug>

relations. This results in 372 evidence sentences that we use as a gold
standard for evaluating <protein, metabolizes, drug> relations. It
is important to note that in the creation of gold standard, we omit
possible cross-sentence relations. In addition, we relied on the named
entity recognizers to identify sentences with co-occurrences of drug
and gene mentions.

The extraction performance for each individual interactions are
illustrated in Table 5. In the case of <protein, regulates, protein>

relations, our strategy is to extract co-occurrences of CYP enzymes
and one of the transcription factors known for regulating xenobiotic
enzymes (i.e. AhR, NR1I2, NR1I3). This restricted co-occurrence
query allows us to find high-quality relations for <transcription
factors, regulates, enzymes>. The negation queries are for the
extraction of negative relations for the various interactions listed
in Table 1. Keywords such as ‘no’, ‘not’ are included in these
queries. We only evaluated the precision of the extraction of negative
interactions by analyzing each of the extracted relation and its
supporting evidence without creating a gold standard.

6 DISCUSSION
We described a novel approach in combining text mining and
automated reasoning techniques to find DDIs from Medline
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abstracts. We demonstrated that our extraction approach has the
distinct capability of performing generic extraction. Unlike EDGAR
(Rindflesch et al., 2000) and Pharmspresso (Garten and Altman,
2009) that are capable of extracting a variety of drug-gene
relationships, our approach utilizes a variety of extracted drug-gene
and protein–protein interactions to infer DDIs that are not explicitly
stated in text through automated reasoning. By representing the
biological phenomenon of DDIs in a logical representation, our work
relies on automated reasoning to infer DDIs rather than the heuristic
network approaches used in Garten et al. (2010) and Masataka
(2008) to infer drug–gene relationships and DDIs. Our results show
that our approach can identify promising DDIs and can be treated as
a complement to existing databases such as DrugBank but with the
addition of scientific evidences to support our inferred interactions.
The correctness of the extracted DDIs shows that our approach is
readily applicable to real-world scenarios.

In this article, we focused on the enzyme-based DDIs. We will
expand our approach to include transporter-based DDIs. Other
biological factors can influence the likelihood of DDIs. This includes
the degree of metabolizing enzymes on drugs, such as whether a
drug is strongly or weakly metabolized by an enzyme. In addition,
genetic information should also be considered in identifying DDIs.
Improving our extraction for various interactions such as expanding
the choices of keywords, can likely increase the percentage of
overlap with the interactions annotated in DrugBank.
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