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Abstract

Background: Diversity among phenology-related genes is predicted to be a contributing factor in local adaptations
seen in widely distributed plant species that grow in climatically variable geographic areas, such as forest trees.
European beech (Fagus sylvatica L.) is widespread, and is one of the most important broadleaved tree species in
Europe; however, its potential for adaptation to climate change is a matter of uncertainty, and little is known about
the molecular basis of climate change-relevant traits like bud burst.

Results: We explored single nucleotide polymorphisms (SNP) at candidate genes related to bud burst in beech
individuals sampled across 47 populations from Europe. SNP diversity was monitored for 380 candidate genes using
a sequence capture approach, providing 2909 unlinked SNP loci. We used two complementary analytical methods
to find loci significantly associated with geographic variables, climatic variables (expressed as principal components),
or phenotypic variables (spring and autumn phenology, height, survival). Redundancy analysis (RDA) was used to
detect candidate markers across two spatial scales (entire study area and within subregions). We revealed 201
candidate SNPs at the broadest scale, 53.2% of which were associated with phenotypic variables. Additive polygenic
scores, which provide a measure of the cumulative signal across significant candidate SNPs, were correlated with a
climate variable (first principal component, PC1) related to temperature and precipitation availability, and spring
phenology. However, different genotype-environment associations were identified within Southeastern Europe as
compared to the entire geographic range of European beech.

Conclusions: Environmental conditions play important roles as drivers of genetic diversity of phenology-related
genes that could influence local adaptation in European beech. Selection in beech favors genotypes with earlier
bud burst under warmer and wetter habitats within its range; however, selection pressures may differ across spatial
scales.
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Background

Local adaptation is one of the most important evolution-
ary mechanisms allowing species to thrive across hetero-
geneous environments [1]. Populations are said to be
locally adapted when individuals from resident popula-
tions have higher fitness than individuals of the same
species introduced from other habitats [2]. Knowledge
about the extent of local adaptation and its underlying
mechanisms in natural populations provides the basis
for predicting responses to environmental fluctuations,
including those associated with global climate change.

The genetic underpinnings of local adaptation, though,
are poorly understood. Local adaptation would be ex-
pected to change allelic frequencies of genes affecting
fitness in particular environments. However, most
phenotypic traits related to adaptation are typically
quantitative polygenic traits, which complicates the iden-
tification of genetic polymorphisms linked to adaptation
[3, 4]. Local adaptation has been considered an import-
ant factor in maintaining genetic variation within
species, but environmental heterogeneity also favors the
evolution of adaptive phenotypic plasticity [1]. However,
because phenotypic plasticity does not necessarily have
to be adaptive [5], its interplay with adaptive traits
confounds the ability to find genetic determinants of
adaptation.

Local adaptation is best studied in long-lived sessile or-
ganisms with large effective population sizes spanning
large, variable environments [6], such as forest trees [7]. In
plants generally, the extent of any local adaptation can be
assessed based on reciprocal common-garden experi-
ments; however, phenotypic and genetic differentiation
along native environmental gradients can also provide
some evidence for local adaptation [3, 8]. Studying local
adaptation in forest trees has been of interest for re-
searchers for a long time, which is emphasized in many
common-garden experiments established for various tree
species, motivated mainly by the management of forest re-
productive material and tree improvement programs.
Such experimental sites are nowadays excellent platforms
for studying local adaptation [9], allowing for the explor-
ation of complex relationships between phenotype, geno-
type, and environment at the genomic level [4, 10].
Common-garden trials have the potential to provide the
links between GPA (genotype-phenotype association) and
GEA (genotype-environment association) studies [11],
since the genomic diversity of populations can be associ-
ated to environmental variables existing at the place of the
origin of each population. However, at the same time, this
genomic diversity can be associated with phenotypes con-
sidered as a population response to environmental condi-
tions existing at an experimental site.

Phenology of tree development is one example of a set
of traits thought to be strongly indicative of adaptive
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fitness. Local population adaptations have been de-
scribed among tree species for the timing of bud burst
in relation to local climatic conditions varying along lati-
tude or altitude [12—-14]. As an example of a connection
to fitness, bud burst phenology is impacted by the length
of the growing season, and it has consequences for bio-
mass production. Earlier bud burst and later bud set ex-
tend the growing season and increase net photosynthetic
productivity, thus increasing an individual’s competitive
ability [14, 15]. On the other hand, later bud burst and
earlier bud set improve cold resistance [16]. Bud burst
timing also regulates biological interactions between
trees and associated species (pest insects, pathogens,
mycorrhizal fungi), and phenological changes usually re-
sult in different synchrony with insect herbivores and
fungal pathogens, which also leads to consequences for
overall fitness [17, 18].

Modifications of the phenology of flowering, bud burst,
or bud set have been observed in relation to global climate
changes [19, 20]; however, the response of any individual
tree species is hard to predict. While some authors suggest
that a warming climate may promote earlier bud flashing
with an associated extension to the growing season [15],
others highlight the importance of photoperiod and of
chilling requirements in some species, along with prob-
lems related to increased aridity of the environment [21].
The chance for late frost damage may increase due to the
overall shift in bud burst dates [15, 22]. Nevertheless, ob-
servations of high phenological plasticity in forest trees
suggests the potential for rapid population responses to
variations in temperature [23-25].

The genetic background of bud burst phenology has
been investigated in a number of tree species [26, 27];
see also review in Howe et al. [16]. In general, bud burst
was found to be under strong genetic control with high
heritability [16], increasing the prospects of identifying
genomic regions controlling this trait. However, in oak
(Quercus robur), it has been estimated that bud burst
phenology, being considered a typical quantitative trait,
is controlled by at least 12 unique genes or chromo-
somal regions [28]. If this complexity is representative of
other species, it will mean that discoveries of genomic
backgrounds to phenology will be complex. Indeed,
functional genomics of phenology may actually be far
more complicated than even this, as different genomic
regions might play different roles in different popula-
tions subjected to different environmental pressures [25,
26, 29], which may be further confounded by possible
epigenetic effects [30].

Next-generation sequencing approaches have provided
a new handle on the genetic basis of such complex adap-
tive traits at whole-population levels [31-33]. Among
these traits, phenology appears to be of primary interest
in the literature. Attempts have been made to identify
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candidate genes responsible for bud burst phenology in
the woody plants Vitis [34] and Ribes [35], but one of
the first studies was performed on the tree species Quer-
cus [36]. Derory et al. [36] identified approximately 190
genes down- or up-regulated during bud burst in sessile
oak, which were therefore annotated as potential sources
of signatures of selection. In a subsequent study, nine
candidate genes were assessed for bud burst timing asso-
ciation [37]. Patterns of diversity among natural and seg-
regating populations were, however, variable, making
final inferences on the significance of respective genes
difficult.

Other approaches have also been tested. Although gen-
omic scans became attractive tools for studying genomic
diversity in trees [38, 39], their applicability to the study of
genomic signatures of adaptation has been debatable [8,
40, 41]. Instead, SNP arrays, exome, or whole-genome se-
quencing have been more suitable tools with which to
conduct detailed identification [7, 42, 43]. Finally, several
authors pointed out the necessity of studying intergenic
allelic associations in candidate genes across a wide range
of environments to test intergenic disequilibria and multi-
locus differentiation measures [29, 37].

Among the typical model tree species used for such
studies, European beech (Fagus sylvatica L.) is wide-
spread, and is one of the most important broadleaved
trees in Europe. It has high importance not only eco-
nomically, but also ecologically, being the dominant tree
species in many forest ecosystems [44, 45]. As a late-
successional tree species, F. sylvatica might be consid-
ered the perfect model species for studying local adapta-
tion because of its importance as a component in its
metapopulation dynamics.

The adaptation potential of beech to climate change
has been widely discussed. While beech is considered a
sensitive tree species in the context of predicted environ-
mental changes, some authors conclude that beech will
not lose its importance and adaptedness in the future
[46-51]. However, changes in marginal beech popula-
tions have already been observed [52, 53], and different
modeling studies predict range shifts for this species in
the context of global warming [54, 55]. Therefore, a dee-
per understanding of its potential for adaptation to
changing environmental conditions is required.

Beech bud burst phenology has been investigated thor-
oughly, and its adaptive importance is well-documented
[56—61]. Recently, multiple SNP markers have been de-
scribed in climate-related candidate genes in European
beech or other Fagaceae [36, 62—67]. These SNPs have
been successfully used to detect genetic variation show-
ing signatures of selection in beech [68-70].

Detecting such signatures of selection is not a trivial
task. In the last decade, several analytical methods have
been developed to detect putative adaptive loci from
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genomic datasets, making it possible to assess adaptive
genetic variation in natural populations [71-73].
Genotype-environment association analyses (GEA) are
particularly promising for detecting these loci [72]. Un-
like differentiation outlier methods, which identify loci
with strong allele frequency differences among popula-
tions, GEA approaches directly associate allele frequen-
cies and environmental conditions not only to detect
genetic variants putatively under selection, but also to
characterize the environmental conditions contributing
to adaptive genetic variation [10, 71, 72, 74]. GEAs are
especially promising because they are better able to de-
tect relatively weak signals of selection compared to
methods based on population differentiation [75-77]. In
particular, multivariate GEA methods (which analyze
many loci and environmental predictors simultaneously)
identify how groups of loci covary in response to envir-
onmental predictors, and may reduce the need for mul-
tiple testing while potentially identifying polygenic
selection [72, 78]. This is important because many adap-
tive processes are expected to result in weak multilocus
signatures due to selection on standing genetic variation
which has not yet led to allele fixation [3, 79, 80].

Environmental association studies such as these have
been conducted in a variety of organisms, including for-
est trees. For instance, associations of genetic variation
with temperature and precipitation have been detected
in Alnus glutinosa [81], Populus balsamifera [82], Popu-
lus trichocarpa [83)], Pseudotsuga menziesii [84], Quercus
lobata [85), Quercus rugosa [86], Picea abies [87], and
Pinus taeda [33]. More recently, SNPs in candidate
genes that may be under climate selection have been
found in European beech [63, 66—69, 88], and associa-
tions between these SNPs and environmental variables
such as temperature, precipitation, and drought have
been determined.

Less is known about the precise molecular basis of
phenology-related traits; however, genomic resources fa-
cilitating such research in beech have been growing only
recently. For instance, Lesur et al. [89] revealed a large
set of genes involved in dormancy regulation in beech,
and Mishra et al. [90] developed the reference genome
for European beech, allowing the identification of SNP
polymorphisms within well-defined gene models. Lala-
giie et al. [63] and Miiller et al. [65, 91] also analyzed a
selection of candidate genes related to bud burst in
European beech. While these studies are valuable, the
field is nascent, and studies directly investigating rela-
tionships between genetic markers and phenology in
European beech are scarce.

Here, we use a candidate gene approach to detect
genotype-environment (GEA) and genotype-phenotype
(GPA) associations to look further for genomic signa-
tures of local adaptation of European beech to climate
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heterogeneity across Europe. Unlike genome-wide stud-
ies, candidate gene techniques focus on genes of a priori
interest, and therefore are expected to enrich for the
number of significant associations (e.g. [92]).

We focused on candidate genes differentially
expressed during bud burst in European beech [89].
Based on the sequence capture approach, we gener-
ated a SNP dataset to: (i) detect a spatial pattern of
genetic variation (geographic variables); (ii) identify
SNPs associated with climatic variables existing at the
original locations of populations; and (iii) find rela-
tionships between genetic polymorphisms and the
subset of adaptive traits (such as spring and autumn
phenology scores, survival rate, and tree height) mea-
sured at the location of a common-garden trial. We
hypothesize that, given the variable pattern of climatic
variables across the species’ range, the strength of se-
lection will be variable in different parts of the spe-
cies distribution. It is expected that, because we
selected candidate genes related in some way to bud
dormancy and its release, several identified SNPs will
demonstrate associations to climate and phenology-
related phenotypic variables.
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Results

Environmental variables

Principal component analysis revealed that much of the
variation in environmental variables observed at the lo-
cations of sampled populations (Fig. 1) could be ex-
plained by the first three principal components (PC1,
PC2, and PC3), which explained 85.21% of the total vari-
ance of the environmental variables data and were
chosen as climate variables in further analyses. These
climate indices describe the main spatial features of the
climate in Europe (Table S3). In PC1 (43.05% of the
variance), minimum temperature in the coldest month
(BIO6), mean temperature in the driest quarter (BIO9),
mean temperature in the coldest quarter (BIO11), pre-
cipitation in the driest month (BIO14), precipitation in
the driest quarter (BIO17), and precipitation in the cold-
est quarter (BIO19) were all strong positive correlates,
with loadings greater than 0.80. However, temperature
seasonality (BIO4), annual temperature range (BIO7),
and precipitation seasonality (BIO15) were the strongest
negative correlates, with loadings under - 0.80. For PC2
(26.45% of the variance), precipitation in the wettest
month (BIO13), precipitation in the wettest quarter
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(BIO16), and precipitation in the warmest quarter
(BIO18) showed loading over 0.80. In PC3 (15.71% of
variance), only mean diurnal range (BIO2) and max-
imum temperature in the warmest month (BIO5) were
highly positively correlated (r >0.80; p <0.001). The
biplot constructed by the two principal components
showing populations and 19 environmental factors (as
vectors) is presented in Fig. 2. The first principal compo-
nent (PC1) separated Western European from Eastern
European populations, which were characterized by a
higher temperature in the coldest month (BIO6) and the
driest quarter (BIO9), and also higher rainfall in the dri-
est (BIO17) and coldest (BIO19) quarters. Along PC2,
the Southern European populations occupying habitats
that were characterized by greater rainfall in wettest
(BIO16) and warmest (BIO18) quarters were separated
from the remaining populations.

In general, the climate variables defined by PCs
were significantly related to geographic variables, as
indicated by canonical correlation analysis (Can R =
0.955; p <0.0001; Table S4). Specifically, PC1 was sig-
nificantly correlated with longitude (r=-0.908, p<
0.001), PC2 had the strongest correlation with altitude
(r=-0.720; p<0.001), and PC3 was strongly corre-
lated with latitude (r=-0.693; p<0.001) (Table S4).
The distribution of PC scores across provenance loca-
tions is presented in Figure S1. PC1 seems to repre-
sent the gradient from Atlantic to continental climate
(mostly west-east direction), while PC2 and PC3 are
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more related to environmental variables varying along
the north-south direction.

Phenotypic variables

Canonical correlation analyses, in general, indicated no
relationship between phenotypic measures and climatic
or geographic variables (Table S4). Only survival was
found to be moderately correlated with PC3 (r=0.411;
p =0.004). It should be noted that survival was also cor-
related with tree height and autumn phenology (r=
0,456; p=0,001 and r=0.343; p=0,018) (Table S4).
Based on spring (S) and autumn (A4) phenology scores
we calculated a synthetic variable (L =S - A), which is
intended to mimic the length of the growing season.
Provenances with the earliest growth in the spring and
the latest growth cessation in autumn have the highest
values of L. We found that this variable was strongly
correlated with survival (r=0.445; p=0.002), but not
with tree height (r = 0.227; p = 0.125).

Sequence capture data

An average of 5,636,543 raw sequence reads was gener-
ated per individual tree. More than 99% of reads were
mapped to the reference genome of European beech
(Mishra et al. 2018). Any sequence reads aligned with
unique positions were subjected to SNP calling across
individuals, identifying 15,742 SNPs (unfiltered). After
applying the filtering criteria, as described in Material
and methods, before LD pruning there were still 11,307
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SNPs; however, after LD pruning a total of 5970 poly-
morphic SNPs were retained and used in further
analyses.

From the initial set of 485 candidate genes used in the
sequence capture experiment, and based on the refer-
ence genome [91], we identified 380 well-defined gene
models, including 277 complete and 103 partially valid
(without UTR sequences) gene models. Cumulative se-
quence length was equal to 1,014,286 bp (Table S5). The
majority of gene models were supported by existing gene
structure annotations of F. sylvatica. However, we found
some annotation errors. In some cases, different initial
contigs collapsed into the same gene model, or some ini-
tial candidate genes could not be identified in the F. syl-
vatica genome, likely due to gaps in the reference
assembly.

We used only 2909 SNPs located within, or up to 500
bp from, 380 validated gene models for further analyses.
By position relative to gene models, 2554 SNPs (87.79%)
were located within candidate genes, with an average
SNP density of 2.5 SNPs/kbp (or one SNP per 400 bp).
355 SNPs (12.21%) were found within a distance of 500
bp from gene models. Based on gene model annotations,
1889 (64.93%) were located in exons, 1511 (51.94%) in
coding regions (CDS); 240 (8.25%) in 5" untranslated re-
gions (5" UTRs), 138 (4.74%) in in three prime untrans-
lated regions (3° UTRs), and finally 665 (22.86%) in
introns (Table 1).

The level of missing data was low because only 3 to 44
loci per individual were missing (an average of 20.39
SNPs per individual; 0.75%), and O to 4 individuals out
of 92 had a missing genotype within a locus (an average
of 0.723 individuals per locus; 0.75%). We identified only
one example of copy number variation (CNV). This was
found in gene FSB010001901 (GDSL esterase/lipase) that
was either gained (4 cases) and lost (88 cases) among
the 92 individuals.

Genetic diversity and structure

The mean genetic diversity of the 2909 SNP loci for the
whole sampe was found to be 0.29, indicating a relatively
high level of genetic diversity. An analysis of structure
revealed the most likely number of genetic clusters as

Table 1 Number and percent of 2909 SNPs located in different
genomic regions

Category No. of SNPs %
Exon 1889 64.94
CDS 1511 51.94
5'UTR 240 8.25
3'UTR 138 4.74
Intron 665 22.86
Unclassified 355 12.20
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K =3 (Figure S2), the first (K1) containing 39 individuals
(present predominantly in Southeastern Europe), the
second (K2) comprising 30 individuals (present predom-
inantly in Western Europe), and the third (K3) contain-
ing only three individuals (Figure S3). An additional 23
individuals showed a mixed ancestry, with membership
g-values lower than 70% in either of these three clusters.

The geographic distribution of clusters was non-random
(Figure S4). There was a significant correlation of individ-
ual assignment probability (g-matrix) for the K1 cluster to
longitude (r=0.27; p =0.009) and latitude (r=-0.21; p =
0.042). This was in contrast to the K2 cluster, where longi-
tude was negatively correlated (r=-0.24; p =0.022) and
correlation with latitude was not significant (r=0.17; p =
0.11). Within the K3 cluster, no significant correlations of
g-values to geographic variables were observed.

Detection of outliers using LFMM

The LEMM analysis detected a total of 111 unique SNP
loci showing significant association with one or more
variables (Table S6). The greatest number of loci (79)
was associated with phenotypic variables: spring phen-
ology (8), height (18), and survival (53). Next, 45 SNPs
appeared to be associated with geographic variables: lon-
gitude (37) and latitude (8). Finally, 36 SNP loci were as-
sociated with climate variables: PC1 (19), PC2 (12), and
PC3 (5). However, there were no significant SNPs de-
tected for altitude and autumn phenology. The highest
number of common putative adaptive loci (14) was
found for longitude and PC1, followed by height and
survival (6).

Detection of outlier loci based on redundancy analysis
The RDA with 2909 SNPs was globally significant
(ANOVA F =1.15; p =0.001) and explained about 8% of
the variance (adj. R? =0.084) (Fig. 3A). This low ex-
planatory power is not surprising because one might ex-
pect most of the SNPs in the dataset to be neutral and
not to show relationships with the explanatory variables.
Only the first two RDA axes were significant (RDAI,
p = 0.007; RDA2, p= 0.020). Therefore, we considered
the candidate loci only on the first two constrained ca-
nonical axes, which explained 18.02 and 16.57% of the
genetic variation, respectively. Based on locus scores that
were + 3 SD from the mean loadings, 94 loci were identi-
fied as outliers (Fig. 3B, Table S6). The majority of can-
didate loci (48; 51.07%) were associated with phenotypic
variables — height (21), survival (13), spring phenology
(8), and autumn phenology (6). Of the remaining candi-
date loci, 27 (28.72%) were associated with climatic vari-
ables — PC1 (12), and PC3 (15). Finally, 19 SNPs
(20.21%) were associated with a geographic variable
(altitude).
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Among the 111 unique SNP outliers detected with
LEMM, only 4 were among the 94 RDA outliers, and 7
additional ones were located within 150 bp of one of the
RDA outliers. Thus, it might be considered that about
10% of the LFMM outliers were also detected by the
RDA approach. However, when considering gene
models, among all 162 genes that contained significant
SNPs, 27 (16.7%) had SNPs identified by both LFMM
and RDA methods. Considering both analytical methods,
19, 37, and 8 loci were related to altitude, longitude, and
latitude, respectively; 65, 38, 16, and 6 loci were related
to survival, height, spring, and autumn phenology, re-
spectively; and finally 30, 12, and 20 loci were related to
PC1, PC2, and PC3 climatic variables (Table S6). In
summary, 63 loci (51 genes) were related to geographic
variables, 58 loci (49 genes) to climatic variables, and
113 loci (90 genes) to phenotypic variables (Table S6).

Interestingly, there were five genes with significant
SNPs related jointly to at least one variable from each of
the three categories (geography, climate, phenotype),
four genes related jointly to at least one geography and
one phenotype variables, and four genes related jointly
to at least one climate and phenotype variables. On the
other hand, there were 17 genes related jointly to at least

one geography and one climate variable, which is not
surprising given significant correlations among these
variables (Table S4).

Effect of geography, phenology and climate on adaptive
genetic variation

A simple RDA model of combined geographic, climatic,
and phenotypic variables (Model 1) explained a signifi-
cant portion of variation in adaptive allele frequencies
(adj. R*=0.15). Partial RDA was employed in order to
separately determine the pure variation contributed by
geographic, climatic, and phenotypic variables. Partition-
ing of the total variance indicated that the geographic
variables accounted for 9.94% (p = 0.175) of the explain-
able total variance after removing the effect due to cli-
matic and phenotypic variables (Model 2). The climate
explained 8.70% (p = 0.406) of the total variance after the
effect of geography and phenotypic traits was controlled
(Model 3). However, the partial Model 4 showed that
phenotypic variables explained 17.39% (p = 0.001) of the
total explainable genetic variance after removing vari-
ance explained by geography and climate. In addition,
63.97% of the genetic variance could be explained by the
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Table 2 Partitioning of adaptive genetic variation using simple and partial redundancy analysis

Adaptive genetic variation Interia Percentage (%) Pr (>F)
Model 1: Spatial + Climate + Phenotype 322 100 0.001
Model 2: Spatial | Climate + Phenotype 32 9.94 0.175
Model 3: Climate | Spatial + Phenotype 2.8 8.70 0406
Model 4: Phenotype | Spatial + Climate 56 17.39 0.001
Spatial n Climate n Phenotype 206 63.97 NA
joint effect of geography, phenotype and climate region. On the other hand, in the K1 cluster predomin-

(Table 2).

We also tested the relationship between individual tree
heterozygosities and geographic, climatic, and pheno-
typic variables. It appeared that the heterozygosity deter-
mined based on all 2909 SNPs was not related to any
variable. However, the individual heterozygosity based
on the subset of 201 significant SNPs appeared to be sig-
nificantly related to PC1 (r=0.3570; p = 0.0005), spring
phenology (r=0.3047; p = 0.0037), longitude (r=0.2177;
p =0.0371), and altitude (r=0.2933; p = 0.0045). Because
some of the variables are correlated, we performed a
multivariate regression analysis and found that the most
significant model (adj. R* = 0.2217; p < 0.0001) built only
with significant variables included the three geographic
variables (longitude, latitude, altitude) and spring phen-
ology. All regression coefficients were positive, indicating
that putative adaptive SNPs’ heterozygosity had a ten-
dency to increase with longitude, latitude, altitude, and
spring phenology scores (the higher score, the earlier
phenology), and thus towards extreme climates and earl-
ier bud flushing.

Additive polygenic scores

The relationships assessed between additive polygenic
scores and the corresponding geographic, climatic, and
phenotypic variables for each individual based on all 201
putative adaptive SNP loci are shown in Table 3 and Fig-
ures S4, S5. For almost all variables, the linear model
had a lower AIC score and explained a similar propor-
tion of variation as compared to a quadratic model
(Table 3). Additive polygenic scores increased signifi-
cantly with increasing latitude (p = 0.05), PC1 (p = 0.04),
spring phenology (p=0.01), and height (p =0.01), but
they decreased with decreasing longitude (p =0.05) and
PC3 (p=0.03) (Figures S4, S5). The analyses revealed
non-significant correlation of polygenic scores with alti-
tude, PC2, autumn phenology, and survival.

Candidate SNPs under selection at a finer scale

Within the K2 cluster observed predominantly in West-
ern Europe, RDA was not significant (ANOVA F =1.01;
p =0.27) and the proportion of variance explained by
the predictor variables was 10% (adjusted R* =0.10),
thus we did not investigate candidate loci within this

ant in southeastern sampled populations, the proportion
of total genetic variance explained by the predictor vari-
ables was similar (adj. R? =0.11), however the RDA was
found to be significant (ANOVA F =1.05; p =0.004)
(Fig. 4A). The proportion of total genetic variance ex-
plained by the predictor variables was lower than that
observed for the total dataset. As with the broader scale,
we considered candidate loci on the first two con-
strained axes, which explained 16.65 and 15.03% of the
genetic variance, respectively. We detected 62 candidate
loci (Fig. 4B). The majority of candidate loci (30; 48.39%)
were associated with climate variables (PC1 (28) and
PC3 (2)). Of the remaining candidate loci, 29 (46.77%)
were associated with phenotypic variables (height (21),
survival (5), spring phenology (1), and autumn phen-
ology (2)) and 3 (4.84%) were associated with altitude.
Only eight SNP loci detected over the regional scale
were also significant at a global scale. However, 13 SNPs
were located in 10 genes also identified by the global
RDA.

Functions of genes with significant SNPs

BLAST searches of candidate genes against the GenBank
non-redundant protein database (NR) and also UniProt’s
Swiss-Prot and TrEMBL protein databases revealed that

Table 3 Correlation coefficients and p-values of the relationship
between the additive polygenic scores and geographic, climate
and phenotypic variables. The correlation coefficient and p-

values were calculated following a linear and a quadratic model

Linear model Quadratic model

Variable R p-value AIC R?> p-value AIC

Longitude -020 0.05 62536 004 0.12 72872
Latitude 020 0.5 45486 004 0.16 729.34
Altitude -008 041 134186 001 065 73224
PC1 021 004 47752 009 0.01 72373
PC2 -009 039 43060 001 066 73226
PC3 -022 003 36522 005 008 727.88
Spring phenology 025 001 24649 007 004 726.52
Autumn phenology 0.11 030 26382 001 051 73173
Height 026 001 27189 0.3 0.002 720.16
Survival 017 0.10 27544 007 0.04 726.30
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most of the candidate genes in the current study had pu-
tative gene product names and general descriptions. We
assigned functions to the candidate genes with the Gene
Ontology (GO) classification, which provides a standard-
ized set of terms to describe the genes and gene prod-
ucts of different species. Details of all genes initially
selected for this study along with their product names
and related GO terms can be found in Table S2.

All significant SNPs were related back to the gene
through which they were found to assert their putative
adaptive function. In total, the 255 unique significantly
associated SNPs were distributed across 162 genes. Gene
ontology annotation assigned at least one GO term for
116 (71.6%) of these genes. The total number of GO
terms was 615. Among them, 86 genes were associated
with 255 ‘biological process’ GO terms, 88 with 175 ‘mo-
lecular function’” GO terms, and 96 with 185 ‘cell com-
ponent’ GO terms (Fig. 5). The most abundant GO slim
terms were ‘response to stimulus’, ‘binding’, and ‘mem-
brane’ in terms of biological process, molecular function,
and cellular component, respectively.

Discussion
Understanding the genomic background of adaptive
traits is particularly important for forest tree species

occupying wide and climatically variable geographic
areas [93], such as Fagus sylvatica. Until now, there have
been only a few attempts to investigate signatures of
adaptation based on SNP polymorphism in candidate
genes in beech. These attempts usually included a lim-
ited number of candidate genes and were focused on
populations originating from relatively restricted areas
[69, 91]. In this study, we applied a mixed approach
where first we selected candidate genes differentially
expressed during dormancy release, as identified by
Lesur et al. [89], and supplemented these with a list of
additional candidate genes known to be related to bud
burst in plants. Then, we designed the sequence capture
experiment to study the SNP polymorphism of these
genes across a wide range of F. sylvatica distribution and
their associations to geographic, climatic, and pheno-
typic variables.

Methodological constraints

There are two main weaknesses in our study: a relatively
small sample size (mostly one sample per population),
and the use of population-wide phenotypic measures in-
stead of exact phenotypes of individual sequenced trees
(which prevented us from performing typical GWAS
analyses). These weaknesses could have restricted our
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ability to find significant genomic associations. However,
because we used mostly one sample per population, such
averages of population characteristics are better repre-
sentations of populations than individual measures. Note
also that survival can be assessed only at a population
level. Nevertheless, despite these limitations, in combin-
ing the same univariate and multivariate approaches to
find GEA and GPA, we identified 255 unique loci related
to 162 genes exhibiting adaptive significance. These loci
came from a dataset of 2909 SNPs derived from targeted
sequencing of 380 phenology-related genes. These SNPs
exhibit associations with environmental variables hy-
pothesized to influence spatially varying selection in
European beech, or associations with phenotypic traits
(phenology, height, survival) related to adaptation. More-
over, different genotype-environment associations were
identified within the Southeastern Europe region as
compared to the entire sampled range of European
beech, implying that selection pressures may differ
across spatial scales. Our results demonstrate that, in
beech, environmental conditions play important roles as
drivers of genetic diversity of genes related to adaptive
potential, thereby facilitating local adaptation of the
species.

Genetic diversity and population structure

Genetic diversity in relevant genes is the basis for adap-
tation to environmental stress [94, 95]. In this study, we
found that genetic diversity based on 2909 SNP markers
was relatively high (He = 0.290) and comparable to other
studies on beech [65, 91, 96, 97]. The high genetic diver-
sity revealed for European beech might be a good basis
for the capacity of adaptation to environmental stress.
We observed that the individual heterozygosity esti-
mated on the basis of significant SNPs increased with
latitude, longitude, and altitude (i.e. towards extreme cli-
mates, where a future beech expansion is expected [98])
and earlier phenology, indicating the importance of rele-
vant genes in local adaptation.

The STRUCTURE analysis revealed a weak popula-
tion structure of beech in Europe. These findings are
in line with recent studies at a regional scale report-
ing low population structure for beech populations
in France [63], Germany [91, 97, 99] and Switzerland
[100]. The low genetic structure of European beech
in Central Europe may result from specific postgla-
cial recolonization patterns from one predominant
refugial area, and from high gene flow among popu-
lations [101, 102].
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Detection of loci affected by selection

Many important phenotypic traits (e.g. flowering time,
dormancy, chilling requirement, seed stratification) are
under polygenic control, where several loci exert small
effects [80, 103, 104]. Lesur et al. [89] identified in beech
a number of genes differentially expressed during dor-
mancy release, but, until now, it was unclear whether
these genes were variable, and whether their variation
was important for local adaptation.

Here, we found that 162 of these genes (among 380
tested) appeared to be significantly related to at least
one of the explanatory variables related to geography,
climate, or adaptive phenotypic traits. An attempt to re-
late the phenology-related genes to geographic, climatic,
and a subset of adaptive traits seems reasonable because,
in beech, phenology (in a broad sense) varies widely
along geographic and climate clines [105].

Among climate variables, the largest number of outlier
loci (30 SNPs) was related to the first principal compo-
nent (PC1). Our results suggest that the first principal
component of the PCA is an important predictor of gen-
etic variation at candidate loci, and thus may be a poten-
tial driver of spatially variable selection for European
beech. Indeed, this PC accounted for 43.05% of the vari-
ance among the 19 bioclimatic variables. Analysis of cor-
relations between PC1 and bioclimatic variables (Table
S3) suggests that the genes containing SNPs exhibiting
strong associations with PC1 may therefore be under se-
lection from temperature and water availability limita-
tions. However, since PC1 was significantly correlated
with several bioclimatic variables, it is difficult to ascer-
tain exclusively the exact agent of selection responsible
for the patterns observed in this study.

The timing of bud burst in populations of temperate
trees is determined mainly by temperature and genetics
[106-110]. It is possible that temperature may not be
the only direct causative agent of selection, but instead,
adaptation may be directly attributable to other variables
that are correlated with temperature, such as water
availability.

Another strategy to find genomic signatures of selection
is to test for associations between genotypes and traits
based on potentially differentiated populations growing in
a common environment, as in common garden tests [11].
Such genotype—phenotype association analyses have the
advantage of establishing more direct links between genes
and traits that are potentially under selection [111]. In this
study, in total 113 unique outliers were significantly asso-
ciated with adaptive traits of European beech (autumn
phenology, spring phenology, height, and survival), which
explained 17.4% of the total outlier genetic variance after
accounting for spatial and climate effects in a conditioned
RDA. However, 16 SNPs were related directly to spring
phenology. This number is higher than in the results of
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Miller and coauthors [91, 97], who reported only a few
SNPs with significant association with bud burst in
Germany. However, this may suggest significant differ-
ences in bud burst timing for the different populations in
the whole natural range of European beech. This finding
is in accordance with several other studies that revealed
different bud burst timings for different beech popula-
tions/provenances [58, 60].

Additive effect of outliers on environmental and
phenotypic correlations

To determine the extent to which individual outlier loci
collectively mirror environmental variation across the
European beech distribution range, we used a multilocus
approach based on additive polygenic scores for pheno-
typic, geographic, and climate variables [112]. The strong
positive correlation observed between individual poly-
genic scores calculated across all significant candidate
loci and the first principal component is consistent with
spatially varying selection across temperature and pre-
cipitation gradients, where different alleles are main-
tained in different environments. However, the quadratic
model indicated optimum values of PC1 =~ 2 maximizing
additive polygenic scores (Figure S6), implying that the
climatically suitable habitat for European beech is the
area of Europe with higher temperature and precipita-
tion (mostly across the area of Germany, Figure S1).

Genotypic variation at outlier loci detected in candi-
date genes should be compared with phenotypic data
to establish associations between genotype, phenotype
and fitness. The correlation between individual poly-
genic score and bud burst phenology appeared to be
significant for both linear and quadratic models
(Table 2). However, the phenotypic variation ex-
plained by significant SNPs associated with bud burst
was low (linear model R*=6%; quadratic model R?=
7%) but comparable to the results of other studies
analyzing different traits and tree species [84, 113,
114]. Noticeably, additive polygenic scores generally
increased with phenology scores, favoring individuals
with earlier bud burst (Figure S5, S6).

The bud burst timing in deciduous trees has important
fitness implications [23]. In this study, a positive correl-
ation between individual polygenic score and bud burst
phenology suggests that selection favors genotypes with
earlier bud burst. Our results indicate that the warming
climate in Europe might advantage northern-origin ge-
notypes, which is further supported by a positive correl-
ation between individual polygenic scores and latitude. It
well corresponds with the predictions of Saltre et al.
[98], i.e. that the climatically suitable habitat for Euro-
pean beech will shift north-eastward because the ex-
pected increase of temperature and precipitation at the
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range’s northern margins will increase survival and fruit
maturation success.

Differentiation processes in European beech at regional
scale

Within the K1 genetic cluster, predominant in south-
eastern populations, PC1 was the most strongly associ-
ated predictor of genetic variation at candidate loci,
given both the number of candidate loci associated with
climate predictors (PC1, PC2, PC3) and the strength of
correlations. On the other hand, 45.8% of outliers at the
regional scale were related to phenotypic variables. How-
ever, there was a lack of correspondence between the list
of outlier SNPs at the regional and the broader scale. If
taken as true positives, the genotype-environmental as-
sociations presented here likely represent loci affecting
phenotypic traits to different degrees in different cli-
matic conditions.

European beech can be considered as a late-flushing
species growing under warm or mild climates, but not
necessarily when exposed to colder climates within its
range [59, 115]. This can be attributed to the known ef-
fects of winter chilling temperatures on the ability to
bud burst in spring, where an increased duration of
chilling temperatures reduces the thermal requirement
for bud break [116-119]. As our beech samples related
to K1 (predominantly southeastern populations) came
from a different climate, we could then hypothesize that
the lower number of genes involved in phenology com-
pared to Europe as a whole may be explained by the de-
layed bud burst observed in beech [120]. However, a
limited number of studies exist on the possible effect of
water availability on bud burst timing of temperate for-
est trees [121, 122]. Both factors could potentially lead
to adaptive divergence in phenology to cope with global
warming conditions, and should be investigated further.
The strong effect of PC1 (in terms of both the number
of SNPs as well as the significance of correlations with
additive polygenic scores) indicates that an environmen-
tal gradient affecting the selection of phenology-related
genes lies across the western-eastern direction.

Physiological importance of the genes under selection
A number of candidate genes identified as significant in
this study were already investigated in earlier works on
European beech. These include: aldehyde dehydrogenase
[62]; alcohol dehydrogenase [63]; protein phosphatase 2c
[63, 65, 68]; chlorophyll a/b-binding protein [63, 70]; heat
shock protein [63, 68, 69]; short-chain dehydrogenase re-
ductase; 3-ketoacyl-CoA synthase 11; and dehydration-
responsive element-binding protein 1b [68].

A detailed discussion of all genes found to be signifi-
cantly associated to climate, geography, or phenotype
variables is beyond the scope of this paper. However, we
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focused on a subset of genes significantly related to
spring phenology. The monitoring of bud burst extended
from the dormant bud stage (1) to the stage of leaves be-
ing stretched, smooth, and shiny (7). Therefore, the
‘bud-burst score’, as presented in this study, should be
considered a complex phenotypic trait. Potential roles of
specific genes controlling stages 1 and 2 (i.e. the dor-
mant and the swelling bud) are related to release from
ecodormancy. Conversely, genes preferentially expressed
at the end of bud burst should be considered as candi-
date genes for the stages of leaf development and tissue
elongation rather than for bud burst.

Cell defense and rescue-associated genes are expressed
during the dormancy stage and at the onset of bud burst
[36, 123-126]. This is confirmed in our study by func-
tional analysis of genes with significant SNPs, where the
most abundant GO slim term was ‘response to stimulus’,
in terms of biological process (Fig. 5). Many of these
genes encode proteins associated with detoxification,
cold/drought hardiness, and pathogenesis, and were re-
ported to be induced during dormancy in Quercus pet-
raea [36] and Populus deltoides [127]. Growth inhibition
occurs at the dormancy stage [128], as exemplified by
the association between a gene encoding the protein
TIFY9 and spring phenology, and also altitude. After
dormancy release, buds remain cold-acclimated until a
period of warm temperature results in deacclimation
and bud break [129]. Therefore, pathogen-resistant pro-
teins such us NDR1, GLOX, and phosphoribulokinase
probably have antifreeze activity [130]. In addition, we
found significant associations with genes encoding dehy-
drin (Dehydrin COR47), heat-shock proteins (22.0 kDa
class IV heat shock protein, 18.1 kDa class I heat shock
protein, Stromal 70kDa heat shock-related protein,
chloroplastic), heat stress transcription factor C-1
(HSFC1), and also 10kDa chaperonin (mitochondrial)
which are all related to phenological protection against
desiccation and temperature stresses through the accu-
mulation of dehydrins and heat-shock proteins at the
onset of flushing.

We found a significant association between UDP-
glycosyltransferase 83A1 and phenotypic and climatic
variables. The UDP-G gene plays a role in carbohydrate
metabolism, and was already reported to be related to
bud burst, drought, and soil clay content [64, 89, 91]. It
is also well-known that water stress enhances the pro-
duction of reactive oxygen species in plants and in-
creases susceptibility to pathogens [131]. On the one
hand, oxidative stress, counteracted by the accumulation
of dehydrins, heat shock proteins or sugars could con-
tribute to the protection of cells against oxidation [132].
On the other hand, NDR, GLOX, and phosphoribuloki-
nase genes may also contribute to defense against
pathogens.
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Genes associated with the gene ontology (GO) terms
‘regulation of growth’ and ‘regulation of unidimensional
cell growth’ such as HD16 (Casein kinase 1-like protein
HD16) and CLASP (CLIP-associated protein), respect-
ively, may be related to the resumption of mitotic activ-
ity in meristematic cells. Indeed, it is well-known that
bud burst is essentially driven by a resumption of mitotic
activity in meristematic cells [133]. However, functions
of these genes during bud burst are unclear. Casein ki-
nases are involved in regulating flowering time through
gibberellin signaling and are required for normal
development of male floral organs and grains via the
modulation of gibberellin signaling [134]. Nevertheless,
CLIP-associated protein is required for cell morphogen-
esis and cell division [135, 136].

Activity of glycosyl hydrolases, such as probable glucan
endo-1,3-beta-glucosidase A6, were also significantly as-
sociated with bud burst of European beech. This particu-
lar +enzyme is induced by gibberellic acid and is known
to play a role in cell-wall mobilization and cell elong-
ation [137] through hydrolysis of glycosidic bonds link-
ing cell-wall components. During bud burst, induction
of this enzyme could thus reflect the initiation of out-
growth taking place in early stages of bud burst. Another
regulator of carbohydrate modification, namely a 1,4-
alpha-glucan-branching enzyme, was also associated
with bud burst phenology. Starch branching enzymes
catalyze the formation of a-1,6 branches within a-glucan
chains by cleaving internal a-1,4 links followed by re-
attachment of the cleaved glucan to another chain via an
a-1,6 linkage [138]. This enzyme was highly expressed in
oak at the dormancy stage [139], suggesting that the hy-
drolysis of storage starch or glycogen is repressed in the
quiescent buds. In contrast, the reduction in this gene
expression upon bud swelling would indicate the onset
of starch mobilization at this developmental stage.

In general, the contribution of genes essential for en-
ergy supply can be observed at the end of bud burst, as
shown by genes encoding cytochrome P450 704B1, cyto-
chrome b561 DOMON domain-containing protein
At5g47530, and also CAB6A (chlorophyll a/b-binding
protein 6A). In parallel, ribulose bisphosphate carboxyl-
ase/oxygenase activase (responsible for the activation of
RuBisCO and RuBisCO large subunit-binding protein
subunit beta, chloroplastic), was also found in this study,
as well as that of two genes with the molecular function
of glyceraldehyde-3-phosphate dehydrogenase (NAD+)
(aldehyde dehydrogenase family 7 member A1l and alde-
hyde dehydrogenase family 2 member B4), as previously
reported by Wang et al. [140]. Indeed, these authors
demonstrated that enzyme activity of the glycolytic path-
way increased at the release of dormancy. Regarding the
developmental stages of spring phenology used in this
study, this contribution of energy-related genes is
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undoubtedly caused by leaf development, which starts at
stage 4, but mainly develops at stages from 5 to 7.

Conclusions

We investigated whether genes involved in the release of
dormancy in Fagus sylvatica, a widely distributed forest
tree species growing in various climates, show evidence
of selection signatures in relation to geographic, climatic,
or phenotypic variables related to adaptation. Using 380
candidate genes and a sequence capture approach, we
identified 2909 associated SNPs and, based on two com-
plementary analytical methods (LFMM, RDA), we nar-
rowed this down to 201 SNPs within 162 (42.6%) genes
associated with geographic, climatic, or population-wide
phenotypic variables related to adaptation. This signifi-
cantly extended the existing list of genes putatively iden-
tified as adaptive and related to spring phenology. A
large proportion of significant genes seems not surpris-
ing given that the timing of spring phenology (or dor-
mancy release, in general) varies along geographic and
climate clines and has a strong adaptive importance.
However, the variable pattern of significant loci across
different spatial scales suggests that local adaptation may
occur through multiple mechanisms, and that the im-
portance of different genes may depend on the spatial
and environmental context.

Material and methods

Plant material

We sampled one to four individuals (92 in total) of
European beech originating from 47 provenances
(geographic and climate data points) growing in the
common-garden experimental site located in Siemianice
Experimental Forest District in south-central Poland
(Fig. 1; Table S1) [141]. Freshly developed leaves were
sampled from individual plants in early spring 2015.
After collection, leaf samples were labeled, dried, and
kept at room temperature until DNA extraction.

Environmental data

Environmental data for the locations of the 47 prove-
nances was downloaded from the WorldClim database
[142]; http://www.worldclim.org/) from maps with a
spatial resolution of 30 arc-seconds (approximately 1
km?) using DIVA GIS 7.5 software [143]. The character-
istics of each location were quantified using a set of
nineteen bioclimatic variables representing annual trends
(e.g. mean annual temperature, annual precipitation), as-
pects of seasonality (e.g. annual range in temperature
and precipitation), and extreme or potentially limiting
environmental factors (e.g. temperature of the coldest
and warmest months, and precipitation of the wettest
and driest months). Since several bioclimatic variables
are collinear in nature, we applied principal component
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analysis (PCA) to extract essential bioclimatic informa-
tion with focused indices using the R package FactoMi-
neR [144]. PCA is a useful approach in reducing the
number of dimensions of explanatory variables with ac-
ceptable information loss under most conditions [145],
and it has been used in other landscape genomics stud-
ies [29].

Phenotypic variables

The indices of spring and autumn phenology, tree height
at 5years of age, and survival in each provenance were
obtained from Barzdajn and Rzeznik [141]. These repre-
sent average and standardized observations. Spring
phenology was assessed between 1995 and 1998 (on a
seven point scale, assessed on a single day in each year),
while autumn phenology, tree height, and survival were
measured in 1998 [141]. Each individual sampled in this
study was assigned a respective phenotypic index deter-
mined for its provenance (Table S1). To identify rela-
tionships between phenotypic, geographic, and climate
variables, pairwise Pearson’s correlation and canonical
correlation analyses (for the groups of variables) were
performed, using STATISTICA software.

DNA isolation, candidate genes and genotyping
Total DNA was extracted from sampled individuals using
the GeneMATRIX Plant & Fungi DNA Purification Kit
(EURX, Poland) according to the manufacturer’s protocol
with minor modifications. Extracted DNA was quantified
using an Eppendorf BioPhotometer and Quantus
Fluorometer (Promega). 100 ng of DNA from each tree
was used for individual exome capture and sequencing.
We investigated the genetic variation that might be as-
sociated with geographic, climate, or phenotypic vari-
ables, using an exome capture approach [146] based on
an initial set of 485 candidate genes (Supplementary
Table S2). The candidate genes were selected as follows.
Firstly, we created a set of 421 genes from the previously
published F. sylvatica transcriptome (FSV2, [89]). These
421 genes were differentially expressed during bud dor-
mancy release, as identified by the EdgeR method de-
scribed by Lesur et al. [89]. Secondly, we chose 64
additional candidates based on their appearances in
other published studies which aimed to identify genes of
potential adaptive importance related to drought stress
(53) and photoperiod (11) in beech and other species.
These selected sequences from F. sylvatica [147], Popu-
lus trichocarpa [42, 148], and Pieca abies [149] were
verified by BLAST software (Washington University
Basic Local Alignment Search Tool Version 2.0) to find
corresponding homologous sequences in the beech tran-
scriptome (FSV2, [89]). Next, we ran BLAST searches to
annotate the candidate genes. We aligned our sequences
using BLASTX with an e-value cut-off of 0.0001 against
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GenBank’s non-redundant protein database (NR), Uni-
Prot Swiss-Prot, and TrEMBL protein databases. Infor-
mation about these matching sequences was used to
annotate our candidate genes. For significant matches in
the databases, we extracted gene names, general descrip-
tions, Gene Ontology (GO) categories, and additional in-
formation from the UniProt knowledge database.

DNA library preparation and exome capture was per-
formed using the SeqCap EZ Library SR User’s Guide
v5.1 (Nimblegen Roche). However, because the reference
genome of F. sylvatica was not available at the time of
the experiment set-up, the bait development performed
in SeqCap EZ library preparation utilized only the pub-
lished cDNA sequences for the 485 genes [89]. Follow-
ing capture, 125 bp paired-end sequencing of 92 samples
was performed on a single lane of Illumina HiSeq2500
sequencer. Sequence capture and sequencing was per-
formed by IGA Technology Services (www.
igatechnology.com; Udine, Italy).

Sequence reads were assessed with FastQC software
[150]. Adapter sequences were removed with cutadapt
[151], and contaminant sequences (e.g. chloroplast gen-
ome) were removed with ERNE-FILTER [152]. Filtered,
high-quality reads were mapped to the European beech
reference genome version 1.3 [90] using Burrows—
Wheeler Aligner (BWA-MEM algorithm) with default
settings [153]. SAM files were converted to BAM files,
sorted, and indexed using SAMtools v.0.1.19 [154]. SNPs
were called with the Heap v.0.7.8 software [155] and
stored in the vc¢f format.

Filtering of variants was carried out using VCFtools
[156] with the following cut-offs: minimum depth of 10
reads; minor allele frequency >5%; missing data per
SNP < 25%. Contigs containing fewer than 10 base pairs
per SNP were removed to control for mapping errors.
Linkage disequilibrium (LD) among SNPs was accounted
for using the LD pruning tool in Plink 2.0 [157, 158],
where independent pairwise comparisons between each
SNP were made and an r* value was calculated. A cut-
off of r*>0.5 was used, whereby one of a pair of SNPs
was removed from the dataset if the coefficient of deter-
mination between the pair was >0.5, thus removing
SNPs showing strong signals of LD.

SnpEff software [159] was employed to classify SNPs
according to their genomic regions and their positions
relative to capture target regions. We identified the co-
ordinates of targeted regions in the reference genome of
European beech [90] based on gene models. Gene
models were created by mapping and aligning candidate
gene sequences to the genome using BLAT [160] and
GMAP software [161] with 95% identity and 90% cover-
age cut-offs.

To improve gene annotations, we performed a manual
curation of gene models. While sequence capture
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technology primarily targets exons, many functional ele-
ments are located outside the exonic regions. It is well-
known that SNPs located in promoter and UTR regions
may regulate gene expression. It is traditionally consid-
ered that introns are not as important as exons, but
several studies have demonstrated some functional sig-
nificance for introns [162, 163]. Many genome-wide as-
sociation analyses (GWAS) and genotype-environment
association analyses (GEA) have suggested strong associ-
ations between intergenic SNPs and phenotypic or envir-
onmental variables [43, 164]. Therefore, because these
data should not be ignored in GEA studies [165], we an-
alyzed SNPs located in exons, introns, and sequences up
to 500bp away from each candidate gene. Finally, the
SNP dataset was filtered to remove remaining non-
target variants using BEDtools v. 2.28.0 [166].

Copy number assessment

Copy number variations (CNVs) were identified using
CNVKkit [167], a piece of software designed to assess log,
copy ratios from targeted capture NGS data based on
reads mapped to both on-target and off-target regions.
CNVKkit has the highest sensitivity and a typical specifi-
city for small CNVs with sizes below 100kb [168].
Therefore, CNVkit seemed to be the best suited to our
data. CNVkit was run with the default parameters of the
batch command after creating a flat reference genome as
suggested in the manual using the command reference.
A threshold of 0.2 was applied to identify the signals for
amplification and deletions of the genes.

Genetic diversity and structure

Genetic diversity was estimated based on expected het-
erozygosity (He) defined as the probability that two ran-
domly chosen alleles from the population are different
using PowerMarker 3.25 software [169]. We investigated
the genetic structure of sampled individuals by applying
the Bayesian model-based clustering method imple-
mented in the software STRUCTURE 2.3.4 [170]. The
number of assumed populations (K) was set from 1 to
10, carried out each time in sets of 10 repeats, with a
burn-in period of 50,000 iterations and 100,000 MCMC
(Markov Chain Monte Carlo) repeats, and an admixture
model with correlated frequencies. The optimal value of
K was determined based on the AK method [171] using
the software STRUCTURE HARVESTER 0.6.94 [172].
The probabilities of individuals’ assignments to particu-
lar clusters (g-matrix) were used to test the correlations
with geographic variables of the origin of populations
sampled.

Detection of outliers using LFMM
Because phenotypic variables were represented by popu-
lation averages instead of individual measures, we

Page 15 of 20

applied the same approaches (LFMM and RDA) to de-
tect loci with significant effects related to geographic,
climate, and phenotypic variables. We used the latent
factor mixed model (LFMM) approach [173] to find can-
didate loci under selection. According to P de Villemer-
euil, E Frichot, E Bazin, O Francois and OE Gaggiotti
[76], LEFMM is expected to provide the best compromise
between power and error rate across different analytical
scenarios. LFMM is also known to be less susceptible to
both false negatives and false positives [173, 174] than
other genotype-environment association (GEA) methods,
such as Bayenv2 [175], because it does not rely on a spe-
cific demographic model when accounting for popula-
tion structure [76, 174].

We employed an MCMC algorithm for regression ana-
lysis whereby potentially confounding population struc-
ture is modeled with unobserved (latent) factors [176].
As missing data can reduce the power of association
studies [177, 178], we imputed the missing data based
on the ancestry coefficients estimated by sNMF, using
the “impute” function from the R package LEA [176]. In
sNMEF, we set K based on the number of distinct genetic
clusters identified following the population genetic
structure analysis and kept the best out of 10 runs based
on a cross-entropy criterion. The MCMC algorithm was
used for each of the geographic, climate, and phenotypic
variables (i.e. longitude, latitude, altitude, PC1-PC3,
spring and autumn phenology and height), using 50,000
steps for burn-in and 100,000 additional steps to com-
pute LFMM parameters (z-scores) for all loci. The num-
ber of latent factors was set at the identified value of K.
In order to compensate for run-to-run variation, the
analysis was repeated over 10 independent runs and z-
scores across runs were then combined in R using the
LEA package [176]. The LEA package was also used to
adjust p-values for multiple testing using the Benjamini—
Hochberg procedure, and to calculate the genomic infla-
tion factor to modify z-scores allowing for the control of
the FDR, as described in E Frichot and O Francois [176].
A list of candidate loci with an FDR of 1% and adjusted
p-values of <0.001 was then generated for each explana-
tory variable.

Redundancy analysis to detect outlier loci

To test the multivariate relationships between genetic
variation with geographic, climate and phenotypic vari-
ables, we conducted redundancy analysis (RDA) using
the vegan 2.4-5 package in R [179]. RDA is a two-step
process in which predictor (geographic, climatic, or
phenotypic) variables and the response (the matrix of al-
lele frequencies) variables are analyzed using multivari-
ate linear regression, producing a matrix of fitted values.
Next, PCA of the fitted values is used to produce
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constrained axes, which are linear combinations of the
predictors [180].

RDA was used to estimate the proportion of variance
in allele frequencies at SNPs across all sampling loca-
tions, which could be explained by geographic, climate,
and phenotypic predictors based on the adjusted r*. We
removed longitude, latitude, and PC2 variables from
analyses because they were highly correlated (|r| >0.7)
[181] with PC1 (for longitude) and altitude (for latitude
and PC2). Since the RDA method requires complete
datasets, we performed an imputation of missing geno-
types using the most common genotype at each SNP
across all individuals. The global RDA'’s significance was
tested with an analysis of variance (ANOVA) following
1000 permutations. The explicative importance of the
variables was represented as vectors in biplot graphs.
Next, the candidate loci were identified based on locus
scores (i.e. the loading of each locus in ordination space)
separated by +3 SD from the mean loading on the first
two constrained ordination axes [77]. Predictors exhibit-
ing the strongest associations with each candidate adap-
tive locus were identified using Pearson’s correlation
coefficients (r). We performed a second RDA analysis
using the same methods as described above, but this
time within genetic groups identified by STRUCTURE
independently in order to determine whether selection
pressures vary between the genetic clusters.

Additive polygenic scores

The additive polygenic scores approach was used to as-
sess the cumulative signal of candidate loci in response
to environmental variation [112]. Firstly, alleles across all
candidate loci that were associated with increasing
values of a given geographic, climatic, or phenotypic
variable (i.e. longitude, latitude, altitude, PCs, spring and
autumn phenology, and also height) were identified
based on the sign of their correlation between allele fre-
quencies and the variables. Polygenic scores for each in-
dividual tree were obtained by summing the number of
favored alleles for a given trait over loci. The correlation
between individual additive polygenic scores and each
geographic, climatic, or phenotypic variable was tested
to evaluate how the cumulative signal of candidate adap-
tive alleles varied with each explanatory variable. Two
models (a linear and a quadratic) were tested for each
variable, and the best-fit model was determined based
on the lowest Akaike information criterion (AIC) value.

Effect of geography, climate and phenotype on adaptive
genetic variation

Partial redundancy analyses (pRDA) were performed on
a combined dataset comprising outliers detected by both
the RDA and the LFMM approaches to examine the
relative contribution of geographic, climatic, and
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phenotypic variables, along with their combinations to
adaptive genetic variation. Four different models were
considered for partitioning variance components of the
RDA (Table 3): Model 1 — a simple model with all geo-
graphic, climatic, and phenotypic variables given as ex-
planatory variables; Model 2 — a partial model in which
genetic data is explained by geographic data condition-
ing on climatic and phenotypic variables; Model 3 — a
partial model where the genetic data is explained by cli-
mate conditioned on geographic and phenotypic vari-
ables; and Model 4 — a partial model in which the
amount of genetic variation is explained by phenotypic
variables conditioning on geographic and climatic data.
Partial RDA was carried out using the vegan 2.4—5 pack-
age in R [179] with significance determined based on
999 permutations.

Supplementary Information
The online version contains supplementary material available at https://doi.
0rg/10.1186/512864-021-07907-5.

Additional file 1: Table S1. Description of sampled populations. Table
S2. List of 485 candidate genes and their functional annotations. Table
S3. Correlations between 19 environmental variables (BIO1-BIO19) and
the first three principal components. Table S4. Pearson’s correlations
(below diagonal) between geographic, climate and phenotypic variables,
and canocical correlation coefficients (above diagonal) among groups of
variables. Coefficients significant at p < 0.05 are indicated by bold-italic
face. Table S5. List of valid gene models and their coordinates in the ref-
erence genome of European beech (Mishra et al. 2018). Table S6. List of
outlier loci and their functional annotation across the entire sampled
geographic area and within regional groups.

Additional file 2: Figure S1. Distribution of coefficients of three first
principal components (PC1, PC2, PC3) determined based on 19
bioclimatic variables. Figure S2. Graphical method (as in Evanno et al.
2005) allowing for detection of the number of groups K using (A) AK and
(B) the rate of change of the likelihood distribution (mean log-likelihood
values). Figure S3. Bar plot of admixture proportions of individuals, in-
ferred using K= 3 based on 2909 SNP loci. Individual’s proportions (g-
values) are sorted within each cluster (cluster K1 - red, K2 - blue, K3 -
green. Figure S4. Geographical distribution of European beech clusters
according to the K= 3 model in STRUCTURE. Figure S5. Relationships
between additive individual polygenic scores based on all 201 outlier
markers and each of the explanatory variables: geographic (longitude,
latitude, altitude), climate (PC1, PC2, PC3) and phenotypic (spring phen-
ology, autumn phenology, height, survival). The solid line represents the
regression line of the linear model. Figure S6. Relationships between
additive individual polygenic scores based on all 201 outlier markers and
each of the explanatory variables: geographic (longitude, latitude, alti-
tude), climate (PC1, PC2, PC3) and phenotypic (spring phenology, autumn
phenology, height, survival). The solid line represents the regression line
of the quadratic model.

Acknowledgements

We thank Wtadystaw Barzdajn from Poznan University of Life Sciences and
the staff of Experimental Forest District in Siemianice for their support on the
study site. We also thank our lab team members: Ewa Sztupecka and
Katarzyna Meyza for their outstanding job in fieldwork and DNA isolations.

Authors’ contributions

JM. and JB. designed the research; J. M and B.U. performed the field work;
JM. and B.U. analyzed the data; JM. prepared initial draft of the paper; J.B.
received funding and supervised research; all coauthors contributed to final
version of the paper. The author(s) read and approved the final manuscript.


https://doi.org/10.1186/s12864-021-07907-5
https://doi.org/10.1186/s12864-021-07907-5

Meger et al. BMC Genomics (2021) 22:583

Funding

The study was supported by the National Science Center, Poland (2012/04/
A/NZ9/00500), and the Polish Ministry of Education and Science under the
program “Regional Initiative of Excellence” in 2019-2022 (grant no. 008/RID/
2018/19).

Availability of data and materials

lllumina data are publicly available at the NCBI BioProject PRINA721723
(https://www.ncbi.nim.nih.gov/bioproject/721723). Filtered SNP data in VCF
format for each geographic context are available from the corresponding
author upon request.

Declarations

Ethics approval and consent to participate

Collection of plant samples from provenance trial in Siemianice Experimental
Forest District was approved by prof. Wiadystaw Barzdajn, Head of the
Department of Silviculture, Faculty of Forestry, Poznan University of Life
Sciences. All the experiments conducted on plants were carried out in
accordance with guidelines of National Science Center, Poland.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 25 April 2021 Accepted: 20 July 2021
Published online: 31 July 2021

References

1. Kawecki TJ, Ebert D. Conceptual issues in local adaptation. Ecol Lett. 2004;
7(12):1225-41.

2. Williams GC. Adaptation and natural selection: A critique of some current
evolutionary thought. Princeton: Princeton University Press; 2018;75.

3. Savolainen O, Lascoux M, Merila J. Ecological genomics of local adaptation.
Nat Rev Genet. 2013;14(11):807-20.

4. de Villemereuil P, Gaggiotti OE, Mouterde M, Till-Bottraud I. Common
garden experiments in the genomic era: new perspectives and
opportunities. Heredity. 2016;116(3):249-54.

5. Van Kleunen M, Fischer M. Constraints on the evolution of adaptive
phenotypic plasticity in plants. New Phytologist. 2005;166(1):49-60.

6. Leimu R, Fischer M. A meta-analysis of local adaptation in plants. PloS one.
2008;3(12):¢4010.

7. Maclachlan IR, McDonald TK, Lind BM, Rieseberg LH, Yeaman S, Aitken SN.
Genome-wide shifts in climate-related variation underpin responses to
selective breeding in a widespread conifer. Proc Natl Acad Sci. 2021;118(10):
€2016900118.

8. Lind BM, Menon M, Bolte CE, Faske TM, Eckert AJ. The genomics of local
adaptation in trees: are we out of the woods yet? Tree Genet Genomes.
2018;14(2):29.

9. Matyas C. Climatic adaptation of trees: rediscovering provenance tests.
Euphytica. 1996,92(1):45-54.

10. Sork VL, Aitken SN, Dyer RJ, Eckert AJ, Legendre P, Neale DB. Putting the
landscape into the genomics of trees: approaches for understanding local
adaptation and population responses to changing climate. Tree Genet
Genomes. 2013;9(4):901-11.

11. Depardieu C, Gérardi S, Nadeau S, Parent GJ, Mackay J, Lenz P, et al.
Connecting tree-ring phenotypes, genetic associations, and transcriptomics
to decipher the genomic architecture of drought adaptation in a
widespread conifer. Mol Ecol. 2021. https;//doi.org/10.1111/mec.15846.

12. Wright JW. Introduction to forest genetics. New York: Academic Press; 1996.

13. Morgenstern EK. Geographic variation in forest trees: genetic basis and
application of knowledge in silviculture. Vancouver: UBC Press; 1996.

14. Vitasse Y, Delzon S, Dufréne E, Pontailler J-Y, Louvet J-M, Kremer A, et al.
Leaf phenology sensitivity to temperature in European trees: do within-
species populations exhibit similar responses? Agric Forest Meteorol. 2009;
149(5):735-44.

15. Bennie J, Kubin E, Wiltshire A, Huntley B, Baxter R. Predicting spatial and
temporal patterns of bud-burst and spring frost risk in north-West Europe:

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33

34.

35.

36.

37.

Page 17 of 20

the implications of local adaptation to climate. Global Change Biol. 2010;
16(5):1503-14.

Howe GT, Aitken SN, Neale DB, Jermstad KD, Wheeler NC, Chen THH. From
genotype to phenotype: unraveling the complexities of cold adaptation in
forest trees. Can J Botany-Revue Canadienne De Botanique. 2003;81(12):
1247-66.

Visser ME, Holleman LJM. Warmer springs disrupt the synchrony of oak and
winter moth phenology. P Roy Soc B-Biol Sci. 2001;268(1464):289-94.
Ghelardini L, Santini A. Avoidance by early flushing: a new perspective on
Dutch elm disease research. Iforest-Biogeosci Forestry. 2009,2(4):143-53.
Menzel A, Sparks TH, Estrella N, Koch E, Aasa A, Ahas R, et al. European
phenological response to climate change matches the warming pattern.
Global Change Biol. 2006;12(10):1969-76.

Nordli O, Wielgolaski FE, Bakken AK, Hjeltnes SH, Mage F, Sivle A, et al.
Regional trends for bud burst and flowering of woody plants in Norway as
related to climate change. Int J Biometeorol. 2008;52(7):625-39.

Polgar CA, Primack RB. Leaf-out phenology of temperate woody plants:
from trees to ecosystems. New Phytologist. 2011;191(4):926-41.
SangUliesa-Barreda G, Di Filippo A, Piovesan G, Rozas V, Di Fiore L, Garcia-
Hidalgo M, et al. Warmer springs have increased the frequency and
extension of late-frost defoliations in southern European beech forests. Sci
Total Environ. 2021;775:145860.

Kramer K, Ducousso A, Gomory D, Hansen JK, lonita L, Liesebach M, et al.
Chilling and forcing requirements for foliage bud burst of European beech
(Fagus sylvatica L.) differ between provenances and are phenotypically
plastic. Agric Forest Meteorol. 2017;234:172-81.

Vitasse Y, Bresson CC, Kremer A, Michalet R, Delzon S. Quantifying
phenological plasticity to temperature in two temperate tree species. Funct
Ecol. 2010;,24(6):1211-8.

Varsamis G, Papageorgiou AC, Merou T, Takos |, Malesios C, Manolis A, et al.
Adaptive Diversity of Beech Seedlings Under Climate Change Scenarios.
Front Plant Sci. 2019;9:1918.

Jermstad KD, Bassoni DL, Jech KS, Wheeler NC, Neale DB. Mapping of
quantitative trait loci controlling adaptive traits in coastal Douglas-fir. .
Timing of vegetative bud flush. Theoret Appl Genetics. 2001;102(8):1142-51.
Ducousso A, Guyon J, Krémer A. Latitudinal and altitudinal variation of bud
burst in western populations of sessile oak (Quercus petraea (Matt) Liebl).
Ann For Sci. 1996;53(2-3):775-82.

Scotti-Saintagne C, Bodenes C, Barreneche T, Bertocchi E, Plomion C, Kremer
A. Detection of quantitative trait loci controlling bud burst and height
growth in Quercus robur L. Theoret Appl Genet. 2004;109(8):1648-59.
Gugger PF, Fitz-Gibbon ST, Albarran-Lara A, Wright JW, Sork VL. Landscape
genomics of Quercus lobata reveals genes involved in local climate
adaptation at multiple spatial scales. Mol Ecol. 2021;30(2):406-23.

Johnsen @, Daehlen OG, @streng G, Skreppa T. Daylength and temperature
during seed production interactively affect adaptive performance of Picea
abies progenies. New Phytologist. 2005;168(3):589-96.

Harismendy O, Ng PC, Strausberg RL, Wang X, Stockwell TB, Beeson KY,

et al. Evaluation of next generation sequencing platforms for population
targeted sequencing studies. Genome Biol. 2009;10(3):R32.

Stapley J, Reger J, Feulner PG, Smadja C, Galindo J, Ekblom R, et al.
Adaptation genomics: the next generation. Trends Ecol Evol. 2010;25(12):
705-12.

Eckert AJ, van Heerwaarden J, Wegrzyn JL, Nelson CD, Ross-lbarra J,
Gonzalez-Martinez SC, et al. Patterns of population structure and
environmental associations to aridity across the range of loblolly pine (Pinus
taeda L., Pinaceae). Genetics. 2010;185(3):969-82.

Mathiason K, He D, Grimplet J, Venkateswari J, Galbraith DW, Or E, et al.
Transcript profiling in Vitis riparia during chilling requirement fulfillment
reveals coordination of gene expression patterns with optimized bud break.
Funct Integr Genomics. 2009;9(1):81-96.

Hedley PE, Russell JR, Jorgensen L, Gordon S, Morris JA, Hackett CA, et al.
Candidate genes associated with bud dormancy release in blackcurrant
(Ribes nigrum L.). BMC Plant Biol. 2010;10:202.

Derory J, Leger P, Garcia V, Schaeffer J, Hauser MT, Salin F, et al.
Transcriptome analysis of bud burst in sessile oak (Quercus petraea). New
Phytologist. 2006;170(4):723-38.

Derory J, Scotti-Saintagne C, Bertocchi E, Le Dantec L, Graignic N, Jauffres A,
et al. Contrasting relationships between the diversity of candidate genes
and variation of bud burst in natural and segregating populations of
European oaks. Heredity. 2010;104(5):438-48.


https://www.ncbi.nlm.nih.gov/bioproject/721723
https://doi.org/10.1111/mec.15846

Meger et al. BMC Genomics

38.

39.

40.

42.

43.

44,
45,

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.
58.
59.

60.

61.

(2021) 22:583

Parchman TL, Jahner JP, Uckele KA, Galland LM, Eckert AJ. RADseq
approaches and applications for forest tree genetics. Tree Genet Genomes.
2018;14: 39.

Ulaszewski B, Meger J, Burczyk J. Comparative Analysis of SNP Discovery
and Genotyping in Fagus sylvatica L. and Quercus robur L. Using RADseq,
GBS, and ddRAD Methods. Forests. 2021;12(2):222.

Lowry DB, Hoban S, Kelley JL, Lotterhos KE, Reed LK, Antolin MF, et al.
Breaking RAD: an evaluation of the utility of restriction site-associated DNA
sequencing for genome scans of adaptation. Mol Ecol Resourc. 2017;17(2):
142-52.

Catchen JM, Hohenlohe PA, Bernatchez L, Funk WC, Andrews KR, Allendorf
FW. Unbroken: RADseq remains a powerful tool for understanding the
genetics of adaptation in natural populations. Mol Ecol Resourc. 2017;17(3):
362-5.

Evans LM, Slavov GT, Rodgers-Melnick E, Martin J, Ranjan P, Muchero W,

et al. Population genomics of Populus trichocarpa identifies signatures of
selection and adaptive trait associations. Nat Genet. 2014;46(10):1089-96.
Zhang M, Suren H, Holliday JA. Phenotypic and genomic local adaptation
across latitude and altitude in Populus trichocarpa. Genome Biol Evol. 2019;
11(8):2256-72.

Packham JR, Thomas PA, Atkinson MD, Degen T. Biological Flora of the
British Isles: Fagus sylvatica. J Ecol. 2012;100(6):1557-608.

Bolte A, Czajkowski T, Kompa T. The north-eastern distribution range of
European beech - a review. Forestry. 2007,80(4):413-29.

GeBler A, Keitel C, Kreuzwieser J, Matyssek R, Seiler W, Rennenberg H.
Potential risks for European beech (Fagus sylvatica L) in a changing climate.
Trees. 200621(1):1-11.

Kramer K, Degen B, Buschbom J, Hickler T, Thuiller W, Sykes MT, et al.
Modelling exploration of the future of European beech (Fagus sylvatica L.)
under climate change-range, abundance, genetic diversity and adaptive
response. Forest Ecol Manag. 2010,259(11):2213-22.

Czucz B, Galhidy L, Matyas C. Present and forecasted xeric climatic limits of
beech and sessile oak distribution at low altitudes in Central Europe. Ann
Forest Sci. 2011,68(1):99-108.

Scharnweber T, Manthey M, Criegee C, Bauwe A, Schroder C, Wilmking M.
Drought matters - declining precipitation influences growth of Fagus
sylvatica L. and Quercus robur L. in North-Eastern Germany. Forest Ecol
Manag. 2011;262(6):947-61.

Mette T, Dolos K, Meinardus C, Brauning A, Reineking B, Blaschke M, et al.
Climatic turning point for beech and oak under climate change in Central
Europe. Ecosphere. 2013;4(12):1-19.

Zimmermann J, Hauck M, Dulamsuren C, Leuschner C. Climate warming-
related growth decline affects Fagus sylvatica, but not other broad-leaved tree
species in central European mixed forests. Ecosystems. 2015;18(4):560-72.
Charru M, Seynave |, Morneau F, Bontemps JD. Recent changes in forest
productivity: an analysis of national forest inventory data for common
beech (Fagus sylvatica L) in North-Eastern France. Forest Ecol Manag. 2010;
260(5):864-74.

Pefuelas J, Boada M. A global change-induced biome shift in the Montseny
mountains (NE Spain). Global Change Biol. 2003,9(2):131-40.

Meier ES, Edwards TC, Kienast F, Dobbertin M, Zimmermann NE. Co-
occurrence patterns of trees along macro-climatic gradients and their
potential influence on the present and future distribution of Fagus sylvatica
L. J Biogeography. 2011;38(2):371-82.

Hanewinkel M, Cullmann DA, Schelhaas MJ, Nabuurs GJ, Zimmermann NE.
Climate change may cause severe loss in the economic value of European
forest land. Nat Climate Change. 2013;3(3):203-7.

Gomory D, Ditmarova L, Hrivnak M, Jamnicka G, Kmet' J, Krajmerova D, et al.

Differentiation in phenological and physiological traits in European beech
(Fagus sylvatica L.). Eur J Forest Res. 2015;134(6):1075-85.

Chmura DJ, Rozkowski R. Variability of beech provenances in spring and
autumn phenology. Silvae Genetica. 2002;51(2-3):123-7.

Gomory D, Paule L. Trade-off between height growth and spring flushing in
common beech (Fagus sylvatica L.). Ann Forest Sci. 2011,68(5):975-84.
Vitasse Y, Basler D. What role for photoperiod in the bud burst phenology
of European beech. Eur J Forest Res. 2013;132(1):1-8.

Von Wuehlisch G, Krusche D, Muhs H-J. Variation in temperature sum
requirement for flushing of beech provenances. Silvae Genetica. 1995;44(5-
6):343-6.

Kramer K, Buiteveld J, Forstreuter M, Geburek T, Leonardi S, Menozzi P, et al.
Bridging the gap between ecophysiological and genetic knowledge to

62.

63.

64.

65.

66.

67.

68.

69.

70.

72.

73.

74.

75.

76.

77.

78.

79.

80.

82.

83.

Page 18 of 20

assess the adaptive potential of European beech. Ecol Model. 2008,216(3-4):
333-53.

Seifert S, Vornam B, Finkeldey R. DNA sequence variation and development
of SNP markers in beech (Fagus sylvatica L.). Eur J Forest Res. 2012;131(6):
1761-70.

Lalagte H, Csilléry K, Oddou-Muratorio S, Safrana J, de Quattro C, Fady B, et al.
Nucleotide diversity and linkage disequilibrium at 58 stress response and
phenology candidate genes in a European beech (Fagus sylvatica L)
population from southeastern France. Tree Genet Genomes. 2014;10(1):15-26.
Rellstab C, Zoller S, Walthert L, Lesur |, Pluess AR, Graf RE, et al. Signatures of
local adaptation in candidate genes of oaks (Quercus spp.) with respect to
present and future climatic conditions. Mol Ecol. 2016;25(23):5907-24.
Muller M, Seifert S, Finkeldey R. A candidate gene-based association study
reveals SNPs significantly associated with bud burst in European beech
(Fagus sylvatica L.). Tree Genet Genomes. 2015;11(6):1-13.

Cuervo-Alarcon L, Arend M, Mller M, Sperisen C, Finkeldey R, Krutovsky KV.
A candidate gene association analysis identifies SNPs potentially involved in
drought tolerance in European beech (Fagus sylvatica L.). Sci Rep. 2021;
11(1):2386.

Pfenninger M, Reuss F, Kiebler A, Schonnenbeck P, Caliendo C, Gerber S, et
al. Genomic basis of drought resistance in Fagus sylvatica. bioRxiv. 2020.12.
04.411264. https//doi.org/10.1101/2020.12.04.411264.

Csilléry K, Lalagtie H, Vendramin GG, Gonzélez-Martinez SC, Fady B, Oddou-
Muratorio S. Detecting short spatial scale local adaptation and epistatic
selection in climate-related candidate genes in European beech (Fagus
sylvatica) populations. Mol Ecol. 2014;23(19):4696-708.

Pluess AR, Frank A, Heiri C, Lalaguee H, Vendramin GG, Oddou-Muratorio S.
Genome-environment association study suggests local adaptation to
climate at the regional scale in Fagus sylvatica. New Phytologist. 2016;
210(2):589-601.

Krajmerova D, Hrivndk M, Ditmarova L, Jamnickd G, Kmet J, Kurjak D, et al.
Nucleotide polymorphisms associated with climate, phenology and
physiological traits in European beech (Fagus sylvatica L.). New Forests.
2017;48(3):463-77.

Schoville SD, Bonin A, Francois O, Lobreaux S, Melodelima C, Manel S.
Adaptive genetic variation on the landscape: methods and cases. Ann Rev
Ecol Evol Syst. 2012;43(1):23-43.

Rellstab C, Gugerli F, Eckert AJ, Hancock AM, Holderegger R. A practical
guide to environmental association analysis in landscape genomics. Mol
Ecol. 2015;24(17):4348-70.

Jensen JD, Foll M, Bernatchez L. The past, present and future of genomic
scans for selection. Mol Ecol. 2016;25(1):1-4.

Joost S, Bonin A, Bruford MW, Despres L, Conord C, Erhardt G, et al. A
spatial analysis method (SAM) to detect candidate loci for selection:
towards a landscape genomics approach to adaptation. Mol Ecol. 2007;
16(18):3955-69.

De Mita S, Thuillet AC, Gay L, Ahmadi N, Manel S, Ronfort J, et al. Detecting
selection along environmental gradients: analysis of eight methods and
their effectiveness for outbreeding and selfing populations. Mol Ecol. 2013;
22(5):1383-99.

de Villemereuil P, Frichot E, Bazin E, Francois O, Gaggiotti OF. Genome scan
methods against more complex models: when and how much should we
trust them? Mol Ecol. 2014;23(8):2006-19.

Forester BR, Lasky JR, Wagner HH, Urban DL. Comparing methods for
detecting multilocus adaptation with multivariate genotype-environment
associations. Mol Ecol. 2018:27(9):2215-33.

Petit RJ, El Mousadik A, Pons O. Identifying populations for conservation on
the basis of genetic markers. Conserv Biol. 1998;12(4):844-55.

Yeaman S, Whitlock MC. The genetic architecture of adaptation under
migration-selection balance. Evolution. 2011;65(7):1897-911.

Le Corre V, Kremer A. The genetic differentiation at quantitative trait loci
under local adaptation. Mol Ecol. 2012;21(7):1548-66.

De Kort H, Vandepitte K, Bruun HH, Closset-Kopp D, Honnay O, Mergeay J.
Landscape genomics and a common garden trial reveal adaptive
differentiation to temperature across Europe in the tree species Alnus
glutinosa. Mol Ecol. 2014;23(19):4709-21.

Keller SR, Levsen N, Olson MS, Tiffin P. Local adaptation in the flowering-
time gene network of balsam poplar, Populus balsamifera L. Mol Biol Evol.
2012;29(10):3143-52.

Geraldes A, Farzaneh N, Grassa CJ, McKown AD, Guy RD, Mansfield SD, et al.
Landscape genomics of Populus Trichocarpa: the role of hybridization,


https://doi.org/10.1101/2020.12.04.411264

Meger et al. BMC Genomics

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

102.

103.

104.

(2021) 22:583

limited gene flow, and natural selection in shaping patterns of population
structure. Evolution. 2014:68(11):3260-80.

Eckert AJ, Bower AD, Wegrzyn JL, Pande B, Jermstad KD, Krutovsky KV,
et al. Association genetics of coastal Douglas fir (Pseudotsuga menziesii
var. menziesii, Pinaceae). |. Cold-hardiness related traits. Genetics. 2009;
182(4):1289-302.

Sork VL, Davis FW, Westfall R, Flint A, lkegami M, Wang H, et al. Gene
movement and genetic association with regional climate gradients in
California valley oak (Quercus lobata nee) in the face of climate change. Mol
Ecol. 2010;19(17):3806-23.

Martins K, Gugger PF, Llanderal-Mendoza J, Gonzalez-Rodriguez A, Fitz-
Gibbon ST, Zhao JL, et al. Landscape genomics provides evidence of
climate-associated genetic variation in Mexican populations of Quercus
rugosa. Evol Appl. 2018;11(10):1842-58.

Scalfi M, Mosca E, Di Pierro EA, Troggio M, Vendramin GG, Sperisen C,
et al. Micro- and macro-geographic scale effect on the molecular
imprint of selection and adaptation in Norway spruce. PloS one. 2014;
9(12):2115499.

Cuervo-Alarcon L, Arend M, Muller M, Sperisen C, Finkeldey R, Krutovsky KV.
Genetic variation and signatures of natural selection in populations of
European beech (Fagus sylvatica L.) along precipitation gradients. Tree
Genet Genomes. 2018;14(6):84.

Lesur |, Bechade A, Lalanne C, Klopp C, Noirot C, Leple JC, et al. A unigene
set for European beech (Fagus sylvatica L) and its use to decipher the
molecular mechanisms involved in dormancy regulation. Mol Ecol Resourc.
2015;15(5):1192-204.

Mishra B, Gupta DK, Pfenninger M, Hickler T, Langer E, Nam B, et al. A
reference genome of the European beech (Fagus sylvatica L.). Gigascience.
2018,7(6).giy063.

Muller M, Seifert S, Finkeldey R. Comparison and confirmation of SNP-bud
burst associations in European beech populations in Germany. Tree Genet
Genomes. 2017;13(3):59.

Ehrenreich IM, Hanzawa Y, Chou L, Roe JL, Kover PX, Purugganan MD.
Candidate Gene Association mapping of Arabidopsis flowering time.
Genetics. 2009;183(1):325-35.

Estravis-Barcala M, Mattera MG, Soliani C, Bellora N, Opgenoorth L, Heer K,
et al. Molecular bases of responses to abiotic stress in trees. J Exper Botany.
2019;71(13):3765-79.

Jump AS, Marchant R, Penuelas J. Environmental change and the option
value of genetic diversity. Trends Plant Sci. 2009;14(1):51-8.

Potter KM, Jetton RM, Bower A, Jacobs DF, Man G, Hipkins VD, et al. Banking
on the future: progress, challenges and opportunities for the genetic
conservation of forest trees. New Forests. 2017;48(2):153-80.

Seifert S, Vornam B, Finkeldey R. A set of 17 single nucleotide
polymorphism (SNP) markers for European beech (Fagus sylvatica L.).
Conserv Genet Resourc. 2012;4(4):1045-7.

Muller M, Seifert S, Finkeldey R. Identification of SNPs in candidate genes
potentially involved in bud burst in European beech (Fagus sylvatica L.).
Silvae Genetica. 2015;64(1-6):1-20.

Saltré F, Duputié A, Gaucherel C, Chuine I. How climate, migration ability
and habitat fragmentation affect the projected future distribution of
European beech. Global Change Biol. 2015;21(2):897-910.

Rajendra KC, Seifert S, Prinz K, Gailing O, Finkeldey R. Subtle human impacts
on neutral genetic diversity and spatial patterns of genetic variation in
European beech (Fagus sylvatica). Forest Ecol Manag. 2014;319:138-49.
Pluess AR, Weber P. Drought-adaptation potential in Fagus sylvatica: linking
moisture availability with genetic diversity and dendrochronology. PloS one.
2012;7(3):e33636.

. Magri D, Vendramin GG, Comps B, Dupanloup |, Geburek T, Gomory D, et al.

A new scenario for the quaternary history of European beech populations:
palaeobotanical evidence and genetic consequences. New Phytologist.
2006;171(1):199-221.

Piotti A, Leonardi S, Buiteveld J, Geburek T, Gerber S, Kramer K, et al.
Comparison of pollen gene flow among four European beech (Fagus
sylvatica L) populations characterized by different management regimes.
Heredity. 2012;108(3):322-31.

Zhao K, Tung CW, Eizenga GC, Wright MH, Ali ML, Price AH, et al. Genome-
wide association mapping reveals a rich genetic architecture of complex
traits in Oryza sativa. Nat Commun. 2011,2(1):1-10.

Hendry AP. Key questions in the genetics and genomics of eco-evolutionary
dynamics. Heredity. 2013;111(6):456-66.

105.

112.

114.

115.

118.

119.

121.

122.

123.

125.

127.

128.

Page 19 of 20

Wauehlisch G, Krusche D, Muhs H-J. Variation in temperature sum
requirement for flushing of beechprovenances. Silvae Genetica. 1995;44(5-
6):343-6.

. Campbell RK, Sorensen FC. Cold-acclimation in seedling Douglas-fir related

to phenology and provenance. Ecology. 1973;54(5):1148-51.

. Chuine I, Cour P, Rousseau DD. Selecting models to predict the timing of

flowering of temperate trees: implications for tree phenology modelling.
Plant Cell Environ. 1999;22(1):1-13.

. St Clair JB, Mandel NL, Vance-Borland KW. Genecology of Douglas fir in

Western Oregon and Washington. Ann Botany. 2005;96(7):1199-214.

. Harrington CA, Gould PJ, St Clair JB. Modeling the effects of winter

environment on dormancy release of Douglas-fir. Forest Ecol Manag. 2010;
259(4):798-808.

. Robson TM, Garzon MB, Consortium BD. Phenotypic trait variation

measured on European genetic trials of Fagus sylvatica L. Scientific
Data. 2018;5(1):1-7.

. Eckert AJ, Maloney PE, Vogler DR, Jensen CE, Mix AD, Neale DB. Local

adaptation at fine spatial scales: an example from sugar pine (Pinus
lambertiana, Pinaceae). Tree Genet Genomes. 2015;11: 42.

Gagnaire PA, Gaggiotti OE. Detecting polygenic selection in marine
populations by combining population genomics and quantitative genetics
approaches. Curr Zool. 2016,62(6):603-16.

. Gonzélez-Martinez SC, Wheeler NC, Ersoz E, Nelson CD, Neale DB.

Association genetics in Pinus taeda LI wood property traits. Genetics. 2007;
175(1):399-409.

Ingvarsson PK, Garcia MV, Luquez V, Hall D, Jansson S. Nucleotide
polymorphism and phenotypic associations within and around the
phytochrome B2 locus in European Aspen (Populus tremula, Salicaceae).
Genetics. 2008;178(4):2217-26.

Cufar K, De Luis M, Saz MA, Crepinsek Z, Kajfez-Bogataj L. Temporal shifts in
leaf phenology of beech (Fagus sylvatica) depend on elevation. Trees. 2012;
26(4):1091-100.

. Murray M, Cannell M, Smith R. Date of budburst of fifteen tree species in

Britain following climatic warming. J Appl Ecol. 1989;26:693-700.

. Falusi M, Calamassi R. Bud dormancy in beech (Fagus-Sylvatica L) - effect of

chilling and photoperiod on dormancy release of beech seedlings. Tree
Physiology. 1990;,6(4):429-38.

Heide OM. Dormancy release in beech buds (Fagus-Sylvatica) requires both
chilling and long days. Physiologia Plantarum. 1993;89(1):187-91.

Caffarra A, Donnelly A. The ecological significance of phenology in four
different tree species: effects of light and temperature on bud burst. Int J
Biometeorol. 2011,55(5):711-21.

. Vitasse Y, Delzon S, Bresson CC, Michalet R, Kremer A. Altitudinal

differentiation in growth and phenology among populations of temperate-
zone tree species growing in a common garden. Can J Forest Res. 2009;
39(7):1259-69.

Morin X, Roy J, Sonié L, Chuine I. Changes in leaf phenology of three
European oak species in response to experimental climate change. New
Phytologist. 2010;186(4):900-10.

Kuster TM, Dobbertin M, Gunthardt-Goerg MS, Schaub M, Arend M. A
Phenological timetable of oak growth under experimental drought and air
warming. PloS one. 2014;9(2):e89724.

Santamaria ME, Rodriguez R, Canal MJ, Toorop PE. Transcriptome analysis of
chestnut (Castanea sativa) tree buds suggests a putative role for epigenetic
control of bud dormancy. Ann Botany. 2011;108(3):485-98.

. Falavigna VS, Porto DD, Buffon V, Margis-Pinheiro M, Pasquali G, Revers LF.

Differential transcriptional profiles of dormancy-related genes in apple buds.
Plant Mol Biol Report. 2014;32(4):796-813.

Andersen UB, Kjaer KH, Erban A, Alpers J, Hincha DK, Kopka J, et al. Impact
of seasonal warming on overwintering and spring phenology of
blackcurrant. Environ Exper Botany. 2017;140:96-109.

. Liu G, Li W, Zheng P, Xu T, Chen L, Liu D, et al. Transcriptomic analysis of

‘Suli” pear (Pyrus pyrifolia white pear group) buds during the dormancy by
RNA-Seq. BMC Genomics. 2012;13(1):700.

Park S, Keathley DE, Han K-H. Transcriptional profiles of the annual growth
cycle in Populus deltoides. Tree Physiol. 2008;28(3):321-9.

Arora R, Rowland LJ, Tanino K. Induction and release of bud dormancy
in woody perennials: a science comes of age. Hortscience. 2003;38(5):
911-21.

. Welling A, Palva ET. Molecular control of cold acclimation in trees.

Physiologia Plantarum. 2006;127(2):167-81.



Meger et al. BMC Genomics

130.

131.

132.

133.

134.

135.

136.

137.

138.

142.

143.

144.

145.

146.

147.

148.

149.

152.

153.

154.

155.

156.

(2021) 22:583

Hon W-C, Griffith M, Mlynarz A, Kwok YC, Yang DS. Antifreeze proteins in
winter rye are similar to pathogenesis-related proteins. Plant Physiol. 1995;
109(3):879-89.

Bray EA, Bailey-Serres J, Weretilnyk E. Responses to abiotic stresses. In:
Buchanan BB, Gruissem W, Jones RL, editors. Biochemistry and Molecular
Biology of Plants. Rockville: American Society of Plant Physiologists; 2000. p.
1158-203.

Rhodes D, Hanson A. Quaternary ammonium and tertiary sulfonium
compounds in higher plants. Ann Rev Plant Biol. 1993;44(1):357-84.
Horvath D. Bud Dormancy and Growth. In: Plant Developmental Biology -
Biotechnological Perspectives: Volume 1. Edited by Pua EC, Davey MR.
Springer, Berlin Heidelberg; 2010:53-70.

Dai C, Xue HW. Rice early flowering, a CKI, phosphorylates DELLA protein
SLR1 to negatively regulate gibberellin signalling. USA: EMBO J. 2010;29(11):
1916-27.

Ambrose JC, Shoji T, Kotzer AM, Pighin JA, Wasteneys GO. The Arabidopsis
CLASP gene encodes a microtubule-associated protein involved in cell
expansion and division. Plant Cell. 2007;19(9):2763-75.

Kirik V, Herrmann U, Parupalli C, Sedbrook JC, Ehrhardt DW, Hilskamp M.
CLASP localizes in two discrete patterns on cortical microtubules and is
required for cell morphogenesis and cell division in Arabidopsis. J Cell Sci.
2007;120(24):4416-25.

Hrmova M, Fincher GB. Structure-function relationships of 3-D-glucan endo-
and exohydrolases from higher plants. Plant Mol Biol. 2001,47(1):73-91.
Ball SG, Morell MK From bacterial glycogen to starch: understanding the
biogenesis of the plant starch granule. Ann Rev Plant Biol. 2003;54(1):207-33.

. Ueno S, Klopp C, Leple JC, Derory J, Noirot C, Leger V, et al. Transcriptional

profiling of bud dormancy induction and release in oak by next-generation
sequencing. BMC Genomics. 2013;14:236.

. Wang SY, Jiao HJ, Faust M. Changes in metabolic enzyme activities during

thidiazuron-induced lateral budbreak of apple. HortScience. 1991,26(2):171-3.

. Barzdajn W, Rzeznik Z. Wstepne wyniki miedzynarodowego do$wiadczenia

proweniencyjnego z bukiem (Fagus sylvatica L) serii 1993/1995 w Le$nym
Zakiadzie Doswiadczalnym Siemianice. Sylwan. 2002;146(2):149-64.

Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. Very high resolution
interpolated climate surfaces for global land areas. Int J Climatol. 2005;
25(15):1965-78.

Hijmans RJ, Guarino L, Mathur P. DIVA-GIS Version 7.5. Manual; 2012.
Husson F, Josse J, Le S, Mazet J, Husson MF. Package 'FactoMineR". An R
package. 2016,96:698.

Bro R, Smilde AK: Principal component analysis. Analytical Methods. 2014;
6(9):2812-31.

Kaur P, Gaikwad K. From genomes to GENE-omes: exome sequencing
concept and applications in crop improvement. Front Plant Sci. 2017,8:2164.
Carsjens C, Ngoc QN, Guzy J, Knutzen F, Meier IC, Muller M, et al. Intra-specific
variations in expression of stress-related genes in beech progenies are stronger
than drought-induced responses. Tree Physiology. 2014;34(12):1348-61.

Street NR, Skogstrom O, Sjodin A, Tucker J, Rodriguez-Acosta M, Nilsson P,
et al. The genetics and genomics of the drought response in Populus. Plant
J.200648(3):321-41.

Chen J, Tsuda Y, Stocks M, Kallman T, Xu N, Karkkainen K, et al. Clinal
variation at phenology-related genes in spruce: parallel evolution in FTL2
and Gigantea? Genetics. 2014,197(3):1025-38.

. Andrews S: FastQC: a quality control tool for high throughput sequence

data. software. Available online at: http://www.bioinformatics.babraham.ac.
uk/projects/fastqc. 2010.

. Martin M. Cutadapt removes adapter sequences from high-throughput

sequencing reads. EMBnet J. 2011;17(1):10-2.

Del Fabbro C, Scalabrin S, Morgante M, Giorgi FM. An extensive evaluation
of read trimming effects on Illumina NGS data analysis. PloS one. 2013;8(12):
e85024.

Li H, Durbin R. Fast and accurate short read alignment with burrows-
Wheeler transform. Bioinformatics. 2009;25(14):1754-60.

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence
alignment/map format and SAMtools. Bioinformatics. 2009;25(16):2078-9.
Kobayashi M, Ohyanagi H, Takanashi H, Asano S, Kudo T, Kajiya-Kanegae H,
et al. Heap: a highly sensitive and accurate SNP detection tool for low-
coverage high-throughput sequencing data. DNA Res. 2017;24(4):397-405.
Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, et al. The
variant call format and VCFtools. Bioinformatics. 2011;27(15):2156-8.

157

159.

160.

161.

162.

164.

165.

166.

167.

169.

170.

171.

173.

175.

176.

177.

178.

179.

180.

181.

Page 20 of 20

. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al.
PLINK: a tool set for whole-genome association and population-based
linkage analyses. Am J Human Genet. 2007;81(3):559-75.

. Chang CC, Chow CC, Tellier LCAM, Vattikuti S, Purcell SM, Lee JJ. Second-

generation PLINK: rising to the challenge of larger and richer datasets.

Gigascience. 2015;4(1):7 s13742-13015-10047-13748.

Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, et al. A program

for annotating and predicting the effects of single nucleotide

polymorphisms, SnpEff. Fly. 2012;6(2):80-92.

Kent WJ. BLAT - the BLAST-like alignment tool. Genome Res. 2002;12(4):656-64.

Wu TD, Watanabe CK. GMAP: a genomic mapping and alignment program

for mRNA and EST sequences. Bioinformatics. 2005;21(9):1859-75.

Yi X, Liang Y, Huerta-Sanchez E, Jin X, Cuo ZXP, Pool JE, et al. Sequencing of

50 human exomes reveals adaptation to high altitude. Science. 2010;

329(5987):75-8.

. Rearick D, Prakash A, McSweeny A, Shepard SS, Fedorova L, Fedorov A.

Critical association of ncRNA with introns. Nucleic Acids Res. 2011;39(6):

2357-66.

Fahrenkrog AM, Neves LG, Resende MFR, Vazquez Al, de los Campos G,

Dervinis C, et al. Genome-wide association study reveals putative

regulators of bioenergy traits in Populus deltoides. New Phytologist.

2017,213(2):799-811.

Dou JZ, Wu DG, Ding L, Wang K, Jiang MH, Tai ES, et al. Using off-target

data from whole-exome sequencing to improve genotyping accuracy,

association analysis, and polygenic risk prediction. Genet Epidemiol. 2020;

44(5):524-5.

Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing

genomic features. Bioinformatics. 2010;,26(6):841-2.

Talevich E, Shain AH, Botton T, Bastian BC. CNVkit: Genome-Wide Copy

Number Detection and Visualization from Targeted DNA Sequencing. PLoS

Comput Biol. 2016;12(4):e1004873.

. Zhao LL, Liu H, Yuan XG, Gao K, Duan JB. Comparative study of whole

exome sequencing-based copy number variation detection tools. BMC

Bioinformatics. 2020;21(1):97.

Liu KJ, Muse SV. PowerMarker: an integrated analysis environment for

genetic marker analysis. Bioinformatics. 2005;21(9):2128-9.

Pritchard JK, Stephens M, Donnelly P. Inference of population structure

using multilocus genotype data. Genetics. 2000;155(2):945-59.

Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of

individuals using the software STRUCTURE: a simulation study. Mol Ecol.

2005;14(8):2611-20.

. Earl DA, Vonholdt BM. STRUCTURE HARVESTER: a website and program for

visualizing STRUCTURE output and implementing the Evanno method.

Conservation Genet Resourc. 2012;4(2):359-61.

Frichot E, Schoville SD, Bouchard G, Francois O. Testing for associations

between loci and environmental gradients using latent factor mixed

models. Mol Biol Evol. 2013;30(7):1687-99.

. Lotterhos KE, Whitlock MC. The relative power of genome scans to detect

local adaptation depends on sampling design and statistical method. Mol

Ecol. 2015;24(5):1031-46.

Glnther T, Coop G. Robust identification of local adaptation from allele

frequencies. Genetics. 2013;195(1):205-20.

Frichot E, Frangois O. LEA: AnRpackage for landscape and ecological

association studies. Methods Ecol Evol. 2015;6(8):925-9.

Browning SR. Missing data imputation and haplotype phase inference for

genome-wide association studies. Human Genetics. 2008;124(5):439-50.

Marchini J, Howie B. Genotype imputation for genome-wide association

studies. Nat Rev Genet. 2010;11(7):499-511.

Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D,

Minchin PR, O'Hara RB, Simpson GL, P Solymos et al. vegan: Community

Ecology Package. R package v.2.5-7. 2020. https://cran.r-project.org/web/pa

ckages/vegan/indexhtml.

Van Den Wollenberg AL. Redundancy analysis an alternative for canonical

correlation analysis. Psychometrika. 1977;42(2):207-19.

Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carre G, et al.

Collinearity: a review of methods to deal with it and a simulation study

evaluating their performance. Ecography. 2013,36(1):27-46.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.


http://www.bioinformatics.babraham.ac.uk/projects/fastqc
http://www.bioinformatics.babraham.ac.uk/projects/fastqc
https://cran.r-project.org/web/packages/vegan/index.html
https://cran.r-project.org/web/packages/vegan/index.html

	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Environmental variables
	Phenotypic variables
	Sequence capture data
	Genetic diversity and structure
	Detection of outliers using LFMM
	Detection of outlier loci based on redundancy analysis
	Effect of geography, phenology and climate on adaptive genetic variation
	Additive polygenic scores
	Candidate SNPs under selection at a finer scale
	Functions of genes with significant SNPs

	Discussion
	Methodological constraints
	Genetic diversity and population structure
	Detection of loci affected by selection
	Additive effect of outliers on environmental and phenotypic correlations
	Differentiation processes in European beech at regional scale
	Physiological importance of the genes under selection

	Conclusions
	Material and methods
	Plant material
	Environmental data
	Phenotypic variables
	DNA isolation, candidate genes and genotyping
	Copy number assessment
	Genetic diversity and structure
	Detection of outliers using LFMM
	Redundancy analysis to detect outlier loci
	Additive polygenic scores
	Effect of geography, climate and phenotype on adaptive genetic variation

	Supplementary Information
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Declarations
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	References
	Publisher’s Note

