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Abstract
Most existing statistical methods developed for calling single nucleotide polymorphisms

(SNPs) using next-generation sequencing (NGS) data are based on Bayesian frameworks,

and there does not exist any SNP caller that produces p-values for calling SNPs in a fre-

quentist framework. To fill in this gap, we develop a new method MAFsnp, a Multiple-sample

based Accurate and Flexible algorithm for calling SNPs with NGS data. MAFsnp is based

on an estimated likelihood ratio test (eLRT) statistic. In practical situation, the involved

parameter is very close to the boundary of the parametric space, so the standard large sam-

ple property is not suitable to evaluate the finite-sample distribution of the eLRT statistic.

Observing that the distribution of the test statistic is a mixture of zero and a continuous part,

we propose to model the test statistic with a novel two-parameter mixture distribution. Once

the parameters in the mixture distribution are estimated, p-values can be easily calculated

for detecting SNPs, and the multiple-testing corrected p-values can be used to control false

discovery rate (FDR) at any pre-specified level. With simulated data, MAFsnp is shown to

have much better control of FDR than the existing SNP callers. Through the application to

two real datasets, MAFsnp is also shown to outperform the existing SNP callers in terms of

calling accuracy. An R package “MAFsnp” implementing the new SNP caller is freely avail-

able at http://homepage.fudan.edu.cn/zhangh/softwares/.

Introduction
The development of next-generation sequencing (NGS) technologies in the past few years has
transformed today’s biological science [1]. With cheap and ultra-high throughput characteris-
tics [2], the NGS technologies have been widely applied to a vast number of biological branches
[3–7]. Many projects such as the 1000 Genomes Project [8, 9], the Cancer Genome Atlas Proj-
ect [10], the NHLBI Exome Sequencing Project [11] have been carried out, trying to elucidating
all forms of human hereditary polymorphism. Single-nucleotide polymorphisms (SNPs) are
commonly seen in many conceivable biological processes such as microRNA binding site [12],
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transcriptional regulation [13], protein coding [14], and so on. Detecting SNPs has been con-
sidered as an essential step in NGS data analysis.

A variety of SNP calling tools have been developed to identify SNPs using single or multiple
sample(s) [15–22]. Based on a Bayesian rule, MAQ [15] assumes that there are at most two
alleles at a locus and reports posterior probabilities of three possible genotypes for each indivi-
dial. A SNP is called if a heterozygous genotype or homozygous variant genotype is reported.
SOAPsnp [16] is based on another Bayesian model for ten possible genotypes, and prior infor-
mation such as dbSNP [23] can be integrated into this SNP caller. VarScan [17] calls SNPs
with several filters on coverage, quality, variant frequency, and strand-specific depths. MAQ,
SOAPsnp, and VarScan are applicable to a single sample or pooled samples, but it is difficult
for them to efficiently utilize the NGS data of multiple samples to call SNPs. An increasing
number of tools have been developed to call SNPs using NGS data from multiple samples.
seqEM [18] is a genotype caller utilizing multi-sample NGS data in a Bayesian framework,
which can also be used to call SNPs. QCALL [19] effectively utilizes linkage disequilibrium
information to call SNPs with multi-sample low coverage data. Atlas-SNP2 [20] adopts a
Bayesian approach for multiple samples to call SNPs based on a logistic regression model for
mapping/sequencing error. To call SNPs using either single-sample or multi-sample NGS data,
both GATK [21] and SAMtools [22] use a Bayesian rule to infer the posterior probability of
being a SNP followed by a tedious filtering step.

In each of the above SNP callers, either quality score or posterior probability is provided as
a measure of confidence of being a SNP, and some threshold of the quality score or posterior
probability is suggested for calling SNPs. Unfortunately, it is hard for users to determine their
own threshold in these SNP callers to control required false discovery rate (FDR). It is thus
desired to have a statistical method providing a p-value (a commonly used measure of signifi-
cance measure for general hypothesis testing) for each candidate locus, which can be easily
used to control FDR. MAFsnp, a Multi-sample Accurate and Flexible SNP caller, is designed in
this article for this purpose.

MAFsnp is based on a likelihood function for the NGS read counts from multiple samples,
and the SNP calling issue is transformed into a hypothesis testing problem on the minor allele
frequency (MAF) for each candidate locus, then an estimated likelihood ratio test (eLRT) sta-
tistic is used to detect SNPs. The null distribution of the eLRT statistic is essential in calculating
a p-value. Note that the eLRT statistic is a function of mapping/sequencing error rate and
minor allele frequency. Because the mapping/sequencing error rate is usually very small and it
is close to the boundary of the parameter space, the finite sample distribution of the eLRT sta-
tistic could greatly deviate from the standard limiting distribution. Through extensive simula-
tions, we find that the test statistic is a mixture distribution of zero and a continuous
distribution. We propose to approximate the distribution of the continuous part with a scaled
chi-square distribution. An algorithm is then developed to estimate the scale parameter and
the proportion of zero part, and p-values for detecting SNPs follows immediately. Using these
p-values, multiple-testing corrected p-values can be easily obtained to control FDR. One key
feature of MAFsnp is that it only uses summarized read count data. As a result, MAFsnp is
applicable to the NGS data generated from any sequencing platform.

The rest of this article is organized as follows. First, a new distribution family is used to
model the read count data with mapping/sequencing error, and a rigorous statistical method is
developed to call SNPs based on this model. Second, a simulation study is conducted to evaluate
the performance of MAFsnp and several existing SNP callers, which demonstrates that MAFsnp
could have much better control of FDR than the competitors. For example, in one of our simula-
tion situations, the FDRs of SAMtools, GATK, MAQ, seqEM, andMAFsnp were 8.7 × 10−5,
0.157, 0.003, 0.061, and 0.011, repectively (nominal FDR level = 0.01). Third, the application to
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two real datasets further verifies that MAFsnp could outperform the competitors in terms of
calling accuracy. For example, based on a fragment of public sequencing data, the accuracy of
MAFsnp was 91.2%, compared with 31.7%, 59.0%, 90.3%, and 88.8% by seqEM, MAQ, GATK,
and SAMtools, respectively. Finally, some concluding remarks are given in Discussion.

Methods

Notation and model
Wewill transform the SNP calling issue into a hypothesis testing problem. In our method, we
only consider diploid organisms, and we only use read counts mapped to a reference genome. For
any nucleotide locus, denote by R and r the reference allele and variant allele, respectively. Let p
denote the frequency of the variant allele r in a general population, which is called minor allele fre-
quency (MAF) throughout this article. By definition, a locus is a SNP if and only if p> 0. There-
fore, the SNP calling issue can be transformed into the following hypothesis testing problem:

H0 : p ¼ 0 versus Ha : p > 0: ð1Þ

Suppose that we have J nucleotide loci. For the jth locus with reference allele Rj and variant
allele rj, let pj denote its MAF (the population frequency of rj). We assume that the Hardy-
Weinberg equilibrium holds, so that the population frequencies of the genotypes Rj Rj, Rj rj,
and rj rj are (1 − pj)

2, 2pj(1 − pj), and p2j , respectively. Suppose that read counts are available

from n independent samples. For the jth (j = 1, . . ., J) locus of the ith (i = 1, . . ., n) sample, let
Gij denote the unknown genotype, Nij the total number of reads, and Xij the number of variant
reads. LetNj = (Nj1, � � �, Njn)

T and Xj = (Xj1, � � �, Xjn)
T. Because of mapping/sequencing error,

the genotype rj rj or Rj rj could be observed even if the the nucleotide locus is not a SNP. As
done in literature [18], we assume that the mapping/sequencing error is symmetric, i.e.,

Pr ðread ¼ Rjtrue allele ¼ rÞ ¼ Pr ðread ¼ rjtrue allele ¼ RÞ:
Let ej denote the common mapping/sequencing error rate at the j locus, and let θj = (ej, pj)
denote the unknown parameter vector for the jth locus. It is reasonable to assume that the
observed number of variant reads follows a binomial distribution given the true genotype and
the total number of reads,. Therefore, we have the following log-likelihood function for the
observed read counts:

ljðyj;Xj;NjÞ ¼
Xn
i¼1

log Pr ðXij;GijjNij; yjÞ;

¼
Xn
i¼1

log p2j BðXij;Nij; 1� ejÞ þ 2pjð1� pjÞBðXij;Nij; 0:5Þ
n

þð1� pjÞ2BðXij;Nij; ejÞ
o
;

ð2Þ

where

BðXij;Nij; ejÞ ¼
Nij

Xij

 !
e
Xij
j ð1� ejÞNij�Xij

is the probability mass function of the binomial distribution with trial number Nij and success-
ful probability ej. The likelihood ratio test (LRT) statistic for tesing H0 : pj = 0 is

2 max
ej;pj

ljððej; pjÞ;Xj;NjÞ � max
ej

ljððej; 0Þ;Xj;NjÞ
� �

: ð3Þ
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Note that the maximum lieklihood estimator (MLE) of θj under H0 has a closed form: ~y j ¼
ð~ej; 0Þ with ~ej ¼

P
iXij

P
iNij

.
. The evaluation of the LRT statistic Eq (3) involves maximizing

the log-likelihood function with respect to a 2-dimensional parameter vector. We found
through a preliminary simulation study that the conventional algorithms designed for finding
local a maximizer/minimizer are usually slow to converge. To avoid this problem, we consider
the following eLRT statistic defined by

Tj ¼ 2 max
pj

ljðð~ej; pjÞ;Xj;NjÞ � ljðð~ej; 0Þ;Xj;NjÞ
� �

: ð4Þ

Through our preliminary simulation study, we find that the power of this eLRT is very close to
that of the original LRT, but the computational speed of the former is about 120 times that of
the later. Therefore, we propose to use Eq (4) instead of Eq (3).

Null distribution of the eLRT statistic
The null distribution of the eLRT statistic is essential for calculating p-values. According to the
standard large sample theory, the limiting null distribution of Tj is a centralized chi-square dis-
tribution (mixed chi-square distribution) provided that the true parameter vector under the
null hypothesis is an inner point (on the boundary) of the parameter space and some other reg-
ularity conditions hold. In our model, the parameter vector under the null hypothesis is on the
boundary of the parameter space, and the limiting null distribution of Tj is a mixture of 0 and
the centralized chi-square distribution of 1 df [24]:

D0:5;1 ≔ 0:5 � 0þ 0:5 � w21: ð5Þ

In real situation, the mapping/sequencing error rate is typically small. For example, the map-
ping/sequencing error rate is around 0.01 for the Illumina Hiseq 2000 platform. As a result, the
finite sample null distribution of Tj could greatly deviate from the limiting distribution Eq (5).
In some of our preliminary simulations, we find that the proportion of zero part (Tj = 0) could
be very close to 1, and the non-zero part of Tj could also deviate from the chi-square distribu-
tion w21. Motivated by this observation, we propose to approximate the null distribution of Tj by
the following modified mixture distribution:

Da;k ≔ a � 0þ ð1� aÞ � ðkw21Þ; ð6Þ

where kw21 is a scaled chi-square distribution with expectation k. Obviously, D0.5,1 is a special
case of Da,k. The p-value based on the distribution Da,k is ð1� aÞw2

1ðTj=kÞ, where w21ðxÞ is the
upper x-quantile of the chi-square distribution of 1 df. For convenience, hereafter, the methods
based on D0.5,1 and Da,k are called MAFsnp0 and MAFsnp, respectively.

We can theoretically show that a could be much bigger than 0.5 under some simple condi-
tions. For example, with a constant coverage of N = 2, a mapping/sequencing error rate of
e = 0.01, and a sample size of n = 100, the proportion of zero part of Tj (i.e., a) is approximatly
0.99. Refer to Theorems 1 and 2 in S1 Method for details. In the general situation, we can esti-
mate a and k using genewise information. To this end, we first identify J null loci that are not
SNPs. In practice, some SNP information can be obtained from a public database like dbSNP
[23], and the remaining loci can be treated as null loci since most of them should not be SNPs.
Let J0 be the number of null loci with Tj = 0, then we can estimate a by

â ¼ J0
J
:
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Let the positive values of test statistics for the other J − J0 null loci be ~T s (s = 1, . . ., J − J0), then
we can estimate k with

k̂ ¼ 1PJ�J0
s¼1 1fTs�15g

XJ�J0

s¼1

~T s1fTs�15g;

where 1{Ts � 15} = 1 if Ts � 15 and 0 othewise. Here we use a trimmed sample mean instead of
the ordinary sample mean. This can effectively reduce the impact of large outliers. The thresh-
old 15 is around the upper 10−4 quantile of the chi-square distribution of 1 df, so that very few

non-outliers would be excluded for calculating k̂.

Comparison metrics
In our simulation studies, we will compare the performance of the considered SNP callers
through FDR. Here FDR represents the fraction of non-SNPs in the positive SNP list. Given a
list of p-values for detecting SNPs, FDR corrected p-values can be obtained using the R func-
tion “p.adjust” for the purpose of controlling FDR. A good SNP caller should have its FDR con-
trolled around the nominal level. In literature, precision is defined as 1 minus FDR. Among all
SNP callers with the same precision, the one with highest recall (true positive rate) would be
preferred.

It is impossible to have a SNP caller with both precision and recall uniformly larger than
other SNP callers. The following F1 score is commonly used to balance precision and recall:

F1 ¼ 2 � precision � recall
precisionþ recall

: ð7Þ

It is seen that 0� F1 � 1, and the F1 score serves as a measure of accuracy, that is, a larger
value of F1 score suggests a higher accuracy.

For simulated data, precision and recall at any given threshold of p-values can be calculated
because the SNP information is known in advance. As a result, a precision-recall curve can be
drawn for any SNP caller provided p-values are available. Hereafter, the maximal F1 score on
the recision-recall curve is termed Fmax. For any real dataset, the true SNPs might be unknown,
but we can use the SNP information in the dbSNP as a reference, and precision and recall can
be correspondingly estimated.

Transition/transversion (Ti/Tv) ratio is shown to be another useful index indicating false
positive rate (FPR) in practice [21]. Transitions are interchanges of two-ring purines base (A
$ G) or one-ring pyrimidines (C$ T), while transversions are interchanges of purine for
pyrimidine bases. Recent human studies show that the Ti/Tv ratio for whole human genome is
around 2.0*2.1 [9]. Generally, a higher Ti/Tv ratio implies a lower FPR.

Data simulation
The inputs of the SNP callers seqEM and MAFsnp are counts of the reads mapped to a refer-
ence, while SAMtools, GATK, and MAQ only accept BAM/SAM/cns files containing mapped
sequence reads. Note that seqEM and MAFsnp also accept mapped sequence reads since the
reads can be counted for each nucleotide locus. Accordingly, we considered generating both
read count data and sequence data. The counts data were generated from binomial distribu-
tions, while the sequence data were generated using the module wgsim in SAMtools.
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Read count data
In order to assess the performance of MAFsnp, MAFsnp0, and seqEM, we generated read
counts for various combinations of parameters e, p, n, and N by assuming Hardy-Weinberg
equilibrium. To mimic real situations, the setup of parameters we considered are as follows:

• Mapping/sequencing error rate e. The mapping/sequencing error rate e across the genome
was generated from a truncated normal distribution, i.e. e*max{0, N(μ, σ2)}, where μ was
either 10−2 or 10−3, and σ2 = 10−6.

• MAF p. To mimic rare variants, less rare variants, and common variants, we generated p
across the genome from the uniform distributions U(0.001, 0.01), U(0.01, 0.05), and U(0.05,
0.1), respectively. Futhermore, p = 0 for all non-SNPs.

• Sample size n. We considered various sample sizes: 50, 100, 200, 500.

• Read coverage N. The read coverage N across n samples follows the generalized Poisson dis-
tribution with expectation μ and the dispersion parameter λ defined by the expectation
divided by the variance. This distribution reduces to the Poisson distribution if λ = 1, and a
variance overdisperion is present if λ< 1. We considered various expectations: μ = 5, 10, 20,
and 30, and fixed λ at 0.4. Here the dispersion parameter 0.4 was evaluated through two real
NGS datasets from the “1000 genomes project” [8, 9].

Since the proportion of SNPs on the human genome is approximately 1%, we simulated read
counts of 5 × 103 SNP loci for each of 2 × 3 × 4 × 4 = 96 parameter combinations (p 6¼ 0) and read
counts of 5 × 105 non-SNP loci for each of 2 × 1 × 4 × 4 = 32 parameter conbinations (p = 0).

Sequence Data
We used NGS reads generated by the module wgsim in SAMtools to compare the performance
of all considered SNP callers.

Given a reference sequence, wgsim can generate pair-end reads in fastq format. We
extracted a reference sequence with a length of 1.9 × 106 bp from the chr20q13.32 region of
human reference genome (version: GRCh37 of NCBI [25]). The parameters in wgsim were
specified below:

• Base error rate = 0.001, 0.005, or 0.01.

• Number of read pairs = 6.8 × 104, 1.4 × 105, or 2.7 × 105. These numbers corresponded to
mean coverages 5, 10, and 20, respectively.

We adopted all default setting in wgsim: average read length = 70 bp, outer distance between
two ends = 500, mutation rate = 0.001, percentage of SNPs among mutations = 85%. For each
combination of base error rate and read number, we generated reads for 50 and 100 samples,
separately, which resulted in 18 multi-sample datasets.

BWA [26] was used to align the simulated sequence reads onto the reference and to obtain a
bam file for each sample. Multi-sample calling mode was used when calling SNPs using GATK
and SAMtools. Read counts were extracted from the bam files, which were used as inputs of
seqEM andMAFsnp. Algorithms implemented in MAQ was used to align simulated sequence
reads and then to call SNPs. The detailed parameters for these softwares are given in S2 Method.

Real Data
The 1000 Genomes Project (1KGP) [8] sequenced more than 1000 individuals of diverse popu-
lations, aiming at establishing by far the most detailed catalogue of human genetic variation.
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We utilized two groups of sequence data from 1KGP, i.e. the whole genome sequencing data of
156 randomly chosen Asian people (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data/) and the
targeted exon sequencing data of 110 Asian people (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/
technical/pilot3_exon_targetted_GRCh37_bams/data/). All the samples were sequenced on
Illumina platforms, the reads were aligned using BWA, and duplicates were removed using
PICARD [21]. A brief description of the datasets is given to Table 1. We used a fragment of
length 500Kb on chromosome 20 (position: 57,500,001* 58,000,000) for both whole genome
data and target exon sequence data. This fragment also covers the ‘chr20q13.32’ region used in
the simulated sequence data. A simple read filter was performed before seqEM and MAFsnp
were applied to the data. To use MAQ, all downloaded files were firstly converted to fastq files
using ‘bam2fastq’ (http://gsl.hudsonalpha.org/information/software/bam2fastq) and alignment
was performed using MAQ. On the other hand, the multi-sample calling modes of GATK and
SAMtools used bam files as input. For comparison, we utilized dbSNP build 137 as a standard
reference.

Simulation results

Read count data
First we evaluate the finite sample null distribution of Tj, i.e. Da,k. Accurate estimates of a (zero
proportion of Tj) and k (expectation of non-zero part of Tj) are essential in calculating the p-
value for SNP calling by MAFsnp. The distribution of the non-zero part of Tj is compared with
the chi-square distribution w21 via a Q-Q plot (S1 and S2 Figs). It is seen that w2

1 fits Tj pretty
well when the mapping/sequencing error rate e = 0.01 across all considered coverages and sam-
ple sizes. With a small mapping/sequencing error rate (e = 0.001) and a low coverage (N = 5),
the fitting gets poorer. This might be due to the fact that the counts are too small in such situa-
tion. Actually, the distribution of Tj becomes rather dicrete as shown in the Q-Q plot. The esti-

mated a and k, i.e., â and k̂, are presented in S1 Table. In all situations, the â’s are much greater
than the theoretical value 0.5, with a mean value of 0.977. This result coincides with Theorems
1 and 2 in S1 Method. It is also noted that â is increasing in the coverage N, as shown in Fig 1
(A). This is easy to explain: as the coverage N increases, it is more likely that 0 is the maximizer
of the pseudo likelihood function under the null hypothesisH0:p = 0, which results in a larger

a. The correlation between â and e is not that evident (Fig 1(B)). On the other hand, k̂ has a
mean value of 0.976 across the 32 datasets, which is very close to the theoretical value 1. We

observe an evident increasing trend of k̂ in both coverage N and error rate e, see Fig 1(C) and 1
(D) for details. In summary, the approximated distribution Da,k of Tj greatly deviates from the
limiting one D0.5,1.

Next we compare the performance of MAFsnp0 and MAFsnp in terms of FDRs and powers.
The boxplot of FDRs and powers across 96 simulated datasets are presented in Fig 2(A) and 2
(B). It is seen that the empirical FDRs of MAFsnp are virtually close to the nominal levels

Table 1. Description of real datasets (1000 Genomes Project).

Size Population (sample size) Mean coverage

Whole genome 156 CHS(71),CDX(3),CHB(49),JPT(33) 4.7×

Targeted exon 110 CHD(32),CHB(17),JPT(61) 2.4×

CHB, Han Chinese; CDX, Dai Chinese; CHD, Denver Chinese; CHS, Southern Han Chinese; JPT,

Japanese.

doi:10.1371/journal.pone.0135332.t001
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(Fig 2(A)), with median values being 0.011, 0.050, and 0.098 at nominal levels 0.01, 0.05, and
0.1, respectively. On the other hand, the empirical FDRs of MAFsnp0 are much smaller than
the nominal levels, with median values being 0.000, 0.001, and 0.002 at nominal levels 0.01,
0.05, and 0.1, respectively. This indicates that MAFsnp0 is quite conservative. As a result,
MAFsnp is much more powerful than MAFsnp0 (Fig 2(B)).

Finally we compare the F1 scores of MAFsnp (nominal level = 0.01) and seqEM. For com-
parison purpose, the maximal F1 value on the precision-recall curve, i.e., Fmax, is calculated. All
F1 values are displayed in Fig 3. It is seen that the F1 values of MAFsnp are only slightly smaller
than Fmax, and MAFsnp almost uniformly outperforms seqEM.

Fig 1. The relationship between (â, k̂) and (mean coverageN, error rate e). (A) Scatterplot of â vs. N; (B) Scatterplot of â vs. e; (C) Scatterplot of k̂ vs. N;

(D) Scatterplot of k̂ vs. e.

doi:10.1371/journal.pone.0135332.g001
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Sequence Data
Similar to the analysis of simulated read count data, we first check the estimation results for Da,

k. S3–S5 Figs show how well the fitting of chi-square distribution is for various parameters
combinations, and S2 Table gives the detailed estimates of a and k. It is seen that w2

1 fits Tj very
well with e = 0.005 or 0.01, while the fitting is slightly poor with e = 0.001. These results are in
accordance with those for the read count data. As is seen in S2 Table, â has a mean value of

0.978, which is again much greater than the limiting value 0.5; on the other hand, k̂ is generally
greater than the theoretial value 1, especially when the coverage N gets larger.

Then we compare the empirical FDRs and powers of MAFsnp and MAFsnp0. As is shown
in Fig 2(C) and 2(D), MAFsnp0 is quite conservative while MAFsnp has a much better control

Fig 2. Boxplot of FDRs and powers for MAFsnp0 and MAFsnp at nominal FDR level α = 0.01, 0.05, 0.1. (A) Boxplot of FDRs with 96 read count
datasets; (B) Boxplot of powers with 96 read count datasets; (C) Boxplot of FDRs with 18 sequence read datasets; (D) Boxplot of powers with 18 sequence
read datasets.

doi:10.1371/journal.pone.0135332.g002
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Fig 3. F1 scores of MAFsnp (α = 0.01) and seqEM for read count data.

doi:10.1371/journal.pone.0135332.g003

AMulti-Sample Accurate and Flexible SNP Caller Using NGS Data

PLOS ONE | DOI:10.1371/journal.pone.0135332 August 26, 2015 10 / 15



of FDR. For example, at nominal level 0.05, the median empirical FDR of MAFsnp0 is 0.006
while that of MAFsnp is 0.043. Again, MAFsnp is much more powerful than MAFsnp0. For
example, at nominal level 0.05, the median power of MAFsnp is 0.927, which is much higher
than 0.857 for MAFsnp0.

In what follows, we compare the results of the SNP callers SAMtools, GATK, MAQ,
seqEM, and MAFsnp at nominal level 0.01. The empirical FDRs, powers, and F-scores are pre-
sented in S3–S5 Tables. MAFsnp has empirical FDRs well controlled around the nominal level
0.01, with a median value 0.010. The empirical FDRs of SAMtools and MAQ are much
smaller, with median values 2.0 × 10−5 and 3.1 × 10−3, respectively. On the other hand, GATK
and seqEM have much larger FDRs, with median values 0.182 and 0.155, respectively. Next
we compare the powers of the considered SNP callers. SeqEM ranks the first with a median
power of 0.955, but it has much larger FDRs as a trade off. MAFsnp ranks the second, with a
median power value of 0.885. MAQ and SAMtools comes the next due to smaller FDRs, with
median powers 0.855 and 0.775, respectively. Surprisingly, GATK is least powerful with a
median power of 0.775, though it has the largest FDRs in general. Finaly, we compare the F1
scores that balance precisions and recalls. MAFsnp has the highest median F1 score of 0.935,
which is close to Fmax (= 0.945). SeqEM, SAMtools and GATK have lower F1 scores (median
values are 0.920, 0.890, 0.875, and 0.785, respectively) due to either too small FDRs or too
large FDRs. In summary, MAFsnp has empirical FDRs well controlled around the nominal
level. Meanwhile, MAFsnp has the best balance of precisions and recalls.

Real Data Applications
For real data, we do not know which variants are true SNPs, so the comparison metrics would
be different from those for simulation data. Following [21], we considered three comparison
metrics: 1) number of called SNPs, 2) proportion of called SNPs in dbSNP (build 137), and 3)
Ti/Tv ratio for called SNPs. The second metric is referred to as calling accuracy from now. We
fixed the nominal level at 0.01 in MAFsnp.

Whole Genome Sequencing Data of 156 Asian People
This dataset has an overall mean coverage of about 4.7×, which is a classic representation of low
coverage data. The SNP calling results of seqEM, MAQ, GATK, SAMtools, and MAFsnp are
reported in Table 2. GATK, SAMtools and MAFsnp called comparable numbers of SNPs (around
1700 SNPs). MAFsnp has a higher calling accuracy (91.2%) than GATK (90.3%) and SAMtools
(88.8%). Particularly, of 1699 SNPs called by MAFsnp, 1550 were found in dbSNP, while GATK
called 10 more SNPs than MAFsnp but only 1544 were found in dbSNP. As previously men-
tioned, Ti/Tv ratio is a useful index in real sequence data analysis, and a higher Ti/Tv ratio is an
indicator of a lower false positive rate. SAMtools has the largest Ti/Tv ratio, which is 2.329 for all
called SNPs, 2.453 and 1.492 for known and novel SNPs, respectively. MAFsnp ranks the next,
with a Ti/Tv ratio of 2.299 for all called SNPs, and 2.422 and 1.403 for known and novel SNPs,
respectively. GATK has a smaller Ti/Tv ratio than SAMtools and MAFsnp. Compared with
GATK, SAMtools, and MAFsnp, the other two SNP callers seqEM andMAQ called more SNPs
(5351 and 2768, respectively) but had much lower calling accuracies (31.7% and 59.0%, respec-
tively). Furthermore, seqEM andMAQ have much smaller Ti/Tv ratios than GATK, SAMtools,
and MAFsnp. In summary, MAFsnp achieves the best balance between calling accuracy.

Targeted Exon Sequencing Data of 110 Asian People
The average coverage is 2.4× for this targeted exon sequencing dataset. The SNP calling results
are again presented in Table 2. As in the whole genome dataset, seqEM and MAQ called more
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SNPs than the other three methods, but had much lower calling accuracy and Ti/Tv ratio.
GATK called least SNPs, with a number of only 171, compared with 585 by SAMtools and 470
by MAFsnp. Although both calling accuracy and Ti/Tv ratio are highest, GATK is evidently
most conservative. MAFsnp called 470 SNPs, which is smaller than 585 by SAMtools, but the
calling accuracy of MAFsnp (86.2%) is much higher than that of SAMtools (74.0%). Although
the overall Ti/Tv ratio of MAFsnp, 1.749, is slighly lower than that of SAMtools, the Ti/Tv
ratio of MAFsnp for known SNPs is slightly higher. Overall, in this dataset, MAFsnp again
achieves the best balance between number of called SNPs, calling accuracy, and Ti/Tv ratio.

Discussion
Sequencing a large sample of individuals is a trend in NGS studies. Most existing SNP callers
are based on Bayes frameworks, which cannot control FDR at desired nominal levels. We pro-
pose a novel multiple-sample SNP caller “MAFsnp” based on a likelihood model. In MAFsnp,
the SNP calling issue is transformed into a hypothesis testing problem in a frequentist frame-
work, so that a list of p-values can be obtained, which can be used to call SNPs by controlling
FDR at any given nominal level.

In this article, we propose a new SNP caller MAFsnp by using a eLRT statistic and approxi-
mating the null distribution of the statistic with a novel distribution Da,k. The simulation
results of both read count data and sequence data demonstrate that the new distribution Da,k

has a much better control of FDRs compared with the conventional limiting distribution D0.5,1.
The performance of MAFsnp is compared with those of some existing SNP callers through
both simulated data and two real datasets. For the simulated read count data, MAFsnp outper-
forms seqEM in almost all situations; for the simulated sequence data, MAFsnp has a better
balance of precisions and recalls than SAMtools, GATK, seqEM, and MAQ. In the application
to two real datasets with low coverage, MAFsnp is demonstrated to have a better performance
compared with the other SNP callers and achieves a good balance between the number of called
SNPs, calling accuracy, and Ti/Tv ratio.

MAFsnp has several features. First, MAFsnp is the first NGS data based SNP caller that pro-
vides p-values for calling SNPs. Second, a pseudo-likelihood function is adopted to greatly speed

Table 2. SNP calling results of seqEM, MAQ, GATK, SAMtools, and MAFsnp for the 1000 Genomes Project data.

Number of called SNPs CA(%)a Ti/Tv Ratiob

All Known Novel All Known Novel

Whole genome seqEM 5351 1698 3653 31.7 1.232 2.225 0.878

MAQ 2768 1632 1136 59.0 1.582 2.372 0.889

GATK 1709 1544 165 90.3 2.276 2.393 1.429

SAMtools 1762 1564 198 88.8 2.329 2.453 1.592

MAFsnpc 1699 1550 149 91.2 2.299 2.422 1.403

Targeted exon seqEM 950 348 602 36.6 1.263 2.48 0.612

MAQ 654 356 298 54.4 1.389 2.594 0.383

GATK 171 156 15 91.2 1.803 2.12 0.364

SAMtools 585 433 152 74.0 1.763 2.305 0.875

MAFsnpc 470 405 65 86.2 1.749 2.375 0.275

aCalling accuracy;
btransition/transversion ratio;
cnominal FDR level = 0.01.

doi:10.1371/journal.pone.0135332.t002
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up calling speed. Third, a novel distributionDa,k is proposed to approximate the null distribution
of the eLRT statistic. Forth, MAFsnp is based on read count data, making it applicable to all types
of sequence data. Fifth, MAFsnp avoids a tedious filtering procedure used in Bayesian methods.

The proposed distribution Da,k has potentially wide application areas in many biologic
research circumstances where associated parameters are on/near the boundary of parameter
space. For example, in genetic association studies, the question of interest is to compare the
allele frequencies between cases and controls. For rare variants, the allele frequencies are close
to zero, i.e, the boundary of the parameter space. The distribution Da,k could searve as a good
null distribution of the conventional test statistics for association testing. The Hardy-Weinberg
equilibrium is assumed in MAFsnp, which uses a single parameter (i.e. MAF p) to characterize
the genotype frequencies. This assumption could be relaxed by introducing two parameters,
i.e., the frequencies of RR and Rr, denoted by pRR and pRr. The corresponding hypothesis test-
ing problem can be modified as H0 : pRR = 1 versus H1 : pRR < 1.

The speed of MAFsnp depends on coverage, sample size, and number of nucleotide loci. For
the whole genome dataset analyzed in this article (average coverage was* 4.7×, sample size
was 156), it took a 3.20GHz CPU laptop computer about 2.5 minutes to call SNPs from 500k
nucleotide loci. It could take a longer time to call SNPs when the covarage gets lower. For the
targeted exon dataset we analyzed (average coverage was* 2.4×, sample size was 110), it took
the computer 18 minutes to call SNPs from 500k nucleotide loci. An R package implementing
MAFsnp is available publicly at http://homepage.fudan.edu.cn/zhangh/softwares/.
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