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Abstract: This study evaluates numerous epidemiological, environmental, and economic factors
affecting morbidity and mortality from PM2.5 exposure in the 27 member states of the European
Union. This form of air pollution inflicts considerable social and economic damage in addition to
loss of life and well-being. This study creates and deploys a comprehensive data pipeline. The first
step consists of conventional linear models and supervised machine learning alternatives. Those
regression methods do more than predict health outcomes in the EU-27 and relate those predictions
to independent variables. Linear regression and its machine learning equivalents also inform
unsupervised machine learning methods such as clustering and manifold learning. Lower-dimension
manifolds of this dataset’s feature space reveal the relationship among EU-27 countries and their
success (or failure) in managing PM2.5 morbidity and mortality. Principal component analysis informs
further interpretation of variables along economic and health-based lines. A nonlinear environmental
Kuznets curve may describe the fuller relationship between economic activity and premature death
from PM2.5 exposure. The European Union should bridge the historical, cultural, and economic gaps
that impair these countries’ collective response to PM2.5 pollution.

Keywords: air pollution; particulate matter; PM2.5; public health; environmental Kuznets curve;
machine learning; supervised learning; unsupervised learning; clustering; manifold learning; dimen-
sionality reduction; principal component analysis; European Union

1. Introduction
1.1. PM2.5 Air Pollution

Accelerated urban development and modernization have turned air pollution into a
global environmental and public health issue. According to the World Health Organization
(WHO), air pollution is strongly connected to the health status of the population [1].
Air pollution has surpassed poor sanitation and a lack of drinking water as the leading
environmental cause of premature death [2]. Air pollution also puts considerable pressure
on household, hospital, and public budgets [3].

Air pollutants include gaseous pollutants and microscopic particulate matter (PM) that
contains various toxic substances, including free radicals, metals, and organic compounds
such as black carbon and mineral dust [4]. As a major component of outdoor air pollution,
PM includes PM10 (particles ≤ 10 µm in diameter), PM2.5 (particles ≤ 2.5 µm in diameter),
and PM0.1 (particles ≤ 0.1 µm in diameter).

Absent direct or indirect human activity, PM is emitted by natural sources such as
volcanos and earthquakes, sea spray, wildfires, and desert dust [5]. Most PM air pollution,
however, results from human activities such as combustion of fluid fossil fuels, road
traffic, residential heating, construction and demolition, and industrial processes [6]. With
a half-life as long as several weeks, PM can travel more than 1000 km [7]. As a result,
transboundary air pollution can affect locales far from sources of PM [8].
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WHO [9] and the European Union (EU) [10] have set standards for airborne pollutants
and issued guidance on threshold limits. These global and European environmental
policies are highly cost-effective in reducing health risks from PM. Compared to 1990, the
EU’s environmental policies reduced the number of premature deaths attributed to PM2.5
pollution by one million [11].

The International Agency for Research on Cancer has classified air pollution in general,
including PM, as a source of human carcinogens [12]. Exposure to airborne PM is closely
related to the incidence of acute and chronic diseases, primarily of the cardiovascular and
respiratory systems [13–16]. The Global Burden Disease Study 2017 attributes 38.44 deaths
per 100,000, from all causes, to ambient PM pollution [16].

Relative to larger forms of particulate matter, PM2.5 has a deeper impact on mortality
and morbidity [17]. Thanks to its small diameter, PM2.5 can bypass the filtration of nose hair,
accumulate in the bronchi and lungs, and diffuse from the lungs to the bloodstream and
other parts of the body. Among airborne pollutants, PM2.5 exhibits some of the strongest
links to morbidity and premature mortality from respiratory diseases and disorders, heart
diseases, and cancer [18]. In 2018, the European Environment Agency estimated that
long-term exposure to PM2.5 accounted for approximately 379,000 premature deaths in
what were then the 28 member states of the EU [6].

PM2.5 exerts enormous pressure on the cardiovascular and respiratory system in
all population groups and contributes to morbidity, hospital admissions, and premature
deaths [19–22]. Each increase of 10 µg/m3 in PM2.5 is associated with a 16 percent in-
crease in mortality from ischemic heart disease and a 14 percent increase in mortality
from stroke [23]. Long-term exposure to elevated levels of PM2.5 has been related to the
significant incidence of chronic obstructive pulmonary disease (COPD) and asthma [24].
Extensive evidence shows positive correlation between elevated levels of airborne PM2.5
and the incidence of lung, tracheal, and bronchial cancer [25,26].

Even at very low levels, PM2.5 pollution harms health [18]. At each level of exposure,
elderly people are more susceptible than the general population. Because comorbidities
place the elderly at higher risk, PM2.5 exposure may even be fatal [27]. Increases in deaths
among the elderly are strongly related to increased PM2.5 levels [28].

PM2.5 pollution profoundly harms health in the EU-27, home to almost 448 million
inhabitants. In 2019, 20.3 percent of the EU-27 population was over 65 years old [29].
The high proportion of elderly in the European population heightens the prevalence of
negative health conditions (such as chronic diseases) as well as the adverse health effects
of pollution [27].

The leading causes of premature death in the EU-27 are circulatory diseases, cancer,
and respiratory diseases, especially during winter [30]. The vast majority of respiratory
diseases affect people older than 65 years. The health of elderly people is largely determined
by pre-existing comorbidities. Individual behaviors also influence exposure and sensitivity
to environmental stressors [31]. Poor diets, obesity, sedentary lifestyles, and smoking all
contribute to disease. These behaviors are especially common among people with lower
socioeconomic status [18].

Aging as a global phenomenon portends a new demographic future. The United
Nations projects that the elderly population will grow from 703 million in 2019 to 1.5 billion
in 2050 [32]. That year, “one in six people in the world will be aged 65 years or over” [32]
(p.2). This demographic shift is expected to put pressure on governments and public
expenditures, primarily through premature deaths and lost productivity. Reduced exposure
to PM2.5 should also reduce health costs for the elderly.

Mortality in the elderly caused by PM2.5 also exacerbates socioeconomic burdens.
WHO reports significant social inequalities in environmental exposure between and within
countries [1]. Relative to their western counterparts, eastern European countries carry a
higher burden of diseases and premature deaths associated with air pollution [18].

Air quality is often worse in places where socioeconomically disadvantaged people
live [33,34]. People of lower socioeconomic status are likelier to use solid fuels combined
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with inefficient heating devices, which degrades outdoor and indoor air quality [18,35].
Residential combustion of solid fuels is a major source of many air pollutants, including
PM2.5 [11]. Drivers of environmental inequality can expose the elderly in the poorer
countries of the EU-27 to greater environmental and social deprivation.

PM2.5 emissions also drive global climate change. Some substances contributing to
atmospheric warming, such as black carbon, are a component of PM2.5 [36–38]. Carbona-
ceous aerosols from agricultural waste and wood-fuel burning, primarily by households,
are dominant PM2.5 emissions, which stimulate radiative forcing on a regional scale [39].
Effective containment of PM2.5 requires the coordination of international and local efforts.

Generally, two types of health-related costs arise from environmental pollution: mar-
ket and non-market costs [40]. Market costs comprise losses in productivity due to ill-
ness (opportunity costs) and health care costs, which in turn include the administrative
costs of hospital admissions and the use of medical technologies or pharmaceuticals
(resource costs).

Non-market or welfare costs are related to premature death and disutility because
of illness or care for others. Welfare costs include not only the direct cost of premature
deaths but also the cost of morbidities [41]. Apart from welfare losses in public health,
pollution degrades ecological systems that support human health, such as forests or green
urban infrastructure. Air pollution may reduce productivity or even increase criminal and
unethical behavior [42]. Welfare costs are usually higher than market costs [43].

1.2. The Environmental Kuznets Curve

This article strives to isolate the relationship between the economic and public health
consequences of PM2.5 pollution. Over the past three decades, an extensive literature has
estimated the health costs of PM2.5 pollution. Even apart from the intrinsic value of life and
health, public health expenditures suffice as a motivation to mitigate PM2.5 pollution. By
reducing PM2.5 emissions and exposure, countries can reduce the burden of stroke, heart
disease, lung cancer, and chronic and acute respiratory diseases, including asthma.

One study has projected that a 1 µg/m3 decrease in annual mean PM2.5 levels would
increase Europe’s gross domestic product (GDP) by 0.8 percent, roughly EUR 200 per capita
per year (in 2017 terms) [44] (p. 7). Direct economic benefits from air pollution control
policies greatly exceed investments in the air quality. The balance of costs and benefits
becomes even more favorable once the substantial benefits of avoided premature deaths
from PM2.5 pollution are considered.

Although economic development and air pollution appear closely linked, there is
no clear consensus on the nature of that relationship. An extensive economic literature
describes an environmental Kuznets curve [45–52]. The concept represents an extended
analogy to Simon Kuznets’s observation that inequality tends to increase during early
stages of economic development and then to decrease as the economy matures [53].

In readily visualized mathematical terms, environmental Kuznets curves fall into
three broad categories [54] (pp. 487–495); [55] (pp. 3–5):

(a) An inverted U-shaped relationship represents the canonical environmental Kuznets
curve. The inverted U describes environmental degradation in three stages. At first,
increasing pollution from accelerated exploitation of natural resources shows a scale
effect. A composition effect then takes over, emphasizing cleaner activities in produc-
tion. During this intermediate stage, the pollution rate stagnates despite economic
growth. A final techniques effect takes hold as increased economic development
replaces obsolete technologies with cleaner ones and reduces pollution [56–59]. An
alternative account for the emergence of the inverted U-shaped curve attributes supe-
rior environmental performance at higher income levels to environmental transition
theory, by which better developed economies export pollution-intensive activities to
less developed trade partners [60–62].

(b) A monotonically increasing relationship demonstrates unequivocally positive feed-
back between productivity and environmental impact [63] (p. 866). There is “an
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increasing rate of environmental degradation per unit of income as countries become
richer” [64] (p. 654).

(c) An N-shaped relationship combines the dynamics of the inverted U and the mono-
tonic increase. At lower levels of development, the inverted U describes the rela-
tionship between economic productivity and environmental degradation. Beyond a
certain income level, however, development exerts monotonically increasing pressure
on the environment [63] (p. 865); [65–67].

Indeed, the three canonical shapes can emerge through polynomial regression of a
degree no higher than three [55] (pp. 3–5); [68] (pp. 680–682). Quadratic regression can
reveal the canonical inverted U. Linear regression as a special, simplified case of polynomial
regression can model a monotonically increasing relationship between development and
performance. Finally, an N-shaped curve is the visual signature of cubic regression. Figure 1
depicts the three canonical shapes of the environmental Kuznets curve.

Figure 1. Canonical environmental Kuznets curves.

Environmental Kuznets curves necessarily simplify analysis. Each curve depicts a
unidimensional relationship between economic development and a single quantity repre-
senting environmental performance. The reduction of a complex dataset with dozens of
variables into a single curve trades nuance for clarity in interpretation. Indeed, proponents
of regression methods designed to detect “kinks” caution against assigning undue weight
to polynomial regression [51] (pp. 5–7). Other techniques, such as threshold cointegration,
can also detect nonlinear relationships [69].

Any effort to construct an environmental Kuznets curve should also heed subtleties
that elude this sort of analytical simplification. The shape of the curve and (consequently)
the nature of the underlying relationship between economic and environmental factors
vary dramatically by country [70], especially when a survey covers Africa [71] or some
other slice of the developing world [72]. Divergent outcomes should also be expected
within the European Union, whose member states span a wide range of incomes and
developmental trajectories [73,74].

Much of the diversity in environmental Kuznets curves arises from demographic
differences [75]. Even within the same country, curves can differ by pollutants, as in the
case of CO2 versus SO2 and PM10 in Turkey [63] (pp. 865–866) or SO2 versus wastewater
in China [76]. Perhaps most intriguing of all, and reminiscent of the field’s origins in
Simon Kuznets’s work, is the suggestion that countries have some ability to exchange
environmental degradation for economic equality, or economic inequality for superior
environmental outcomes [72]. Optimizing environmental quality and economic equality
simultaneously does not appear feasible.

Finally, any suggestion that environmental Kuznets curves must be confined to plot-
ting raw levels of pollution against income, wealth, or other economic indicators is belied by
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the literature. Many authors directly plot life expectancy, healthy life expectancy, avoided
mortality and morbidity, and other explicit measures of human welfare as dependent
variables in environmental Kuznets curves [68,77,78]. It is now possible to speak of a
“health Kuznets curve” [79,80]. This article follows the environmental branch of this emerg-
ing tradition, without fully crossing over into health-based applications having no direct
connection to pollution or other environmental factors, such as cancer [81] or obesity [82].

1.3. An Overview of This Article

This article evaluates interactions among epidemiological, environmental, and socioe-
conomic drivers of PM2.5 pollution in the European Union. Its data covers years from 2008
to 2018. All data is collected at the level of EU-27 member states. To evaluate the impact of
PM2.5 pollution and identify country-specific differences, this article devises an analytical
pipeline that integrates conventional methods with machine learning.

This article applies both supervised and unsupervised machine learning. Supervised
machine learning works alongside conventional linear models to predict PM2.5 mortality
rates and to make causal inferences. These are the usual analytical goals for panel data.
Supervised learning usually improves predictive accuracy. Machine learning’s “feature
importances” complement beta coefficients and p-values generated by linear models.

Unsupervised machine learning provides insights along geographic lines and the
conceptual boundary between economics and human health. Clustering identifies different
groups among EU-27 countries according to their epidemiological, environmental, and
socioeconomic traits. Decomposition and manifold learning then validate the predictions
made by supervised methods and their linear counterparts. The generation and aggregation
of manifolds can provide further predictions. One manifold method, principal component
analysis, distinguishes the economic and health-based bases of PM2.5 mortality. The
resulting environmental Kuznets curve simplifies and summarizes the entire study.

Part 2 of this article presents data and methods. Part 3 reports results, first for pre-
dictive linear and machine learning models, and then for unsupervised machine learning.
Part 4 discusses and prescribes societal measures to ameliorate PM2.5 pollution. This article
seeks to guide public health and environmental policy throughout Europe.

2. Materials and Methods
2.1. Data
2.1.1. Dependent and Independent Variables

This article’s dataset targets PM2.5 mortality rates in the 27 member states of the
European Union (EU-27) from 2008 to 2018 inclusive. This target variable is named
pm25_death. Each observation covers a single year in that span for each of the countries.
The dataset therefore contains 297 observations.

The dataset contains 23 independent variables:

1. expectancy—Life expectancy at birth (in years)
2. poverty_threshold—The threshold at which a single person is at risk of poverty (in euros)
3. poverty_excluded—The rate of risk from poverty before social transfers (with pensions

excluded from the definition of social transfers)
4. poverty_included—The rate of risk from poverty before social transfers (with pensions

included in the definition of social transfers)
5. emissions—PM2.5 emissions (in kilograms per capita)
6. exposure—Mean annual exposure to PM2.5 pollution (in µg/m3)
7. Five morbidity indicators—The incidence in persons older than 65 years of the fol-

lowing diseases:

a. cardio_incidence—cardiovascular disease
b. ischemic_incidence—ischemic heart disease
c. copd_incidence—chronic obstructive pulmonary disease (COPD)
d. asthma_incidence—asthma
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e. tracheal_incidence—tracheal, bronchial, and lung cancer (hereinafter designated
as “tracheal cancer” as shorthand covering all three types of cancer)

8. Five mortality indicators designated as cardio_death, ischemic_death, copd_death, asthma_death,
and tracheal_incidence: The rate of premature death among persons older than 65 from
each of the preceding five diseases

9. real_gdp_pc—Real gross domestic product (GDP) per capita
10. health_expenditures—Health-related government expenditures per capita
11. environmental_taxes—Environmentally related taxes as a percentage of GDP
12. social_contributions—Social security contributions as a percentage of GDP
13. spending—Overall government spending per capita
14. corruption—Corruption perception index
15. gini—The Gini coefficient of economic inequality

Appendix A provides further details on all of these variables and their sources.

2.1.2. Endogeneity and the IVS2LS Model

We also initially gathered two data on the welfare cost of premature deaths per capita
among elderly persons from PM2.5 and PM10 combined (welfare_25_10), and the welfare cost
of premature deaths per capita among elderly persons from PM2.5 alone (welfare_25). Sources
and descriptive details for these variables are also included in Appendix A. Although the
White test found no statistically significant evidence of heteroskedasticity (the p-value
for the Lagrange multiplier greatly exceeded 0.1), high Pearson’s correlation between
welfare_25 and pm25_death (0.940138) raised a reasonable question of endogeneity.

We built a two-stage least squares model (IV2SLS) with exposure as the instrumental
variable for welfare_25, since correlation between those variables is 0.769063. Results for
the Durbin (6.1673) and Wu-Hausman (110.7576) tests rejected the null hypothesis of
exogeneity at every conventional confidence level. Exposure turns out to be a relevant and
strong instrumental variable for welfare_25.

Consequently, we omitted welfare_25 from this study except to the extent that it is
included as the endogenous variable in the IV2SLS model. We include parameters and fitted
values from the IV2SLS model in stacking generalization, the method that bridges linear
regression, supervised machine learning, and unsupervised machine learning. We also
omitted welfare_25_10 in order to quell doubts over the inclusion of any direct measurement
of welfare losses in study of mortality from PM2.5 pollution.

As a positive consequence of omitting both welfare variables, we were able to achieve
a clean dichotomy between predominantly economic and predominantly health-related
variables in constructing environmental Kuznets curves. The three poverty* variables,
emissions, real_gdp_pc, health_expenditures, environmental_taxes, social_contributions, spending,
corruption, and gini are treated as economic variables. Expectancy, exposure, all five morbidity
variables, and all five mortality variables are defined as health-related.

2.1.3. The Imputation of Missing Values

Missing values were imputed through a method combining locally weighted regres-
sion (often called LOESS or LOWESS in the statistical literature) [83,84] and polynomial
splines [85,86]. In concert, these methods generate a LOESS smoothing curve approximat-
ing all available observations for each independent variable. Interpolation and extrapo-
lation from that LOESS curve according to a polynomial spline of the appropriate order
imputed all missing values. Appendix B visualizes this imputation process.

The Python computer language implements LOESS in Statsmodels and one-dimensional
interpolation through polynomial splines in Scipy [87–89]. Despite its name, interpolation
in Scipy can extrapolate values beyond either end of an incomplete series.

For each variable with missing observations, the authors used the highest-order poly-
nomial spline that generated credible imputations. Only three variables lacked values
requiring imputation. Of these, PM2.5 exposure was interpolated in linear fashion. Mortal-
ity from COPD and tracheal cancer was interpolated according to cubic splines. Fifty-four
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values for exposure, two for copd_death, and three for tracheal_death were imputed. None of
the observations for the target variable of premature PM2.5 mortality was imputed.

2.2. Data Preprocessing and Other Preparatory Details

The gathering of data represented merely the first step. This article followed a standard
pipeline for the application of supervised machine learning to panel data [90]. Although
unsupervised machine learning typically does not require all of these preprocessing steps,
this article uses certain outputs from supervised learning as further preprocessing so that
unsupervised learning can perform predictive as well as descriptive tasks.

2.2.1. Splitting and Scaling

Data preparation anticipated the application of supervised machine learning models
alongside more conventional linear models. Best practices for supervised machine learning
prescribe the splitting of data into randomized subsets for training and testing. Isolating
data during training ensures that machine learning predictions do not merely recite as-
signed labels or values [91] (pp. 17–18). Reserving 25 percent of all data for testing—an
arbitrary but convenient ratio—helps ensure the generalizability of supervised machine
learning to data not seen during training.

Supervised machine learning achieves greater accuracy on scaled data [91] (pp. 134–142).
Standard scaling reports all results in terms of Gaussian z-scores, or multiples of each
variable’s standard deviation from its mean. Critically, the scale was drawn exclusively
from training data. The scale of training data was subsequently applied to test data. The
rigorous separation of data during scaling prevents inferences from the test set from leaking
into training and contaminating subsequent predictions [91] (pp. 138–140).

Many applications of linear regression dispense with the splitting of data as well
as standard scaling. Readers accustomed to conventional models may appreciate more
detailed descriptions of the relevant data transformations. After data collection and impu-
tation, this study began with 297 observations covering 23 independent variables and a
single dependent variable. The 75/25 split in supervised learning yielded a 223 × 23 array
for training and a 74 × 23 array for testing. Two scaled vectors, one with 223 values and
the other with 74, expressed the ground truth of premature mortality from PM2.5 pollution.

This study derived all linear model parameters from the training set alone. Applying
those coefficients to the holdout test set generated a smaller subset of 74 predictions. All
supervised machine learning models observed the same protocol. All models reported
accuracy—measured by root mean squared error (RMSE), the coefficient of determina-
tion (r2), mean bias error (MBE) [92] and [93] (p. 88), and Wilmott’s index of agreement
(WIoA) [94]—separately for training and for testing.

Unsupervised machine learning involves a simpler preprocessing pipeline. The ab-
sence of target variable values—the “labels” attached to data during supervised learning—
eliminates concerns over data leakage from unsupervised learning. Since all unsupervised
algorithms are applied to the entire array of independent variables, splitting the data
into subsets for training and testing is unnecessary. Data for unsupervised learning does
undergo scaling, however, so that each dimension is expressed as Gaussian z-scores.

Unsupervised learning thus proceeded with a scaled but unsplit 297 × 23 array
covering all values for each of the independent variables. The corresponding scaled vector
of 297 observations of PM2.5 mortality rates remained available as the yardstick of ground
truth for predictive applications of unsupervised learning. Environmental Kuznets curve
analysis also used the unsplit array of independent variables and the complete ground
truth vector of 297 observations.

2.2.2. Beta Coefficients

The Gaussian scaling of data has one notable consequence for linear models. Scaling
renders regression results from linear models in terms of standardized or beta coeffi-
cients [95]. Although some scholars discourage the use of beta coefficients in causal
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inference [96–98], this article’s linear models operate in concert with machine learning
methods. Both supervised and unsupervised machine learning provide a natural check
against drawing improper inferences from standardized linear models.

Moreover, the inherently dimensionless nature of beta coefficients enables direct com-
parisons among independent variables. For instance, beta coefficients naturally harmonize
two superficially similar predictors, emissions and exposure, even though the former
variable is expressed in kilograms per capita and the latter is expressed as a ratio (µg/m3)
whose numerator is nine orders of magnitude smaller. Units as arbitrary as the designation
of economic quantities in euros or U.S. dollars ultimately matter less than mathematically
cogent measures of each distribution’s central tendency and variability.

2.2.3. The Bias-Variance Tradeoff and Hyperparameter Tuning

Reliance on supervised machine learning demands awareness of the bias-variance
tradeoff. The tension between these distinct sources of prediction error arises from an
intrinsic and irreconcilable tension within machine learning. Greater inaccuracy, or bias, in
the estimates of model parameters can reduce the variance among parameter estimates
across samples [99]. Striking the admittedly elusive balance between bias and variance
ensuring that supervised machine learning can be generalized beyond training data [100].

Bias refers to a model’s overall accuracy, particularly in training. Excessive bias results
in a model that underfits its data. Highly accurate, low-bias models do not provide reliable
results unless they also accommodate new, unseen data [101,102]. High-variance models
tend to overfit training data. Variance therefore affects the generalizability and consistency
of results. An optimally complex model strikes the ideal balance between underfitting and
overfitting and minimizes total prediction error [103] (p. 107).

Bias-variance optimization in practice relies on hyperparameter tuning. Hyperparam-
eters configure each supervised learning model according to the shape of the data or the
rate at which the model during training adapts to predictive errors.

At 297 observations, the PM2.5 dataset is quite modest in size. The even smaller size
of the 25 percent of the dataset reserved for testing (no more than 74 observations) raises
the premium on cross-validation in hyperparameter optimization [91] (pp. 267–282). This
technique overcomes small dataset size by using multiple “folds” of the training data
as synthetic validation sets. Cross-validation facilitates experimentation with different
hyperparameter settings without leaking holdout test data during training.

This dataset’s modest size did make it feasible to conduct comprehensive grid searches
through each combination of hyperparameter values [91] (pp. 258–267). To ensure repro-
ducible results, the Python script for this article set a consistent seed of 1 in SciKit-Learn’s
pseudo-random number generator [104].

The success of hyperparameter testing in preventing overfitting, within individual
models and overall, allays concerns over the adequacy of this dataset. Supervised machine
learning results for this dataset, as reported in part 3, reveal almost no overfitting. Con-
sistently accurate test results using holdout data vindicate reliance on this dataset. The
depth of data needed for effective machine learning may be shallower than conventionally
supposed. Even in extremely high-leverage applications such as the exploration of chemical
space for molecules with pharmaceutical potential, “robust models can be learned from far
fewer examples than has been widely assumed” [105].

Unsupervised machine learning provides further assurances that causal inferences
drawn from this dataset are reliable. The harmonization of beta coefficients and p-values
from linear models with feature importances reported by supervised machine learning
models gives rise to predictive manifolds. This method generates an additional set of
predictions through an ensemble of linear decomposition and nonlinear manifold learning
methods. Since those predictions rely predominantly on feature weights derived from
supervised machine learning, their accuracy (or its absence) sheds further light on the
validity and reliability of this article’s consciously predictive models.
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2.3. Predictive and Supervised Methods

This article deploys conventional linear models as well as supervised machine learning
models for regression.

2.3.1. Conventional Linear Models

This study’s baseline model is pooled ordinary least squares (pooled OLS):

yit = β0 + x′itβ + εit (1)

where x′it is the array of independent variables, β is the vector of coefficients, and εit is the
error term [106] (p. 702) and [107] (p. 386).

Inasmuch as this study’s dataset consists of 11 yearly observations for 27 countries,
fixed effects models ameliorate the possibility that the pooled OLS model might fail to
detect country-specific or (perhaps less plausibly) year-specific differences [108,109]. To
counter this potential source of omitted variable bias [110,111], this study deployed entity-,
time-, and entity-and-time-based variants of a fixed effects model. These models will be
called the FEE, FTE, and FETE models in the balance of this article.

Without loss of generality, the FEE model may be written as:

yit = αi + x′itβ + εit, εit ∼ I ID
(

0, σ2
ε

)
(2)

where αi represents entity-specific heterogeneity and the expression εit ∼ I ID
(
0, σ2

ε

)
indicates that all xit are independent of all εit [107] (pp. 386–388) and [112] (pp. 484–486).
In practical terms, each fixed effect unit (whether a geographic entity or a year) adds
a dummy variable to the model. The FTE model may be written in the same way as
Equation (2), with γt substituting for αi.

By extension, the FETE model would include both αi and γt:

yit = αi + γt + x′itβ + εit, εit ∼ I ID
(

0, σ2
ε

)
(3)

The random effects (RE) model assumes that all factors affecting the dependent
variable, but not included in the vector of independent variables, can be expressed by a
random error term. By analogy to Equation (2), the RE model may be written as:

yit = µ + αi + x′itβ + εit, εit ∼ I ID
(

0, σ2
ε

)
, αi ∼ I ID

(
0, σ2

ε

)
(4)

where αi + εit represents an error term containing two components, a time-invariant specific
component and a remainder component, presumably uncorrelated over time. In addition
to being mutually independent, each of these components is also independent of xit for all
I and all t [107] (p. 347).

As applied to this dataset, the Hausman test reports χ2 = 167.517. That result’s
extremely low p-value counsels adoption of a fixed effects model over the random effects
model [113] (pp. 1251–1252). Although the Hausman test favors FEE over RE, other sources
advise the use of both fixed and random effects when panel data covers a defined number
of countries over a defined time period [112] (pp. 495–496). Fixed effects may avoid
potential biases arising in the RE model from correlations between predictive variables and
omitted attributes of each country [114] (p. 10).

A simplified specification of the instrumental variable two-stage least squares (IV2SLS)
model flows from pooled OLS and Equation (1):

yit = β0 + x′itβ + εit + y∗jtβ
∗ + ζ jt (5)

where y∗jtβ
∗ designates the estimation of a vector of endogenous variables (which are

correlated with residuals from the error term of an OLS estimate of yit) from a vector
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of instrumental variables and εit + ζ jt together represent the composite error term, com-
bining error from the underlying OLS estimation and the estimate of the instrumental
variables [112] (pp. 528–529). Fitted values for the instrumental variable(s) replace the
endogenous variable(s). IV2SLS works because composite error εit + ζ jt has zero mean and
is uncorrelated with instrumental as well as exogenous variables.

This study’s treatment of exposure as an instrumental variable is analogous to an
intention-to-treat parameter in program evaluation literature [112] (p. 527). Exposure
to PM2.5 serves a proxy for both premature mortality (our target variable) and societal
welfare loss (an endogenous predictor), because exposure to pollution is a prerequisite for
both phenomena.

Especially in policymaking settings, regression serves two distinct purposes [115].
Each corresponds to the two sides of a regression equation. Some applications emphasize
the coefficients of a regression model’s explanatory variables. In other settings, decision-
makers focus on the fitted value of the dependent variable [116] (p. 1445).

Even if the Hausman test recommends fixed over random effects, the RE model’s
parameters and predictions are worth consulting. Like the IV2SLS model treating exposure
as an instrumental variable for welfare losses attributed to PM2.5 pollution, the RE model’s
fitted values may inform a stacking blender. Unlike the IV2SLS model, however, the RE
model does generate coefficients and p-values in vectors that can be harmonized with the
interpretive results of supervised machine learning models. Though the RE model may not
yield consistent results in the strictest econometric sense, its parameters can be understood
in stacking generalization. For these reasons, we shall retain the RE model.

None of the three fixed effects models (FEE, FTE, and FETE) or the RE model is
expected to achieve superior accuracy vis-à-vis pooled OLS. r2 in IV2SLS is invariably
smaller than in pooled OLS because OLS minimizes the sum of squared residuals [112]
(p. 527). All alternative models, however, should be more conservative in attributing
statistical significance to any predictive variable. They are likelier to give consistent
estimates. Given this dataset’s high degree of dimensionality relative to the modest depth
of its data, the fixed and random effects models guard against improper inference from a
pooled OLS model not consciously accounting for entity- or time-specific effects.

2.3.2. Supervised Machine Learning

Few if any analytical tools outperform linear models in explaining the relationship
of predictive variables to fitted results. Machine learning alternatives, however, often
outperform linear regression in predicting fitted values that reflect the ground truth. Even
where the interpretive benefit of statistically significant coefficients outweighs the value of
predictive accuracy, goodness of fit is far from irrelevant. Indeed, model accuracy plays a
pivotal role in unsupervised machine learning.

This article therefore deploys machine learning models alongside linear models more
commonly applied in econometrics and public health. Supervised machine learning models
are robust in the presence of outliers. Indeed, machine learning heralds a systematic
preference for the retention of outliers in regression [90] (pp. 13–14). Machine learning
is also quite forgiving of misspecification or the inclusion of weakly predictive or non-
predictive variables. Machine learning alternatives to conventional linear methods are
often (though not invariably) more accurate. Even where accuracy does not improve,
supervised machine learning may be justified as an exhaustive robustness check.

The classification and regression tree (CART) algorithm supports a dazzling constel-
lation of methods [117,118]. Ensemble methods aggregate numerous decision trees [119].
Instead of searching for the best feature when splitting a node, random forests search for
the best feature within a random subset [120,121]. They require the tuning of only two
hyperparameters: the maximum number of features in a randomized tree and each tree’s
maximum depth. Randomizing the thresholds for each feature, as opposed to searching for
the optimal threshold, yields an even more stochastic algorithm called extremely random
trees, or extra trees [122].
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Boosting represents a special class of ensembles that combine weak learners into
a strong learner [123]. Each step in sequential training corrects mistakes by preceding
predictors [124] (p. 199). Hyperparameters control the learning rate as well as the depth
and growth of decision trees [124] (p. 204). The canonical boosting method, AdaBoost, uses
decision stumps, or decision trees truncated after a single split [125] (p. 125). After each
training instance, AdaBoost updates weights for each predictor.

Among the many variants of gradient boosting [126], this article implements three
methods. First, it applies SciKit-Learn’s native gradient boosting regressor. The second
method, XGBoost, overcomes limits on speed and scalability that have plagued other
boosting algorithms [127,128]. The final gradient boosting method, LightGBM, aggressively
bundles mutually exclusive features with the largest gradients to achieve efficient and
scalable gradient boosting for high-dimension, large datasets [129]. LightGBM has won
favor in financial forecasting [130]. The use of LightGBM in forecasting wind power
production suggests its broader applicability in environmental economics and public
health [131]. Simultaneous applications of XGBoost and LightGBM, sometimes alongside
other implementations of gradient boosting, have begun to emerge [132,133].

This dataset’s modest size may fall short of the scale at which boosting models work
best. This is especially true of LightGBM, which typically requires a deeper set of features
and observations. The no-free-lunch theorem of computer science, however, posits that it
is impossible to know in advance whether a particular model will outperform another at a
particular task [134]. Python’s implementation of all linear and machine learning models
also makes it relatively easy to subject a single dataset, once it exits the preparatory pipeline
for imputing, splitting, and scaling data, to a wide array of models.

In total, this article implements six linear models and six machine learning models:

• Linear models:

# Pooled OLS
# Fixed entity effects (FEE)
# Fixed time effects (FTE)
# Fixed entity and time effects (FETE)
# Random effects (RE)
# Instrumental variable/two-stage least squares (IV2SLS)

• Machine learning models

# Conventional decision tree ensembles

n Random forests
n Extra trees

# AdaBoost
# Gradient boosting models:

n Gradient boosting in SciKit-Learn
n XGBoost
n LightGBM

2.3.3. Interpreting and Synthesizing Machine Learning through Feature Importances

Critics denigrate machine learning as a heuristically opaque, uninterpretable black
box [135]. Conventional statistical tools such as the scale and sign of coefficients, p-values,
and confidence intervals are unavailable in machine learning. Supervised machine learning,
however, can be interpreted on its own terms. Indeed, this study breaks new ground in
harmonizing the interpretation of linear and machine learning regression models.

Ensemble and boosting models based on decision trees quantify the contribution of
each predictive variable. Recall that boosting methods such as XGBoost and LightGBM are
special instances of decision tree ensembles. By taking the weighted averages of training
samples associated with nodes across all trees in an ensemble, feature importances report
each regressor’s contribution to the model’s predictions [124] (pp. 198–199) and [136]. As
with any other vector of probabilities, the sum of any model’s feature importances is 1.
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This article implements a novel method for bridging the interpretive gap between
linear regression and machine learning [137]. Rather than insisting that machine learning
speak in terms of coefficients and arbitrary thresholds of significance, we translate those
attributes of linear regression into the mathematical logic of machine learning.

Expressing a linear model in terms of beta coefficients renders each parameter ac-
cording to dimensionless Gaussian z-scores. Taking the absolute value assigns each beta
coefficient a weight corresponding to its distance from that variable’s mean. So transformed,
beta coefficients attain the non-negativity demanded of any distance metric.

Moreover, the corresponding vector of p-scores for each independent variable can be
treated in continuous rather than categorical terms. Conventional treatment of p-values
creates a small constellation of stars indicating significance at arbitrary thresholds such
as 0.01 or 0.05. Nevertheless, there is a palpable difference between p = 0.12 and p = 0.99,
even if neither value falls below even the most generous significance level by social science
conventions. Subtracting the vector of p-values from 1 provides a principled and credible
basis by which to discount the absolute value of the vector of beta coefficients.

Those two vectors, β and p, can in turn be normalized so that their sum of their
joint transformation is invariably 1. The resulting vector of emulated feature importances
allows every linear model to be compared to the vector of actual feature importances for
an ensemble- or boosting-based machine learning model.

The emulated feature importance of each independent variable in linear regression
may be expressed as:

fv =
|βv|(1− pv)

γ

∑m
j=1
∣∣β j
∣∣(1− pj

)γ (6)

where β indicates the beta coefficient, p indicates its corresponding p-value, the subscript v
identifies each independent variable, j is an indexing variable, m indicates the number of
predictors, and γ is an exponent. In typical practice, γ ∈ {1, 2}. Setting γ = 2, an admittedly
arbitrary choice, more sharply discounts variables with higher p-values, which are likelier
to lack statistical significance. For each fv in a linear model’s vector of emulated feature
importances, a machine learning model generates a true feature importance.

2.3.4. Stacking Generalization

In concert, actual and emulated feature importances enable linear and supervised ma-
chine learning models to be interpreted in complementary fashion. Once a final predictive
tool, the stacking blender, enters the picture, the combined effect of all feature importances
also informs unsupervised machine learning. The vector of feature importances for all
predictive models—or any subset of them—emerging from the stacking blender can be
used to engineer the array of predictive variables in unsupervised learning.

The primary use of stacking generalization is to aggregate predictions from other
models into a global set of meta-predictions [124] (pp. 208–211) and [138]. Stacking gen-
eralization has emerged as a potent tool for “super learning” in high-stakes applications
such as motion detection [139,140]. Like all other ensembles, a stacking model gracefully
accommodates weaker models. Stacking often (but not invariably) delivers predictions
that are more accurate than any of the tributary models fed into the meta-model.

This meta-ensemble stacks predictions from all other models (or some subset) as “level
0” in a new predictive model. Instead of the features in the PM2.5 dataset, stacking treats
each model in level 0 as an independent variable. A meta-learner, or blender, then enters the
stacking model as level 1. The blender trains on instances in training set predictions from
each of the models in level 0. The trained blender can then produce its own predictions
with test set predictions from the level 0 models.

The level 1 blender can be based on any regression model, linear or otherwise. Indeed,
the default blender in SciKit-Learn’s built-in stacking blender is Ridge, or `2-regularized
OLS. SciKit-Learn’s stacking module, however, requires that all level 0 models be imple-
mented in that package. Because there is no wrapper for Statsmodels or LightGBM within
SciKit-Learn, this study devised its own stacking model to accommodate output from
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those packages. This custom-built stacking generalization model can use a decision tree
ensemble such as extra trees as its blender. Aside from superlative accuracy, extra trees
generates its feature importances, with one value for each model in level 0.

The power of this method will become evident in unsupervised machine learning.
Like any other machine learning regression model, a stacking model has two immediate
outputs: predictions and feature importances. Although the predictions can be com-
pared immediately with predictions from any other linear or machine learning model, the
interpretation of the stacking blender’s feature importances requires additional work.

Since the blender treats each model in level 0 as an independent variable, the dimen-
sionality of its training data, its test data, and its model is equal to the number of models
stacked. Its feature importances, in the instance of a grand stacking model accommodating
all of this study’s predictive models, is an 11 × 1 vector. Feature importances for the
predictive models in level 0 can be shaped as a 23 × 11 array, where independent variables
in the PM2.5 dataset constitute the rows and models in level 0 constitute the columns. The
dot product of a 23 × 11 array and an 11 × 1 vector is a 23 × 1 vector, the shape of feature
importances from any individual predictive model.

Vectors matching the dimensionality of a dataset are vital in advanced machine
learning. Feature importances can calculate weighted Euclidean distances [141] or calibrate
weighted probabilistic neural networks [142]. This study can apply the 23 × 1 vector
emerging from the stacking blender as a composite set of feature importances reflecting
twelve predictive models. Those composite feature importances can scale each of the
columns in the 297 × 23 version of the scaled PM2.5 dataset during unsupervised learning.

2.4. Unupervised Methods
2.4.1. Unsupervised Machine Learning in Overview

This article deploys two forms of unsupervised machine learning: clustering and
manifold learning. Unsupervised learning is distinguished from supervised learning by
the absence of labels or values. Unsupervised methods operate on the complete, unsplit
297 × 23 array of independent variables.

Clustering defines distinct cohorts among the 27 member states of the European Union.
If applied to all 297 observations in the PM2.5 dataset rather than a country-by-country
aggregation, clustering can also reveal the extent to which entity effects by country or time
effects by year dominate the data. Country-specific labels drawn from the clustering of
aggregated data will enhance the environmental Kuznets curve.

This article uses the term “manifold learning” to refer to the broad category of un-
supervised machine learning methods for reducing dimensionality. We will not draw
the technical distinction between linear decomposition methods (such as principal com-
ponent analysis and factor analysis) and nonlinear methods (such as multidimensional
scaling) [143] A manifold is a lower-dimensional representation of a high-dimensional
object, akin to the familiar example of a still photograph capturing a flat image of a three-
dimensional object or the four-dimensional progression of that object through space and
time [124] (p. 218). All forms of manifold learning described in this article yield results that
can be interpreted alongside one another. Indeed, this article will aggregate all such results
in a fashion similar to the stacking generalization of predictions from supervised models.

Manifold learning can operate wholly apart from clustering. One such use involves
the removal of outliers before the identification of images through deep learning [144]. The
canonical application of manifold learning, however, typically complements clustering
to summarize and visualize high-dimensional data. This article likewise uses two- and
three-dimensional manifolds of the PM2.5 dataset’s 23-dimensional space to visualize and
interpret clustering results. As will become evident, even more aggressive reduction of
dimensionality into a single vector can serve predictive purposes. At the very least, a single
vector based on the economic or health-based subset of predictive variables can generate
the lone independent variable used to plot the environmental Kuznets curve.
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2.4.2. Clustering through Affinity Propagation

Applications of clustering abound throughout the natural and social sciences [145–148].
This article relies exclusively on affinity propagation [149–151]. Affinity propagation finds
“exemplars,” or typical cluster members, by exchanging messages between pairs of data-
points until the algorithm converges on a reliable set of exemplars and their corresponding
clusters [149]. By avoiding stochastic instantiation, affinity propagation solves the conun-
drum of determining the ideal number of clusters [152,153].

Affinity propagation is used in the clustering of microarray and gene expression
data [154–156] and in sequence analysis [157]. Its versatility beyond bioinformatics [158],
especially in natural language processing (NLP) [159–161] and computer vision [162,163],
suggests that this article’s mathematically modest clustering exercise can benefit from
interdisciplinary cross-pollination. Despite superficial differences, language, image, and
panel data are all amenable to unsupervised learning. Clustering and manifold methods
that work in NLP and computer vision are almost assuredly feasible in social science.

If anything, purely numerical datasets are more tractable. Through imputation and
other data cleaning methods, panels in public health, epidemiology, and related fields
can be perfectly dense. Each feature has exactly the same number of observations. By
contrast, the vectorization of documents generates sparse matrices that do not readily
reveal semantic content. Discretionary decisions over stop words and n-grams are peculiar
to NLP.

Similarly, panel datasets are usually less computationally intensive than high-resolution
images. Though perfectly dense, image arrays are functionally, if not mathematically,
sparse. Computationally meaningful portions of an image (such as eyes, nostrils, and lips
in facial recognition) may be separated by vast amounts of indeterminate noise.

Panel data analysis assuredly places different weight on different features. Some
independent variables inevitably contribute more than others to a model’s predictions.
This study seizes upon that attribute of the PM2.5 dataset. Panel data analysis can exploit
the scaling or outright removal of features in ways that NLP and computer vision cannot.

2.4.3. Dimensionality Reduction through Manifold Learning

This article uses six methods for reducing dimensionality. Four methods—multidimensional
scaling, t-distributed stochastic neighbor embedding, isomap, and locally linear embedding—
are nonlinear methods typically regarded as manifold learning in the narrowly technical
sense. Two other methods, principal component analysis and factor analysis, use linear
decomposition. Those differences prove immaterial. Befitting these methods’ ultimate unity
of purpose and similarity in outcomes, interlocking mathematical connections between
methods efface differences between linear and nonlinear algorithms.

Perhaps the most popular tool for dimensionality reduction, principal component
analysis (PCA) relies upon the singular value decomposition of data [164–167]. This study
relies on SciKit-Learn’s implementation of probabilistic PCA [168,169]. Each successive
dimension generated by PCA expresses progressively less variance. This property makes
PCA ideal for extracting a one-dimensional vector to be projected along one axis of an
environmental Kuznets curve.

Multidimensional scaling (MDS) preserves distances among observations, even as it
reduces complex objects into an arbitrarily lower number of dimensions [170,171]. Because
MDS produces especially vivid visual results, this manifold learning method serves as this
study’s primary tool for extracting exactly three dimensions from the PM2.5 dataset.

t-distributed stochastic neighbor embedding (t-SNE) reduces distances between simi-
lar instances while maintaining distances between dissimilar instances [172–174]. Isomap,
or isometric feature mapping, generates a lower-dimensional embedding that preserves
geodesic distances among all datapoints [175–177]. It is regarded as an extension of MDS
and kernel principal component analysis [178].

Locally linear embedding (LLE) preserves distances within local neighborhoods in
the data [179,180]. Conceptually, LLE acts as a series of local exercises in PCA, which are
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ultimately evaluated on a global and nonlinear basis as the algorithm seeks the optimal
embedding. At a high level of abstraction, LLE is to PCA as LOESS is to OLS regression.

Finally, factor analysis also relies upon singular value decomposition [181,182]. Factor
analysis assumes that all observations are based upon some linear transformation of latent
factors at a lower dimension, with added Gaussian noise. The assumption of a standard
normal distribution, with zero mean and unit covariance, characterizes factor analysis. The
further restrictive assumption of isotropic Gaussian noise, so that all diagonal entries in
the dataset’s covariance matrix are the same, yields probabilistic PCA [168,169]. Factor
analysis may therefore be regarded as a generalization of probabilistic PCA.

2.4.4. Novel Contributions to Unsupervised Machine Learning

This study makes two innovations in unsupervised machine learning. The first
involves its treatment of PM2.5 dataset. In addition to applying clustering and manifold
learning to the unsplit 297 × 23 array of independent variables, not transformed beyond
the original scaling of values for each feature, this study applies these same methods to a
consciously rescaled version of the 297 × 23 array. Each of the values in the 23 × 1 vector
of feature importances generated by the stacking blender corresponds to a feature in the
naïvely and equally weighted, untransformed 297 × 23 array.

This scaling exercise generates a transformed 297 × 23 array susceptible to all forms
of unsupervised machine learning applied to the naïve, equally weighted array. Those
scalars are drawn from a vector of probabilities based on as many as 11 predictive models’
contribution to stacking generalization. An analogy to Bayesian probability may help. The
naïve, untransformed array may be described as a “prior” arrangement of regressors. If so,
the transformed array represents a “posterior,” accuracy-weighted array.

The separate treatment of the prior and posterior arrays leads to a second innovation
in unsupervised learning. Clustering and manifold learning generate dramatically different
outcomes for the prior and posterior arrays. Indeed, the appearance of almost perfectly flat
regression hyperplanes in lower-dimensional manifolds derived from the posterior array
invites the extension of manifold learning to its logical extreme: reduction of the dataset’s
23 dimensions to exactly one.

With one final transformation, the lone vector resulting from each exercise in mani-
fold learning can be compared to the corresponding vector of observed PM2.5 mortality
rates. Manifold learning based on dimensionless arrays that are scaled according to the
predictions of a stacking blender may lack any connection to human-designated units.
Nevertheless, the vectors produced by isomap or LLE, for instance, can be standardized
so that they speak in the same Gaussian language of z-scores used to render this study’s
ground truth.

This process may be regarded as a predictive application of unsupervised machine
learning. Each predictive manifold generates a vector of z-scores corresponding to the
297 observations for PM2.5 mortality. An extension of stacking generalization yields a
predictive meta-model. OLS regression of predictive manifolds produces a final, composite
prediction uniting all forms of dimensionality reduction.

3. Results
3.1. Linear Models

We begin by reporting traditional parameters for linear models as guides to causal
inference. In anticipation of reporting these models’ fitted values and harmonizing them
with supervised machine learning models, however, we emphasize the distinction between
training and test data. The baseline pooled OLS model, for instance, reported very accurate
predictions on both sides of the training/test split. While r2 in training was 0.971629, the
more meaningful r2 for the test set was 0.966741.

Linear models are less likely to give rise to discrepancies between accuracy statistics
for training and test datasets. In machine learning, however, accuracy statistics such as
r2 and RMSE must be based on holdout test data. Training set accuracy serves mostly to
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warn against possible overfitting and cannot be trusted as a gauge of predictive power
with unseen data. Accordingly, this article will report parameters, statistical significance,
and feature importances according to training data, but accuracy according to test data.

3.1.1. Parameters and Statistical Significance

Table 1 reports parameters and statistical significance levels for all linear models:

Table 1. Parameters for all linear models (a). See notes below.

Variable Pooled OLS FEE FTE FETE RE (b) IV2SLS (c)

expectancy −0.228050 *** −0.679440 *** −0.223873 *** −0.333790 ** −0.345283 *** 0.443984 ***

poverty_threshold 0.151001 † 0.259350 ** 0.265349 ** 0.129913 0.110895 0.362384 **

poverty_excluded −0.111437 *** −0.050287 −0.122527 *** −0.037093 −0.115381 *** 0.074701

poverty_included 0.043042 0.098076 *** 0.062356 * 0.108652 *** 0.063563 * −0.192787 ***

emissions −0.006356 0.019317 0.000065 0.023919 −0.011046 0.078672 **

exposure 0.425233 *** 0.219233 *** 0.414018 *** 0.128386 *** 0.339615 *** 1.476388 ***

cardio_incidence −0.256236 *** 0.064386 −0.273505 *** −0.143618 −0.199337 *** −0.031434

ischemic_incidence 0.001203 0.009228 −0.005284 −0.002822 0.006475 0.021552

copd_incidence 0.014185 0.001154 0.012108 0.000839 0.001079 −0.027896

asthma_incidence 0.000686 0.063843 −0.010856 −0.012070 0.074828 * −0.039956

tracheal_incidence 0.114423 *** 0.126039 * 0.115269 *** 0.151985 ** 0.165075 *** −0.068278

cardio_death 0.311744 *** 0.037946 0.326050 *** 0.024614 0.119257 * 0.096857

ischemic_death 0.309552 *** 0.344225 *** 0.314529 *** 0.336414 *** 0.397895 *** −0.040304

copd_death 0.017858 −0.002824 0.012587 −0.003727 0.002650 0.025019

asthma_death 0.012423 −0.010763 0.008116 −0.009243 −0.000844 0.066837 **

tracheal_death 0.003558 0.005269 0.005872 −0.002371 0.011968 0.020837

real_gdp_pc −0.091075 0.014715 −0.130006 * 0.172788 † −0.098530 0.012191

health_expenditures −0.079581 0.059845 −0.139424 * −0.032978 −0.047508 −0.304068 ***

environmental_taxes−0.026935 −0.012153 −0.020793 0.056189 * −0.046456 * −0.188568 ***

social_contributions −0.067829 *** −0.222701 *** −0.071533 *** −0.269718 *** −0.062536 * −0.133907 ***

spending −0.006306 −0.052013 † 0.016360 0.000347 −0.020006 −0.022764

corruption −0.045392 ** −0.013054 −0.084725 0.175724 *** −0.031020 * −0.060887 **

gini 0.006347 −0.002253 −0.000984 0.017345 0.012945 −0.094555 **

Notes to Table 1: Asterisks and plus signs indicate statistical significance at these levels: ***: p < 0.001; **: p < 0.01; *: p < 0.05; †: p < 0.1. The
random effects model alone has a nonzero constant: 0.001197. That constant is ignored in subsequent efforts to harmonize linear models
with machine learning. The parameter for exposure in IV2SLS refers to the estimation of endogenous variable welfare_25 through exposure as
an instrument. Although this coefficient is larger in absolute terms than any other in Table 1, it reflects an across-the-board scaling of all
IV2SLS parameters relative to those of other linear models.

According to the linear models, the most influential predictors appear to be expectancy,
exposure, and ischemic_death. Cardiovascular morbidity and mortality achieve statistical
significance in half the models. Intriguing, cardio_incidence and cardio_death have opposite
signs in five of six models, with incidence negatively related to PM2.5 mortality.

Among economic variables, social_contributions registered a mild surprise. That pre-
dictor is the only other variable besides expectancy and exposure to achieve statistical signifi-
cance at some conventional level in all six linear models. The emissions variable, classified as
an economic rather than a health-based variable, is strikingly less influential than exposure.
Only in IV2SLS is emissions significant, and its coefficient is dwarfed by the parameter
associated with exposure as an instrumental variable for welfare loss.
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3.1.2. Fitted Values and Model Accuracy

We now examine the linear models’ fitted values and the degree of accuracy they
attained in predicting PM2.5 death rates.

Figure 2 presents fitted values and accuracy statistics for all linear models. Ideally,
r2 should approach 1 and RMSE should approach 0 as accuracy improves. Willmott’s
index of agreement and MBE follow a similar distinction: an index of 1 indicates complete
agreement, while departures from 0 (in either direction) indicate greater mean bias error.
Negative values are expected in a model using standard-scaled data and beta coefficients;
they indicate observed and fitted values below the mean.

Figure 2. Fitted values and accuracy statistics for all linear models.

As expected, none of the advanced econometric models outperformed pooled OLS in
predicting observed PM2.5 mortality. Like pooled OLS, RE and IV2SLS achieved impressive
and consistent accuracy at all z-scores in test data, from −1 to +3.

The FTE model, which omits country effects, is very close in predictive accuracy and
interpretive inferences to pooled OLS. Likewise, entity effects hold sway in the FETE model
and align that model with FEE. The relative contribution of entity and time effects to the
linear models suggests that latent country-specific factors omitted from the pooled OLS
model outweighed latent time-specific factors. Again, this is unsurprising in light of this
dataset’s relatively compressed timeframe, to say nothing of geographic, economic, and
social diversity within the EU-27.

The use of fixed effects models, however, is not motivated by a desire for greater
accuracy. Rather, the goal is to refine the interpretive value of the baseline pooled OLS
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model. In particular, the coefficients associated with each entity in the FEE and FETE
models will prove valuable in interpreting unsupervised machine learning results.

3.2. Supervised Machine Learning Models
3.2.1. Fitted Values and Model Accuracy

By contrast, the raison d’être of supervised machine learning is accurate prediction.
We therefore begin our review of machine learning results with fitted values and accuracy
statistics, as reported in Figure 3. We then follow with a presentation of feature importances,
which represent the contribution of this class of model to causal inference.

Figure 3. Fitted values and accuracy statistics for all supervised machine learning models.

All supervised machine learning models except LightGBM outperformed the pooled
OLS baseline in predicting test data. Less elaborate ensemble and boosting models rivaled
or beat XGBoost and outperformed LightGBM every time. The simpler ensemble models
achieve greater accuracy than XGBoost and LightGBM. The better measure of accuracy is
not the marginal improvement in r2, but rather the halving of the boosting models’ RMSE.
LightGBM, which consciously trades accuracy for training speed and reductions in the
computational cost of calculating gradients, should not be expected to excel on smaller
datasets. Despite algorithmic shortcuts of its own, XGBoost led all boosting models.

Convergence in predictive results illustrates the “unreasonable effectiveness of data” [183].
This principle of computer science recognizes that very different algorithms will attain
almost identical results on complex problems—as long as there is sufficient data. Con-
vergence in performance despite differences in algorithmic complexity suggests that data
ultimately triumphs over theoretical elaboration and experimental design. It also provides
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further reassurance that this dataset, though small, was large enough to support causal
inference through machine learning as well as linear modeling.

In addition to achieving r2 near 1 and RMSE near or below 0.1z, these supervised
machine learning models avoid overfitting. This is an important feat. Very high test data
accuracy allays concerns that this small dataset might not generalize well to unseen, holdout
data. Barring sweeping, structural changes in the relationship between the predictors
and PM2.5 mortality, supervised machine learning models trained on this dataset should
perform well on economic, environmental, and epidemiological data yet to be collected.

3.2.2. Feature Importances

Feature importances are to supervised machine learning as coefficients and p-values
are to linear models. Table 2 reports the vector of feature importances associated with each
of the six predictive machine learning models.

Table 2. Feature importances for all supervised machine learning models.

Variable Random Forest Extra Trees AdaBoost Gradient Boosting XGBoost LightGBM

expectancy 0.052014 0.098962 0.082059 0.061310 0.075148 0.068000

poverty_threshold 0.161033 0.084122 0.212715 0.001461 0.055871 0.050000

poverty_excluded 0.004967 0.005565 0.003094 0.003471 0.000797 0.012000

poverty_included 0.004442 0.003075 0.003895 0.001881 0.003689 0.056000

emissions 0.002551 0.003434 0.000456 0.000959 0.003930 0.036000

exposure 0.413803 0.339363 0.459060 0.717532 0.406206 0.160000

cardio_incidence 0.007967 0.018523 0.001447 0.003704 0.006088 0.030000

ischemic_incidence 0.011549 0.009752 0.001243 0.000447 0.002240 0.022000

copd_incidence 0.003862 0.003532 0.000336 0.000258 0.004328 0.028000

asthma_incidence 0.022526 0.018407 0.019316 0.008589 0.019928 0.038000

tracheal_incidence 0.003572 0.007471 0.000323 0.000678 0.002552 0.032000

cardio_death 0.083091 0.110241 0.030849 0.107699 0.139429 0.072000

ischemic_death 0.075020 0.114351 0.015745 0.014557 0.041431 0.070000

copd_death 0.002787 0.005753 0.002103 0.000533 0.005204 0.054000

asthma_death 0.008979 0.008653 0.001088 0.000058 0.006329 0.036000

tracheal_death 0.002632 0.004054 0.001344 0.000566 0.002391 0.034000

real_gdp_pc 0.062514 0.054825 0.128733 0.004961 0.107755 0.032000

health_expenditures 0.035335 0.063784 0.022096 0.026985 0.037256 0.026000

environmental_taxes0.002992 0.003486 0.000781 0.002747 0.003695 0.020000

social_contributions 0.011451 0.005228 0.001485 0.028149 0.001857 0.044000

spending 0.001692 0.002186 0.000382 0.001251 0.001980 0.026000

corruption 0.022396 0.032298 0.009096 0.011921 0.071043 0.040000

gini 0.002823 0.002935 0.002354 0.000285 0.000853 0.014000

The sum of each row indicates the collective weight that a naïve ensemble of these
six machine learning models would assign to a particular variable. For example, the
superficially similar variables, emissions and exposure, carry dramatically different weights.
AdaBoost assigns exposure more than a thousand times the weight it assigns emissions.
Among the strictly epidemiological indicators of morbidity and mortality, cardio_death and
ischemic_death dominate.

Since each column expresses one model’s feature importances as a vector of probabili-
ties whose sum is 1, the distribution of weights within each column shows that model’s
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propensity toward either extreme of equally weighted features or a model emphasizing a
single feature. The Gini coefficient and Simpson’s index of diversity [184] indicate inequal-
ity and concentration, respectively, with values of 1 indicating the assignment of all feature
importance to a single variable. Simpson’s index (also known as the Herfindahl–Hirschman
index in the economics of industrial organization [185,186]), λ = ∑N

i=1 p2
i , λ ∈

[
1
N , 1

]
, has

an additional helpful property: its reciprocal expresses the concentration that would be
associated with a model containing 1

λ variables.
Table 3 reports these measures of diversity and concentration with respect to the six

machine learning models.

Table 3. Indexes of diversity and concentration for machine learning models’ feature importances.

Diversity or Concentration Index Random Forest Extra Trees AdaBoost Gradient Boosting XGBoost LightGBM

Gini coefficient 0.733565 0.687512 0.825314 0.879177 0.745226 0.313739

Simpson’s index 0.219090 0.166459 0.281478 0.532226 0.213564 0.063896

1/Simpson 4.564335 6.007497 3.552676 1.878900 4.682437 15.650432

The higher a model’s Gini coefficient or Simpson’s index, the more heavily it em-
phasizes features it deems important. Despite the similarity of their predictions, machine
learning models vary considerably in the way they distribute feature importances. Though
SciKit-Learn’s native gradient boosting regressor and LightGBM both rely in principle on
gradient boosting, the SciKit-Learn package assigns nearly three-quarters of its feature
importances to a single feature, exposure. Such concentration is suggestive of a model
with no more than two predictors. LightGBM, by contrast, distributes feature importance
weights so evenly that it is analogous to a model with 16 independent variables.

3.3. Emulated Feature Importances of Linear Models

A transformation of these beta coefficients and their corresponding p-values according
to this article’s implementation of [137] supplements the conventional interpretation of a
linear regression model. More importantly, such a transformation enables linear regression
coefficients to be interpreted alongside feature importances from supervised machine
learning and to be included in weighting vectors in unsupervised machine learning.

Table 4 reports emulated feature importances for all linear models.

Table 4. Emulated feature importances for all linear models.

Variable Pooled OLS FEE FTE FETE RE IV2SLS

expectancy 0.103498 0.315691 0.088595 0.170067 0.161772 0.120627

poverty_threshold 0.056767 0.119627 0.103650 0.044483 0.033923 0.098100

poverty_excluded 0.050569 0.018111 0.048487 0.012039 0.054032 0.016395

poverty_included 0.015629 0.045555 0.023372 0.055605 0.028999 0.052377

emissions 0.000249 0.004559 0.000000 0.009023 0.001037 0.021324

exposure 0.192986 0.101863 0.163842 0.065685 0.159116 0.401122

cardio_incidence 0.116289 0.009015 0.108236 0.056032 0.093379 0.001261

ischemic_incidence 0.000003 0.002564 0.000276 0.000140 0.000789 0.003647

copd_incidence 0.003198 0.000007 0.001871 0.000003 0.000004 0.005671

asthma_incidence 0.000000 0.017970 0.000483 0.000233 0.034137 0.006785

tracheal_incidence 0.051929 0.055625 0.045616 0.077112 0.077341 0.014908

cardio_death 0.141481 0.006410 0.129030 0.002597 0.053801 0.016227

ischemic_death 0.140486 0.159939 0.124470 0.172176 0.186422 0.001870

copd_death 0.005238 0.000092 0.001989 0.000269 0.000050 0.004565
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Table 4. Cont.

Variable Pooled OLS FEE FTE FETE RE IV2SLS

asthma_death 0.001795 0.001808 0.000476 0.001564 0.000001 0.018044

tracheal_death 0.000072 0.000545 0.000264 0.000073 0.003248 0.003229

real_gdp_pc 0.032866 0.000087 0.048509 0.072957 0.036958 0.000049

health_expenditures 0.025815 0.014293 0.052561 0.003200 0.008734 0.082605

environmental_taxes0.009734 0.000703 0.004754 0.026837 0.020746 0.051232

social_contributions 0.030772 0.102449 0.028303 0.137955 0.027745 0.036381

spending 0.000121 0.021325 0.001426 0.000000 0.003342 0.001610

corruption 0.020329 0.001757 0.023788 0.089896 0.013509 0.016367

gini 0.000175 0.000004 0.000001 0.002056 0.000916 0.025607

Abbreviations—Pooled OLS: pooled ordinary least squares; FEE: fixed entity effects; FTE: fixed time effects; FETE: fixed entity and time
effects; RE: random effects: IV2SLS: instrumental value/two-stage least squares.

Emulated feature importances blur the conventional distinction between linear and
machine learning models. Linear models are prized for their interpretive clarity. The typical
justification for machine learning assumes that CART-based ensembles and boosting mod-
els can improve accuracy. Harmonizing linear model parameters with machine learning
feature importances enables supervised machine learning to contribute to interpretation
and causal inference than traditionally thought.

Tables 2 and 4 reveal surprising amounts of agreement among linear and machine
learning models. For example, the extra trees and pooled OLS models assign almost exactly
the same amount of inferential weight to expectancy, cardio_death, and ischemic_death. The
IV2SLS model assigns more than 40 percent of its emulated feature importances to exposure
(as the instrument for the endogenous variable welfare_25). That allocation is much closer to
the allocation made by machine learning models than other linear models. At a minimum,
a machine learning model such as a random forest can break the interpretive stranglehold
that the more conservative FEE model might exert in an exclusively linear experimental
design models.

Table 5 reports the Gini coefficient and two ways to interpret Simpson’s index for the
linear models’ emulated feature importances. As a group, the linear models are closer to
one another and more diverse than machine learning models. They do emphasize different
predictive variables, which accounts for their far wider range of predictive outcomes.

Table 5. Indexes of diversity and concentration for linear models’ emulated feature importances.

Diversity or Concentration Index Pooled OLS FEE FTE FETE RE IV2SLS

Gini coefficient 0.640728 0.729023 0.608118 0.636847 0.626618 0.698973

Simpson’s index 0.113195 0.167060 0.100787 0.110444 0.112763 0.201177

1/Simpson 8.834318 5.985860 9.921939 9.054360 8.868171 4.970742

Figure 4 portrays the Lorenz curves used to calculate the Gini coefficients for all
models’ actual or emulated feature importances. These two plots visualize the greater
diversity among machine learning models vis-à-vis the greater similarity in the distribution
of emulated feature weights for linear models.
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Figure 4. Lorenz curves and Gini coefficients for linear and machine learning models’ (emulated)
feature importances. bbreviations—Pooled OLS: pooled ordinary least squares; FEE: fixed entity
effects; FTE: fixed time effects; FETE: fixed entity and time effects; RE: random effects: IV2SLS:
instrumental value/two-stage least squares; GBR: gradient boosting regression model.

Ultimately, actual and emulated feature importances can be interpreted on comparable
if not mathematically equal footing. The absence of negative signs, considered a vice in a
traditional statistical culture that prizes heuristic ease and clarity, can prove to be a hidden
virtue in the algorithmic culture of machine learning [187]. Stacking generalization of
predictive results and unsupervised learning in its entirety will demonstrate the interpretive
and predictive power of feature importances.

3.4. Stacking Generalization
3.4.1. Aggregated Predictions

Stacking generalization is the culmination of supervised machine learning and this
study’s overtly predictive phase. It performs two tasks. First, it aggregates all predictions,
no matter their underlying model, into a final set of fitted values that can be more accurate
than those of any of the models that inform it. Second, the very act of aggregation generates
a weighting vector that can be used in conjunction with all emulated and actual feature
importances to inform causal inference and unsupervised machine learning. This twin-
pronged functionality makes stacking generalization the natural bridge between supervised
and unsupervised learning.

We begin with aggregated predictions.
Figure 5 shows predictions from stacking generalization with a choice of blenders in

level 1. As simple CART-based ensembles, random forests and extra trees are superbly
suited to be blenders. Both blenders generated fitted values that were more accurate than
predictions by 11 of the 12 models in level 0. The extra trees model finished first.
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Figure 5. Predictions from stacking generalization, with alternative machine learning models (ran-
dom forest versus extra trees) in level 1.

As is typical of this class of predictive models, stacking generalization achieved
greater accuracy than most of the constituent predictive models in level 0. As an ensemble
of ensembles, an aggregating method such as stacking or voting harnesses the Delphic
wisdom of the crowd at multiple levels [124] (p. 189). The inclusion of weaker linear
models such as FEE and FETE may have kept the random forest- and extra trees-based
blenders from outperforming the standalone machine learning ensembles.

Stacking generalization does more than take the naïve average of level 0 predictions.
Both stacking blenders, as models of models, generated their own set of feature importances.
The next subsubsection addresses the significance of that feat.

3.4.2. The Combined Array of Feature Importances

Aggregated predictions represent merely part of the results from stacking generaliza-
tion. An aggregated vector of feature importances for emerges from the dot product of
(a) the feature importances from each of the predictive models in level 0 of the stacking
generalization machine and (b) the feature importances generated by the blender in level 1.
This vector will prove vital as feature weights in unsupervised machine learning.

Stacking generalization begins with concatenation of feature importances reported
in Tables 2 and 4 into a grand matrix. Let L represent the 23 × 6 matrix of emulated
feature importances for linear models, where the 23 rows designate independent variables
from exposure to gini and the 6 columns designate the linear models. Let M represent the
corresponding 23 × 6 matrix of actual feature importances for the supervised machine
learning models. A grand 23 × 12 matrix F for all feature importances emerges from the
row-wise concatenation of L and M, such that F = (L | M).

Let us now assign weights corresponding to each of the models corresponding to the
columns in F. Let W, a 12 × 1 vector, contain those weights. The dot product, F ·W, yields
a 23 × 1 vector V corresponding to the original 23 independent variables. Vector V or its
transpose, VT, can now be used to transform any matrix of the appropriate rank.
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W could be a naïvely weighted vector of 12 consecutive values, each equal to 1
12 . There

is a better option, however: feature importances from either of the blenders in level 1 of
stacking generalization, or some weighted mean of the two.

Figure 6 shows feature importances from the random forest- and extra-trees-based
stacking blender. Although differences in accuracy provide no clear reason to prefer
the extra trees blender over its random forest-based counterpart, the extra trees blender
does draw from a more diverse, less concentrated of results from the constituent models
in level 0. The extra trees blender had a Gini coefficient of 0.308941 and a Simpson’s
index of 0.109181. The reciprocal of the Simpson’s index value, 1/λ, implies that this
blender operated with the equivalent of 9.159139 models. For the random forest blender,
G = 0.534323 and λ = 0.164151 imply a much lower number of de facto constituent models:
6.091958. Indeed, that number aligns almost perfectly with the number of models—all of
them based on machine learning—given meaningful weight by the random forest blender.

Figure 6. Feature importances within two stacking blenders: (a) random forests; (b) extra trees.

As a group, the machine learning models earned a higher share of the weight within
the extra trees blender’s feature importances. Each of the 12 constituent models in level 0
presumably contributes roughly 0.083 to the blender’s predictions. In reality, the blender’s
underlying extra trees model assigns more than 0.1 weight to each of the machine learning
models. Not one linear model attains its presumptive 0.083 share. The FEE and FETE
models are given very little weight. Given the lower accuracy of those models, this
reduction in weight is not surprising.

Overall, the extra trees blender preferred more accurate models—but not monoton-
ically so. The weakest of the machine learning models, LightGBM, captured the second
highest share of this vector.

3.4.3. Aggregated Feature Importances

At last we take the dot product, F ·W, of the combined matrix of all predictive models’
emulated and actual feature importances by the weights in the extra trees blender’s own
12 × 1 vector of importances. Figure 7 depicts V, the resulting vector of aggregated feature
importances, which proves pivotal in unsupervised learning.



Int. J. Environ. Res. Public Health 2021, 18, 8688 25 of 58

Figure 7. Aggregated feature importances for all predictive models and the entire PM2.5 dataset.

This final aggregation of feature importances confirms hints left by interpretive evi-
dence from the constituent linear and machine learning models. Exposure is the dominant
variable. Five other variables—expectancy, poverty_threshold, cardio_death, ischemic_death, and
real_gdp_pc—clearly exceed each feature’s presumptive 4.35 percent share of aggregated
feature importances. The disproportionate weight accorded to two economic variables
(poverty_threshold and real_gdp_pc) will affect our environmental Kuznets curves.

Diversity and concentration statistics for aggregate feature importances V are
G = 0.628176 and λ = 0.171340. 1/λ = 5.836350 implies a six-variable model, which happily
corresponds to the number of features exceeding their presumptive share of weight.

The non-negativity of feature importances boasts a virtue relative to regression co-
efficients. This property allows feature importances, individually and collectively, to be
used in scaling distances. Since unsupervised machine learning constitutes a giant exercise
in computing distances across multidimensional space, this putative shortcoming in the
causal inference through machine learning turns the tables.

3.5. Unsupervised Machine Learning on Country-Level Aggregate Data

We now turn to unsupervised machine learning. This study approaches the PM2.5
dataset at two levels. First, we will evaluate the mean-based aggregate for each of the
European Union’s 27 member states. In very practical terms, this means working with a
very small 27 × 23 array containing a single value for each country. We will then engage
the data at the level of individual observations, or the full 297 × 23 scaled array.

In each instance, we will show that the application of feature importances from the
stacking blender as a vector of weights will align the clusters with predictions from linear
regression and supervised learning models. Indeed, realigning “naïve” clusters based on
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the equally weighted matrix of variables into clusters that reflect the blender-generated
feature weights will generate its own set of predictions.

Affinity propagation clustering according to the naïvely unweighted matrix of predic-
tive variables yields the following clusters of countries (Figure 8):

• Cluster 0; Austria, Belgium, Finland, France, Germany, Greece, Italy, Luxembourg,
Malta, the Netherlands, Sweden

• Cluster 1: Croatia, Hungary, Poland, Slovenia
• Cluster 2: Czechia, Slovakia
• Cluster 3: Denmark
• Cluster 4: Bulgaria, Estonia, Latvia, Lithuania, Romania
• Cluster 5: Cyprus, Ireland, Portugal, Spain

Figure 8. Clusters of EU countries based on naïve, unweighted country-level aggregate data.

Each cluster’s exemplar appears at its center. Bulgaria, for example, lies a considerable
distance from Latvia, which defines cluster 4. Estonia lies at the frontier between clusters 4
and 5. Slovenia likewise appears to mark the boundary between clusters 1 and 0.

The most striking impression from Figure 8’s view of EU-27 countries is the absence
of any visual ordering. The qualitatively distinctive trait of these clusters is the clean
separation between “eastern European” countries (defined as former members of the
Warsaw Pact or the Yugoslav Federation) and their western counterparts. Cluster 2, perhaps
appropriately, binds the two states born of the former federal republic of Czechoslovakia.
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A more subtle distinction characterizes the western countries of clusters 0, 3, and
5. Cluster 0 is dominated by the six original signatories of the Treaty of Rome. France,
Germany, Italy, and the Benelux nations comprise a bare majority of the 11 countries in that
cluster. Cluster 5 includes three countries—Ireland, Portugal, and Spain—at the heart of
the global financial crisis of 2008–09. All three of those countries, like Cyprus, are either
islands or are bordered on the west by the Atlantic Ocean. Both those traits characterize
Ireland. This geographic commonality may prove important later.

Performing the same feats of unsupervised learning—clustering through affinity
propagation and manifold learning through multidimensional scaling in three dimensions—
on the accuracy-adjusted array of feature importances produces a dramatically different
configuration of EU-27 countries (Figure 9):

• Cluster 0: Bulgaria
• Cluster 1: Austria, Belgium, France, Germany, Lithuania, Malta, and the Netherlands
• Cluster 2: Croatia, Czechia, Hungary, Latvia, Romania, and Slovakia
• Cluster 3: Denmark, Estonia, Finland, Ireland, Luxembourg, Portugal, Spain, and Sweden
• Cluster 4: Poland
• Cluster 5: Cyprus, Greece, Italy, and Slovenia

Figure 9. EU-27 clusters based on posterior, accuracy-weighted country-level aggregate data.

Although new clusters 0, 2, and 4 retain an “eastern” flavor, closer examination reveals
very significant departures from the strictly geographic division of the naïvely unweighted
clusters. Cluster 4 from the unweighted analysis has splintered almost completely. Most
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strikingly, Estonia is now aligned with its Nordic neighbors, Finland and Sweden, rather
than its other neighbors on the eastern shore of the Baltic Sea and south of the Gulf of
Finland. Lithuania, curiously, has joined cluster 1, the new home for a quorum of the Treaty
of Rome’s “Inner Six.” New cluster 2, with Croatia, Czechia, Hungary, Latvia, Romania,
and Slovakia, retains a distinctively eastern flavor. Bulgaria and Poland are so far removed
from every other country that they have become singletons.

Slovenia has migrated to a new cluster 5, which consists otherwise of countries we
may fancifully associate with Homer’s Odyssey: Cyprus, Greece, and Italy. This is a striking
departure from the original alignment, rivaling Estonia’s migration to new cluster 3, a
low-mortality group of countries along Europe’s western and northern frontiers.

Clustering and multidimensional scaling with the posterior, accuracy-weighted array
of predictive variables preserves the rough division between western and eastern Europe.
The frontier between the two superclusters appears to fall between clusters 1 and 5. One
of the two most marginal countries in cluster 1, Malta, would harmonize with Homeric
cluster 5. Lithuania, however, would not.

The other visually striking result of clustering and manifold learning according to
accuracy-adjusted weights is the rough alignment of countries according to their PM2.5
mortality. The clusters lie close to the flat surface of the linear regression hyperplane.
Although MDS dimensions are not expressed in meaningful units, MDS dimension 1
appears to align very closely with observed PM2.5 mortality rates. Bulgaria and Poland
dominate one extreme, while the low-mortality countries of cluster 4 lie at the opposite
end. The palpably linear alignment of countries and clusters, in an analysis relying solely
on a weighted array of independent variables, suggests that clustering and dimensionality
reduction can serve analytically predictive as well as visually descriptive purposes.

3.6. Unsupervised Machine Learning on the Entire PM2.5 Dataset
3.6.1. The Accuracy-Weighted Array Reveals Visually Linear Convergence in the Data

This subsection repeats clustering through affinity propagation and manifold learning
through MDS on the PM2.5 dataset at the level of individual observations. Observation-
level data is 11 times as deep as the country-specific aggregation. We again begin by
applying affinity propagation and MDS to the naïve, equally weighted array of predictive
variables. We then repeat these exercises on the posterior, accuracy-weighted array.

One difference between the naïve and accuracy-weighted arrays is the number of
clusters. Affinity propagation found 35 clusters within the equally weighted array and
17 clusters within the accuracy-weighted array. Figure 10 provides the naïve view.

The naïve clusters notably fail to align in a plane, let alone a line. Their most distinctive
trait is the regularity with which clusters capture the exact 11 observations associated with
a single country. Indeed, of the 27 EU countries, 12 formed clusters that contained only
the 11 observations associated with a single country: Poland, Portugal, Slovenia, Bulgaria,
Croatia, Czechia, the Netherlands, Romania, Slovakia, Malta, Hungary, and Spain. Three
others—Ireland, Luxembourg, Cyprus—formed exactly one cluster of 10 observations
and a second cluster consisting solely of a single observation. All 11 observations for
Lithuania appeared in cluster 21, along with a single observation from Latvia. The remain-
ing 10 observations for Latvia appeared in cluster 20. In concert, these clusters suggest
that the naïvely unweighted array of predictive variables do clump together according to
country-specific factors that fixed effects models are designed to expose.

Using the stacking blender’s aggregate feature importances as weights for the array of
predictive variables aligns these observations and a new configuration of 17 clusters into a
distinctive plane. Figure 11 illustrates this radical realignment of clusters. Even though
MDS dimensions are arbitrary, most of the variance in this three-dimensional plot appears
along MDS dimension 0. The quadratic regression hyperplane, though visibly curved,
nevertheless remains relatively flat.
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Figure 10. Clusters of observations within the PM2.5 dataset based on naïve, unweighted data.

Even more gratifying is the monotonic rise of PM2.5 mortality rates along MDS di-
mension 0. PM2.5 mortality, after all, is this study’s target variable. The left side of this
three-dimensional representation of the accuracy-weighted dataset is dominated by low-
mortality countries such as Finland, Sweden, and Estonia. Romania, Slovakia, Bulgaria,
and Poland dominate the right side.

The linear and monotonic alignment of EU-27 countries by PM2.5 mortality invites
a more comprehensive and aggressive application of manifold learning. If individual
observations within the accuracy-weighted array of predictive factors are reduced to
a single vector of values by all manifold methods at hand and then rescaled through
standardization, those vectors may produce credible predictions of PM2.5 mortality. The
next subsubsection engages in this very exercise of predictive unsupervised learning.
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Figure 11. Clusters of observations within the “posterior” array of accuracy-weighted data.

3.6.2. Predictive Unsupervised Learning

It is worth recalling the six linear and nonlinear methods of dimensionality reduction
that Section 2.4.3 defines as “manifold learning”:

• Principal component analysis (PCA)
• Multidimensional scaling (MDS)
• Isometric feature mapping (isomap)
• Factor analysis
• t-distributed stochastic neighbor embedding (t-SNE)
• Locally linear embedding (LLE)

Figure 11 appears to display additional variance along a second dimension in the MDS
manifold. This invites a seventh form of predictive unsupervised learning. By analogy to
the ecliptic in astronomy, which is the plane along which the earth’s orbit travels within
the solar system, MDS ecliptic accounts for two rather than merely one of the dimensions
within a three-dimensional MDS projection.

“Unsupervised OLS,” or the fitted values of the linear regression of results from
the foregoing seven forms of manifold learning brings the total number of unsupervised
predictive models to eight. As described earlier, this methodology is analogous to stacking
generalization, with the simplest form of OLS regression as the blender.

Figure 12 reports results from all eight of these unsupervised predictive models
alongside the traditional baseline of OLS regression of the accuracy-weighted observations.
The accuracy statistics accompanying each predictive manifold do not distinguish between
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training and test accuracy, since all forms of unsupervised learning use the full PM2.5
dataset without regard to a training-test split.

Figure 12. Predictive manifolds: a predictive application of unsupervised machine learning.

Like the stacking blender on which it is modeled, the aggregate “unsupervised OLS”
model overcomes the inclusion of the weak factor analysis model. Unsupervised OLS
ultimately registers an r2 of 0.953851 and RMSE of 0.210032. These indicators of accuracy
compare favorably with the OLS regression baselines of r2 = 0.970402 and RMSE = 0.169550.
The linear model has a higher index of agreement, 0.992656 to 0.988606.

Full appreciation of improvement attained by predictive manifolds requires a look at
the baseline performance that these unsupervised learning methods would have attained
in the absence of any accuracy-based feature weights. Figure 13 reports the predictive
manifolds generated by the naïve, equally weighted array of predictive variables (whose
clusters and configuration were displayed in Figure 10).
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Figure 13. Baseline performance for predictive manifolds, based on the naïve, equally weighted array
of predictive variables.

Accuracy-based weights, in other words raised r2 by 0.122 and cut RMSE by 0.169.
In addition to producing accurate predictions, predictive manifolds further validate

the idea that unsupervised machine learning can perform both of the primary functions
of regression: not only prediction, but also interpretation and causal inference. Since
weighting the entire 297 × 23 array of observations by aggregated feature importances
achieved these predictive gains, it follows that the constituent models in level 0 of stacking
generation—and their own feature importances—conferred predictive value.

The tentacles of the carnivorous sundew (Drosera rotundifolia) inspires the joint visu-
alization of these two models. The “sundew plot” in Figure 14 combines scatterplots for
two competing predictive models and uses vertical distances between each prediction (and
relative to the ground truth) to compare the models’ accuracy.
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Figure 14. A “sundew plot” comparing conventional OLS with aggregated predictions through
unsupervised machine learning.

Figure 14’s sundew plot shows the close visual relationship between OLS regression
and the final, aggregated predictive manifold. Both are highly accurate representations of
PM2.5 mortality rates. Although predictive unsupervised learning did not, in this instance,
exceed the accuracy of more conventional methods, it validates the feature importances
gathered through these steps:

• Actual feature importances from supervised machine learning models
• Emulated feature importances from linear models such as pooled OLS and all variants

of fixed effects
• The weighting of actual and emulated feature importances according to the model-

specific feature importances generated by the stacking blender

In other words, supervised learning does more than make predictions. It also pre-
processes the data in advance of unsupervised clustering and manifold learning. In turn,
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unsupervised learning on the array of predictive variables, weighted according to the
stacking blender’s evaluation of results from consciously predictive models, generates an
independent set of predictions. Indeed, predictions from unsupervised machine learn-
ing cover the entirety of the dataset, without the splitting of data into training and test
sets or expedients such as cross-validation. In datasets where this pipeline yields results
that affirmatively outperform the OLS baseline, predictive uses of unsupervised learning
demonstrate that all forms of machine learning can enhance conventional analysis.

3.7. The Environmental Kuznets Curve

So far we have emphasized the reduction of dimensionality from 23 predictive vari-
ables to a single dimension corresponding to the ground truth of premature mortality from
PM2.5 pollution. Unsupervised learning can make a final contribution to the interpretation
of PM2.5 mortality data.

Principal component analysis (PCA) can decompose 23 predictive variables into
two cogent subcomponents, economic and health-based. This subsection explains the
decomposition in detail and presents its results. Environmental Kuznets curves follow
naturally from a plot of the ground truth of PM2.5 mortality against each composite index.
Put simply, environmental Kuznets curves are a species of unsupervised machine learning.

3.7.1. Extracting Economic and Health-Based Indexes through PCA

PCA can decompose a subset of independent variables in a high-dimensional dataset
into a single, one-dimensional composite index. This is one of the simplest applications of
unsupervised machine learning. Instead of covering the full 297 × 23 accuracy-weighted
array, PCA can be applied to the appropriate slice of the data, as in a 297 × 11 subarray
of economic variables or a 297 × 12 subarray of health-based variables. Aggregating
those PCA results then enables a country-by-country comparison. Decomposition of an
array variables provides a workable solution to the “composite index of environmental
performance” often sought in the literature on environmental Kuznets curves [73] (p. 22).

The application of PCA to the relevant fraction of the posterior, accuracy-weighted
array describes each country according to that set of independent variables. So applied,
PCA can extracts a single index of economic indicators and a corresponding index of
health-based indicators. Health-based indicators blend environmental and epidemiological
factors that can be distinguished from possible economic drivers of public health.

PCA’s crudeness reveals the hidden strength beneath the environmental Kuznets
curve. PCA offsets its mathematical simplicity by bringing interpretive clarity to machine
learning’s black box. Like other efforts to reduce dimensionality, decomposition through
PCA simultaneously simplifies complexity and clarifies understanding.

Among this article’s 23 predictive variables, 11 appear to be primarily economic:
all three definitions of the poverty threshold, emissions, real_GDP_pc, health_expenditures,
environmental_taxes, social_contributions, spending, corruption, and gini. Emissions per capita
are a better indicator of economic activity than of public health, since they do not directly
address exposure to PM2.5 pollution. The remaining 12 variables are primarily environ-
mental or epidemiological: expectancy; exposure; and all indicators of incidence or mortality
for cardiovascular disease, ischemic disease, COPD, asthma, and tracheal disease.

Economic variables account for roughly 28.5 percent of feature weights in the stacking
blender. Health-based variables account for the remaining 71.5 percent. The balance among
components of each index is illustrated in Figure 15:
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Figure 15. Individual components of the PCA-generated economic and health-based indexes: (a) the economic index; (b) the
heath-based index.

The economic index (Figure 15a) accords considerable weight to real_gdp_pc and
poverty_threshold, a proxy for cost of living. Health-related expenditures and social contri-
butions, both within the control of governments, are nontrivial components. Surprisingly,
perhaps, so is corruption. That political trait accounts for a tenth of this index.

The health-based index (Figure 15b) is dominated by exposure, which accounts for more
than half its weight. Three other variables—cardio_death, expectancy, and ischemic_death—
each constitute roughly a tenth of the health-based index.

3.7.2. The Economic Variant of the Environmental Kuznets Curve

Aligning either composite index with the vector of PM2.5 mortality rates instantly
generates an environmental Kuznets curve. Table 6 reports the numerical results for the
composite economic index. The application of PCA to the relevant slice of the posterior,
accuracy-weighted PM2.5 dataset provides an independently credible ranking of EU-27
member states according to the cost of living, governmental exactions and expenditures
(with varying degrees of relationship to public health), and GDP per capita.

Table 6. The environmental Kuznets curve for the PCA-generated composite economic index.

Country Economic Index PM2.5 Mortality

Romania −1.285505 1.134495
Bulgaria −1.273869 2.512904
Hungary −1.029198 0.961135
Lithuania −1.000805 0.338977

Latvia −0.998795 0.857050
Poland −0.987242 1.269684
Croatia −0.936146 1.080966

Slovakia −0.825427 1.378815
Estonia −0.779594 −1.025214
Czechia −0.692113 0.775506
Portugal −0.581820 −0.887409
Greece −0.533010 0.186775

Slovenia −0.293839 −0.220876
Malta −0.276277 −0.212840
Spain −0.031286 −0.894877

Cyprus 0.001373 0.602726
Italy 0.187608 −0.201211

France 0.704757 −0.861699
Germany 0.716147 −0.465943
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Table 6. Cont.

Country Economic Index PM2.5 Mortality

Belgium 0.784445 −0.330687
Netherlands 0.886835 −0.516262

Austria 0.931414 −0.465291
Finland 0.944055 −1.349146
Ireland 1.006518 −0.965832
Sweden 1.188469 −1.319755

Denmark 1.572643 −0.611526
Luxembourg 2.590962 −0.770464

Simple in absolute terms, Table 6 reports 27 instances with two values each. Plotting
the PCA-generated economic index on the x-axis and PM2.5 mortality rates on the y-axis
reveals a radically simplified and instantly interpretable environmental Kuznets curve.

Figure 16 reports PM2.5 mortality on an inverted axis so that higher z-scores appear
toward the bottom, as one would expect of bad health outcomes. Cluster membership is
carried over from the posterior, accuracy-weighted analysis of data aggregated by country.
The vertical and horizontal scales of the ellipses, as well as their tilt, indicate variability
within each cluster along each of the chart’s two dimensions.

Figure 16. The environmental Kuznets curve for the PCA-generated composite economic index.
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Higher-degree polynomial regression should reveal one of the three characteristic
shapes of the environmental Kuznets curve (linear, inverted U, N-shaped). The un-
weighted average of quadratic, cubic, and quartic regression curves reveals the char-
acteristic parabolic shape of an inverted U. In all events„ the downward curvature is
very slight. This curve could be interpreted as a monotonically increasing environmental
Kuznets curve.

The costlier, wealthier, and more generous countries of Denmark and Luxembourg
have affirmatively lower levels of health than less wealthy but still relatively prosperous
countries such as Finland, Sweden, Ireland, and France. The relatively poor countries
of Spain, Portugal, and (perhaps most surprisingly) Estonia all achieved better health
outcomes than Denmark and Luxembourg.

The shape and size of the ellipses characterizing each of the clusters also reveals
information about each cohort. There are three visually distinct clumps:

• The healthy countries in clusters 3 and most of cluster 1
• An intermediate tier consisting of cluster 5 and two countries in cluster 1
• Clusters 2, 4, and 0, including impoverished and unhealthy Bulgaria on its own

The intermediate region covering clusters 5 and 0 reveal socioeconomic diversity. This
region does not necessarily align with clusters found by unsupervised machine learning.
This is particularly true along the horizontal, economic axis. EU-27 countries exhibit
divergent public health outcomes relative to underlying economic conditions. The ellipse
for cluster 1 tilts upward. The ellipse for the healthiest cluster, number 3, points downward.
Indeed, cluster 3 is almost orthogonal to cluster 1. This suggests monotonic improvement
in public health with increasing wealth—to a point. The downward slope of the ellipse for
the healthiest countries is consistent with the inverted U interpretation.

The position of individual countries relative to the linear and polynomial regression
curves also supports a clear interpretation. Positions above these curves, particularly the
inverted parabola reported by higher-degree polynomial regression, indicate public health
overperformance relative to the rest of Europe.

Positions below the curve indicate underperformance. Apart from the uniquely ap-
palling case of Bulgaria, Cyprus may represent Europe’s greatest disappointment. Despite
its relative prosperity, approximately 0.5z greater than its historical and cultural counterpart
Greece, Cyprus underperforms expectations by nearly a full standard deviation.

The superlative performance of Estonia, Portugal, and Spain invites speculation about
geospatial effects on PM2.5 mortality. These are not particularly prosperous countries.
Indeed, all three have negative z-scores in the economic index. Estonia, in particular, shares
a political history with the 10 formerly socialist countries at the bottom of the index. Yet
all three boast one of the six lowest rates of PM2.5 mortality in the EU. Even Lithuania,
otherwise mired with poorer countries in the east, was assigned to moderately healthy
cluster 1, dominated by the original signatories of the Treaty of Rome.

Geography may have a profound impact. Estonia lies east of Sweden, a sparsely
populated country with the second-best PM2.5 mortality rate. It is buffered by the Baltic
Sea. Portugal and Spain occupy the Iberian peninsula. To their west lies the Atlantic Ocean.
Indeed, Portugal achieves almost the same success as Spain in avoiding death from PM2.5
pollution, despite a markedly lower economic score. Isolation at the northern and western
edges of Europe may explain these countries’ public health success. By contrast, the
mostly landlocked Višegrad countries—Poland, Czechia, Slovakia, and Hungary—suffer
cross-boundary pollution from wealthier neighbors to their west.

3.7.3. A Health-Based Look at the Environmental Kuznets Curve

Repeating the previous steps with the PCA-generated composite health-based index
generates the curve in Figure 17. Unlike the economic variant of this curve, the health-based
curve assumes a mostly linear form.
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Figure 17. The environmental Kuznets curve for the PCA-generated composite health-based index.

The health-based analysis should be wholly unsurprising, since it plots a public health
outcome against a decomposed vector of health-based variables. Unlike the economic
variant of this curve, however, Figure 17 cleanly distinguishes among the six clusters.
Again, this comes as no surprise: the health-based index accounts for nearly three-fourths
of the weight of the entire study.

The health-based curve explains many of the curiosities in the traditionally economic
version of the environmental Kuznets curve. Lithuania aligns with the wealthier countries
of cluster 1 because it stands on equal health-based footing. Though the Homeric cluster 5
lies not too far from Malta, there is a clear gap. Poland, despite death rates more in line
with cluster 2, trails the rest of Europe so badly that it earns a cluster of its own. It may
be worth asking why Poland outperforms its health-based indicators, while neighboring
Lithuania, despite better health indicators and lower PM2.5-related mortality, lags the rest
of cluster 1 and falls below the linear and polynomial regression lines.

All that remains is to plot the economic variant of the environmental Kuznets curve
against its health-based counterpart. In Figure 18, the mildly inverted parabolic shape of
the environmental Kuznets curve based on the composite economic index contrasts with
the monotonically increasing shape of the corresponding health-based curve.



Int. J. Environ. Res. Public Health 2021, 18, 8688 39 of 58

Figure 18. A comprehensive environmental Kuznets curve plotting PM2.5 mortality rates against
PCA-generated composite economic and health-based indexes.

The country-specific aggregation in Figure 18 captures this article’s qualitative essence.
In a play on words combining political history with this study’s mathematical underpin-
nings, this radical reduction of information fulfills a manifold destiny.

4. Discussion
4.1. The Environmental Kuznets Curve: Bridging Quantitative Analysis with Policy Evaluation
4.1.1. An Apt Metaphor for Unsupervised Machine Learning Writ Large

The formulation of environmental Kuznets curves connects the presentation of quanti-
tative results with a policy-oriented discussion. Environmental Kuznets curves separate
the complexities of PM2.5 pollution into distinct and tractable economic and health-based
components. The qualitative elements of that summary of this article’s findings now
facilitates a closer look at policy challenges and options within the European Union.

This study’s methodological pipeline included the use of unsupervised machine
learning to cluster countries according to common features and their impact on the target
variable of premature death from airborne PM2.5. Environmental Kuznets curves sum-
marize but do not exhaust the broader descriptive and prescriptive goal of analyzing
relationships among economic development, air quality, and human health.

Environmental Kuznets curves do excel in framing qualitative examination. Faced
with overwhelming complexity, humans routinely adopt heuristic shortcuts. Among
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such expedients, environmental Kuznets curves boast the virtue of reflecting quantitative
evidence, even if it has been condensed.

Economic development and transformation based on knowledge, innovations, new
technologies, and environmental governance are driving improvements in environmental
standards and quality [188–193]. These trends support a version of the environmental
Kuznets curve that predicts superior environmental performance as an economy grows.
Indeed, our environmental Kuznets curve analysis confirms work examining this relation-
ship specifically within the European Union: “Eastern [European] countries appear to be
performing generally quite well, . . . benefiting from EU membership and related policies
in terms of environmental performance” [74] (p. 203).

Compressing 23 dimensions of data into one-dimensional, PCA-decomposed vectors
condenses more than the data itself. The formation of these curves is an apt metaphor
for unsupervised machine learning writ large. Manifold learning adds nothing to data;
it extracts insights without regard to labels assigned by humans. If matrix operations
improve the accuracy of predictive manifolds, that process validates the value of linear and
supervised machine learning models that informed the calculation of vector weights.

The assignment of countries to separate classes primarily serves political convenience.
In the absence of human supervision, clustering supplies labels and defines categories. Any
distinction between economics and public health likewise hinges on human judgment. PCA
and environmental Kuznets curves channel those judgments. The resulting categorical
taxonomy, whether defined along geographic or policy-oriented boundaries, help human
decision-makers orient themselves amid a sea of quantitative data.

4.1.2. Closer Examination of Health-Based Factors

By the same token, the ability to summarize groups of variables as a single composite
index, the heuristic shortcut that PCA and the environmental Kuznets curve enable, cannot
and should not take the place of closer analysis. In particular, health-based factors warrant
deeper research, especially on a country-by-country basis.

The exposure and expectancy factors exerted great influence on the health-based index.
Exposure alone accounted for more than half the weight of the index. As a group, variables
reporting incidence and mortality rates for five types of disease held less sway. Within the
aggregated vector of feature importances, only two of those ten variables—cardio_death and
ischemic_death—exceeded their expected 4.35 percent share of feature weights. Coronary
diseases carried more weight than respiratory diseases. Indeed, all indicators of respiratory
disease (asthma, COPD, and the trio of tracheal, bronchial, and lung cancers) totaled less
than 10 percent of the vector of aggregated feature weights.

In the absence of clear, let alone decisive, machine-language results, traditional
statistical tools may shed greater light. As described in Table 1, most linear models
treated ischemic_death as a statistically significant variable. Half of the linear models did
the same for cardio_death correlation to premature deaths from PM2.5 pollution. As a
rule, however, the FEE and IV2SLS models support few causal inferences from strictly
epidemiological features.

Although evidence from this study is far from exhaustive, there are suggestions that
PM2.5 mortality shows (considerably) greater connection to cardiovascular and ischemic
heart disease than to any respiratory disorder. This inference may be slightly counterintu-
itive, since PM2.5 enters the body through the lung. The weight of the evidence, however
limited, does suggest that national governments and the EU as a whole should focus
public health efforts on coronary rather than respiratory disorders—to the extent that the
components of the cardiopulmonary system are truly distinct. At a minimum, health-based
expenditures, the third largest component of the composite economic index depicted in
Figure 15a, might target cardiovascular and ischemic disease ahead of asthma, COPD, and
cancers of the trachea, bronchus, and lung.

The balance of this discussion exploits insights drawn from the environmental Kuznets
curves and other exercises in unsupervised learning. Section 4.2 examines challenges facing
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individual EU member states. It relies upon the clusters of countries revealed through
Section 3.5’s application of unsupervised learning to country-level aggregations of PM2.5
data and depicted in Figures 8 and 9. Section 4.2 also draws upon the aggregated vector
of feature importances generated by the stacking blender and depicted in Figure 7. All
normative discussion in this section explicitly evaluates policies that either have been
adopted by the European Union or may arise as options for the future.

4.2. Cluster- and Country-Specific Analysis of Individual EU-27 Member States

Clustering analysis clarifies the extent to which the European Union has harmonized
its response to PM2.5 pollution. This research can also inform public health and macroeco-
nomic forecasting and facilitate the diffusion of best practices throughout the EU-27.

This discussion refers throughout to clusters 0 through 5 of EU-27 member states as
depicted in Figure 9. Clusters 3 (Denmark, Estonia, Finland, Ireland, Luxembourg, Portugal,
Spain, and Sweden) and 1 (Austria, Belgium, France, Germany, Malta, and the Netherlands)
have much lower rates of PM2.5 morality than clusters 2 (Croatia, Czechia, Hungary, Latvia,
Romania, and Slovakia), 0 (Bulgaria), and 4 (Poland). Cluster 5 (Cyprus, Greece, Italy,
and Slovenia) occupies an intermediate position. The convergence of environmental,
socioeconomic, and public health factors by cluster draws attention to differences among
clusters. Differences within clusters are also worthy of deeper evaluation.

In addition to the obvious west–east divide between the low- and high-mortality
clusters, an arguably subtler demographic distinction lurks. Specifically, clusters 3 and
1 have a significantly higher number of inhabitants. Those two low-mortality clusters
contain 62 percent of the population of the EU-27. Cluster 1 contains 43 percent of the
EU-27′s total population; cluster 3 contains 19 percent.

Emissions and gini do not figure prominently in this study’s aggregated vector of
feature importances. Each of those variables accounts for less than 1 percent of the overall
vector, far short of the presumptive 4.35 percent that would be assigned to each feature in an
equally weighted vector containing 23 features. At 5.53 percent, more than its proportional
share of feature importances, real_gdp_pc is a non-negligible feature. Nevertheless, that
feature does not seem to capture the full effect of inequality upon PM2.5 mortality.

At 8.63 percent, poverty_threshold secures more than its share of weight within the
aggregated vector. That variable satisfies traditional tests of statistical significance within
some linear models. Because poverty_threshold indirectly measures productivity and cost of
living, that variable may capture elements of inequality that eluded other predictors.

All three poverty indicators represent this study’s indicators of social status. Socially
deprived communities in poorer regions are especially vulnerable to the harmful effects of
PM2.5 pollution [6]. At the other extreme of the distribution, the poverty threshold affects
Luxembourg’s almost outlandish place in the environmental Kuznets curves. Luxemburg
is the richest country in the EU-27 and the second richest in the world.

Even without direct evidence that PM2.5 emissions are linked to higher mortality,
lower-mortality countries might monitor PM2.5 emissions from household, industrial, and
transportation-related activities. Economic activity and population density may be the
latent and true factors. Emissions from residential heating, together with road traffic and
industrial emissions, expose many people to PM2.5 pollution [6]. All are urban activities
characterizing the wealthier, more densely populated countries in clusters 3 and 1.

Low population density carries its own set of possible policy prescriptions. PM2.5 pol-
lution originates in many economic sectors, such as energy, transport, and agriculture [194].
These activities vary widely by country. For example, in Estonia, Malta, and Portugal
airborne PM2.5 stems mostly from intensive transportation. Agriculture makes significant
contributions to PM2.5 air pollution in Croatia and Germany [194].

Within the aggregated vector of feature importances, exposure outweighs emissions by
nearly a multiple of 50. PM2.5 exposure does vary considerably according to physical and
urban geography. Again, cluster 1 hosts more than two-fifths of the EU-27 population and
includes the Union’s two most populous countries, Germany and France.
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Malta also belongs to cluster 1. This small southern island state has a total area
of 246 km2 and a population density exceeding 1500 inhabitants per km2. The EU-27
average is 109 inhabitants per km2. Since exposure to PM2.5 pollution is generally based on
emissions and the number of inhabitants at the national level, the relationship between
these variables is clear.

Country-by-country evaluation of PM2.5 emissions and exposure has obvious limits.
This study took no account of cross-border transport of PM2.5 or its impact on other
variables. Future research might evaluate cross-border air pollution through additional
geospatial features. The most nuanced work on the environmental Kuznets curve counsels
closer attention to relationships between economic and geospatial factors [55]. At a bare
minimum, the superlative performance of Nordic and Iberian countries, extending as far
as the Baltic states, deserves much closer examination.

For now, however, there are two additional sources of country-specific information.
Fixed effects linear models break out entity, time, or other categorical effects and convert
them to dummy variables. The coefficients on entity dummies in the FEE and FETE models
yield insights into differences among individual countries (Table 7).

Table 7. Estimated entity effects for the FEE and FETE models.

Country FEE FETE

Austria 0.014747 −0.045943
Belgium 0.243024 0.186347
Bulgaria −1.163098 0.964617
Croatia 0.554713 0.850505
Cyprus 0.661399 0.455677
Czechia 0.743081 0.943984

Denmark −1.195171 −1.663294
Estonia −0.870172 −0.544080
Finland −0.796109 −0.961272
France 0.267742 0.077985

Germany 0.054640 −0.036524
Greece 0.555249 0.222769

Hungary 0.016704 0.438898
Ireland −0.668040 −1.269296

Italy 0.610340 0.378435
Latvia −0.278896 0.464102

Lithuania −0.468829 −0.034647
Luxembourg −0.561520 −1.175075

Malta 0.477462 0.071157
Netherlands 0.167337 −0.258295

Poland 0.654021 0.937754
Portugal 0.322213 −0.133454
Romania 0.249310 0.822802
Slovakia 0.746669 1.303252
Slovenia 0.544619 0.490787

Spain 0.514152 0.007326
Sweden −0.979204 −1.297142

As a rule, wealthier, cleaner countries tended to register negative coefficients, while
the highest positive coefficients applied to the most mortality-stricken countries of eastern
and southeastern Europe. This is especially true of the FETE model. Lithuania is a salient
exception. Its negative coefficient in both FEE and FETE suggests that its placement among
the wealthier, cleaner countries of cluster 1 might not have been a complete fluke.

At 8.48 percent, life expectancy at birth for women and men carries almost double
its proportional 4.35 percent of the weight among aggregated feature importances. Low-
mortality cluster 3 is home to the longest-lived citizens of the EU-27: citizens of Spain
live an average of 83.43 years. Although longevity has many mixed implications for
government and private spending on pensions and health care, and more generally for
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economic growth and welfare, the wealthier countries in clusters 3 and 1 are enjoying
greater success in meeting these demographic challenges.

Bulgaria, the lone country in cluster 0, has the European Union’s lowest life expectancy
(61.25 years). Life expectancy at birth is influenced not only by environmental quality
and socioeconomic status but also by behavioral patterns and individual predispositions.
Lower life expectancy throughout clusters 0, 2, and 4 may be more directly connected
to premature mortality caused by airborne PM2.5. National policies in these poorer, less
healthy countries should strive to improve the well-being of citizens. Improvement in
overall life expectancy should reduce premature PM2.5 mortality.

Well-harmonized public health and environmental measures, supplemented with an
improvement in the status of the elderly, could yield substantial benefits. All southeastern
countries (Bulgaria, Croatia, Greece, Romania) and six central countries (Czechia, Slovakia,
Hungary, Poland, Latvia, Lithuania) could reduce PM2.5 mortality through effective social
efforts to enhance the well-being of their elderly populations.

As much as wealthier countries have lagged in their transition toward a “cleaner and
greener economy,” poorer countries need an even faster transition, with more extensive
EU support. Poorer countries should also consider cleaner public transport or congestion
charges, cleaner fuels for heating, and more stringent industrial pollution controls.

The wealthier countries in clusters 3 and 1 have a longer tradition of continuous
economic progress, environmentally friendly innovations and technologies, and more
advanced environmental management. Consequently, those counties enjoy superior envi-
ronmental performance and better public health.

Richer countries nevertheless face pronounced challenges. Despite innovative tri-
umphs and robust industrial performance, these wealthy countries still rely heavily on
fossil fuels, face very dense urban and suburban traffic, and host large populations. The
failure of the richest countries, especially Denmark and Luxembourg, to translate their
wealth into superlative management of PM2.5 mortality suggests declining returns from
growth, knowledge, and innovation.

This study has exposed inequality in health among EU-27 countries. At the same time,
those inequalities stem from complex and highly localized considerations that belie the
superficial cohesion of machine-discovered clusters or even the countries within them. In
Bulgaria (cluster 0), for example, residential heating with wood and coal predominates and
is the most significant source of PM2.5 [195]. Germany (cluster 1) and Poland (cluster 4) are
Europe’s largest coal producers, but it is obvious that Germany fights air pollution and
premature PM2.5 mortality more effectively.

Cyprus’s singular underperformance warrants close scrutiny. Cyprus is located at the
extreme southeastern edge of the European Union. No other member of cluster 5 suffers as
much premature PM2.5 mortality. Even Lithuania, the most prominent outlier among the
richer countries of cluster 1, outperforms Cyprus, despite the Baltic state’s much deeper
poverty and traumatic 20th-century history.

Underperformance in Cyprus might inform policy there and elsewhere in Europe.
Cyprus is unique among EU-27 member states not merely because of its location at the
southeastern corner of the union. Its topography and blend of emission sources undoubt-
edly affect its PM2.5 mortality rate. Transport and residential heating rank as Europe’s
leading sources of air pollution [6]. Other sectors contributing to air pollution (in declining
order) include energy production and distribution, manufacturing and extractive industry,
agriculture, and waste (including wastewater management). Terrestrial transport and
home heating deposit particulate matter close to the soil, precisely where humans are
likeliest to encounter pollution.

The Mediterranean climate of Cyprus, with hot, dry summers and mild winters,
virtually eliminates the need for residential heating. On the other hand, tourist traffic raises
the contribution of surface transportation to pollution in Cyprus, especially on a seasonal
basis. Without further evidence, this study cannot draw definitive conclusions. Departures



Int. J. Environ. Res. Public Health 2021, 18, 8688 44 of 58

from the model’s predictions, however, identify opportunities for closer study and, ideally,
the crafting of policies to suit the diverse members of the European Union.

4.3. Policymaking at the European Level: Implications and Recommendations

Preventable loss of life and well-being to PM2.5 pollution poses a global and uniquely
anthropocentric challenge. Around the world, and not just in Europe, PM2.5 pollution
arises from patterns of human behavior in production, energy consumption, food, and
mobility. Its toll will grow as populations around the world continue to age.

PM2.5 pollution is a primarily urban phenomenon, since sources of PM2.5 are located
mainly in cities. As urban populations rise, the road network will grow to meet their
demand. Consequently, surface transport as a major source of PM2.5 will also grow,
emitting particulates at the level where humans breathe.

By the same token, wealthier countries have resources to reduce emissions and expo-
sure. At the multinational, national, and local levels, governments can implement measures
such as surcharges on personal vehicles that enter city centers. Subsidies for electric and
hybrid vehicles can also lower the PM2.5 footprint of urban life. The greening of transporta-
tion and energy systems can dramatically improve public health. Its economic impact also
promises to be considerable, from a reduction of the negative effects of PM2.5 and related
medical costs to increased labor force productivity.

As one of the world’s most rapidly aging regions, Europe is peculiarly susceptible to
the negative effects of PM2.5 pollution. Europe’s geographic, socioeconomic, and political
diversity, however, makes this public health problem exceptionally challenging. Elderly
people are often socioeconomically isolated and health-compromised. Individual EU-27
member states should consider radical and rapid changes in policy, with respect not only
to air quality but also to socioeconomic factors.

The possibility of policymaking discretion at the EU level invites distinct normative
considerations. All EU-27 countries continue to face significant environmental and public
health challenges from PM2.5 pollution. Cross-border pollution has proved especially
intractable. The European Union’s Ambient Air Quality Directive set the limit for annual
average PM2.5 levels at 25 µg/m3 [10]. The stricter value of the WHO air quality guidelines
for annual average PM2.5 levels is 10 µg/m3 [9,196]. EU-27 countries satisfied the European
limit in 2018, but some exceeded WHO’s 10 µg/m3 guideline [197].

According to the European Environmental Agency, the last 50 years of environmental
policymaking within the European Union have curbed air pollution [6]. The EU-27, how-
ever, has failed to eliminate PM2.5 pollution as a significant influence on human health.
Policies implemented to reduce PM2.5 emissions from road transport, domestic heating,
industry, and agriculture have proved insufficient.

Table 8 provides quantitative evidence that at least the linear FETE model’s estimated
time effects show a progressive trend toward lower PM2.5 mortality from 2008 to 2011.

Table 8. Estimated time effects for the FETE model.

Year FETE

2008 0.399014
2009 0.392836
2010 0.421352
2011 0.426721
2012 −0.052770
2013 −0.227695
2014 −0.193217
2015 −0.328103
2016 −0.260225
2017 −0.338013
2018 −0.298708



Int. J. Environ. Res. Public Health 2021, 18, 8688 45 of 58

The COVID-19 pandemic has highlighted the need for a common European response
to public health and economic challenges. Lockdown measures have significantly reduced
PM2.5 emissions [6]. Narrowly “siloed” approaches to public health have not yielded
significant progress. They have done little beyond maintain the partially satisfactory status
quo. European citizens are certainly less than fully satisfied. More than half of the respon-
dents to the 2019 Eurobarometer survey think that public authorities, car manufacturers,
energy producers, and even individual households are not doing enough to improve air
quality [198].

The possibility of more radical change remains open. The EU-27 has announced
a paradigm of sustainability transitions based on decoupling of harmful environmental
pollution from economic growth [199]. This ambition is embodied in new policies and
initiatives such as the European Green Deal [200]. These measures and policies suggest
that economic growth does not have to come at the expense of environmental quality [73]
(p. 22).

A more tangible step involves the strengthening of European air quality standards. To
improve air quality and public health, the European Commission is preparing to align the
EU’s air quality standards more closely with WHO’s stricter emission limits. The May 2021
proposal to lower European limits on PM2.5 emissions is the centerpiece of an EU Action
Plan designed to tackle air pollution at its sources, from transport, buildings, and energy
consumption to industry and agriculture [201].

Human suffering and economic loss from PM2.5 pollution force a difficult question:
Are EU-27 public health and environmental policies efficient and harmonized? Although
most EU-27 countries have achieved significant reductions in PM2.5 emissions [6], signifi-
cant impacts on morbidity and mortality persist [14–16].

Reduced PM2.5 emissions are insufficient on their own to significantly reduce adverse
health effects. Indeed, that factor lacked statistical significance or machine learning feature
weight in all models. Other socioeconomic improvements should lower losses to PM2.5
pollution. A leading priority should be improving the quality of health care.

Consistent with Europe’s longstanding aspiration toward ever closer union, EU-27
countries should strive to bridge their historical, cultural, and political gaps. Persistent
health losses traceable to PM2.5 pollution highlight the urgency of such a transition. A more
efficient and comprehensive public health policy should complement and strengthen the
EU-27′s common environmental and market policies. Public health shortcomings highlight
a particular vulnerability in the political and legal foundations of European integration:
health policy and economic development are left to individual member states.

PM2.5 pollution remains a public health challenge of the highest order. Striving to
“show you something different from . . . your shadow at evening,” this article set out to
“show you fear in a handful of dust” [202] (pp. 31–32). The challenge remains urgent. For
“[w]e who were living are now dying/With a little patience” [202] (p. 60).

5. Conclusions

This article identified 23 possible variables affecting the complex phenomenon of
premature death from PM2.5 pollution. The data’s high level of dimensionality demanded—
and received—a comprehensive analytical pipeline:

• Conventional linear models

# Pooled OLS
# Fixed effect models
# Random effects
# Instrumental value, two-stage least squares

• Supervised machine learning alternatives to linear regression

# Decision tree ensembles such as random forests and extra trees
# Boosting models such as AdaBoost, XGBoost, and LightGBM

• Stacking generalization
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# As an aggregator of predictions
# As an aggregator of real and emulated feature importances to advance interpreta-

tion and causal inference

• Unsupervised machine learning

# Clustering
# Manifold learning
# A suite of unsupervised methods leading to predictive manifolds

• Environmental Kuznets curves

This article has made scientific contributions at two levels. Beyond adding insight and
nuance to knowledge about PM2.5 pollution and European Union policymaking, this article
has devised a set of conventional and machine learning methods that can be generalized to
other disciplines.

The methodological tools deployed in this article provide a blueprint for future work.
Although the environmental Kuznets curves distinguished between economic and health-
based variables within the full set of 23 predictors, that analytical method applies to any
experimental design whose variables can be meaningfully distinguished along qualitative
lines. Neither the elaborate extraction of an aggregated vector of feature importances
through stacking generalization nor the simple decomposition of any arbitrary slice of that
vector through PCA is limited by scientific subject matter.

Ample room remains for further research. This article revealed but could not conclu-
sively resolve country-specific differences within the EU-27. Future work could explore
geospatial effects. Cross-boundary effects remain one of the most important and complex
components of all pollution problems. Proximity to sea and ocean water palpably affects
PM2.5 pollution and its impact on human health. Whether the influence of water extends
beyond the absence of human activity remains a mystery. European countries also differ
markedly in their mix of economic activities, ranging from transportation, energy produc-
tion, and residential heating to manufacturing, agriculture, and extractive industries. The
intensity of pollution from each sector also differs by country.

This article also detected social and political differences traceable to various experi-
ments with socialism and central planning in recent European history. Some models, at
least, did not wholly dismiss possible contributions from more abstract economic and polit-
ical phenomena expressed through the Gini coefficient of income inequality or a corruption
index. There may be effects beyond those expressed through the poverty threshold as a
proxy for a country’s cost of living and distribution of wealth and earning power.

The European Union is renowned for its diversity. Its celebrated linguistic and cultural
differences transcend those of other large federations with comparable or larger geographic
footprints, such as Russia, China, Australia, Canada, and the United States. Indeed, several
of the largest member states of the EU-27 reflect that diversity on a subnational basis. Local
independence, after all, has marked the history of Germany, Italy, Spain, and Belgium. A
better level of data granularity for further research within Europe may therefore be NUTS-2
or even NUTS-3 rather than the national level.

As a technical matter, research into differences between geographic locations at any
political or topographical level would benefit from further refinement in machine learning.
This article’s analytical pipeline is much more effective in aggregating predictions and
interpretive indicators than in attributing contributions from each predictor at a country-
specific level. As enticing as the prospect may be, this experimental design cannot yet
conduct sensitivity analysis according to each geographic entity or each cluster uncovered
by unsupervised machine learning.
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Appendix A

The dataset contains a single dependent variable.

0. Premature death rates attributable to PM2.5 pollution: This data appears in the OECD
repository, “Mortality, Morbidity and Welfare Cost from Exposure to Environment-
Related Risks.” Data for 2018 is derived from “Premature death rates attributable to
outdoor air pollution (PM2.5); Crude death rate per 100,000 population.” Data for 2008
through 2017 is derived from “Premature deaths from ambient particulate matter for
persons more than 64 years old, both sexes.”

OECD, https://stats.oecd.org/viewhtml.aspx?datasetcode=EXP_MORSC&lang=en
(accessed on 12 March 2021).

The dataset contains 23 independent variables:

1. Life expectancy at birth (in years) is the average number of years a newborn is
expected to live if mortality patterns at the time of its birth remain constant in the
future. It reflects the overall mortality level of a population, and summarizes the
mortality pattern that prevails across all age groups in a given year. It is calculated in
a period life table that provides a snapshot of a population’s mortality pattern at a
given time.

World Bank, https://blogs.worldbank.org/opendata/what-does-life-expectancy-birth-
really-mean (accessed on 12 March 2021).

2. The threshold at which a single person is at risk of poverty (in euros) is determined
by calculating the equivalized income per household member for all households.
Afterwards, the middle value (the median) of the income distribution is determined
and 60 percent of the median is determined as the risk-of-poverty threshold. Ev-
eryone with the income below the threshold is in a worse situation than others, but
they do not necessarily live in deprivation. The at-risk-of-poverty threshold is pre-
sented in currencies, while the at-risk-of-poverty rate is presented in relative terms
as a percentage.

Eurostat, https://ec.europa.eu/eurostat/statisticsexplained/index.php?title=Glossary:
At-risk-of-poverty_rate (accessed on 12 March 2021).

3. The rate of risk from poverty before social transfers (with pensions excluded from the
definition of social transfers) is calculated as the percentage of people (or thousands
of people) who are at risk of poverty, based on the equivalized disposable income
before all social transfers—excluding pensions, over the total population.

Eurostat, https://ec.europa.eu/eurostat/statisticsexplained/index.php?oldid=4774
11#Statistical_population (accessed on 10 March 2021).

4. The rate of risk from poverty before social transfers (with pensions included in the
definition of social transfers) is calculated as the percentage of people (or thousands

https://stats.oecd.org/viewhtml.aspx?datasetcode=EXP_MORSC&lang=en
https://blogs.worldbank.org/opendata/what-does-life-expectancy-birth-really-mean
https://blogs.worldbank.org/opendata/what-does-life-expectancy-birth-really-mean
https://ec.europa.eu/eurostat/statisticsexplained/index.php?title=Glossary:At-risk-of-poverty_rate
https://ec.europa.eu/eurostat/statisticsexplained/index.php?title=Glossary:At-risk-of-poverty_rate
https://ec.europa.eu/eurostat/statisticsexplained/index.php?oldid=477411#Statistical_population
https://ec.europa.eu/eurostat/statisticsexplained/index.php?oldid=477411#Statistical_population
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of people) who are at-risk-of-poverty, based on the equivalized disposable income
before all social transfers—including pensions, over the total population.

Eurostat, https://ec.europa.eu/eurostat/statisticsexplained/index.php?oldid=4774
11#Statistical_population (accessed on 10 March 2021).

5. PM2.5 emissions (in kilograms per capita) show population-weighted emissions of
PM2.5. Fine particulates (PM2.5) are those whose diameters are less than 2.5 microme-
ters. Particulates can be carried deep into the lungs where they can cause inflammation
and a worsening of the condition of people with heart and lung diseases. The smaller
the particles, the deeper they travel into the lungs, with more potential for harm. Air
emissions accounts record the flows of residual gaseous and particulate materials
emitted by resident units and flowing into the atmosphere. Air emissions accounts
record emissions arising from all resident units (=economic activities), regardless of
where these emissions actually occur geographically. A unit is said to be a resident
unit of a country when it has a center of economic interest in the economic territory
of that country, that is, when it engages for an extended period (1 year or more) in
economic activities in that territory.

Eurostat, https://ec.europa.eu/eurostat/cache/metadata/en/env_ac_ainah_r2_esms.
htm (accessed on 12 March 2021).

6. Mean annual exposure to PM2.5 pollution (in µg/m3) reflects the estimated annual
mean exposure level of an average resident to outdoor particulate matter, expressed
as population-weighted PM2.5 levels. The underlying PM2.5 estimates are taken from
the Global Burden of Disease (GBD) 2019 project. They are derived by integrating
satellite observations, chemical transport models, and measurements from ground
monitoring station networks.

Global Heath Data Exchange (GHDX), http://ghdx.healthdata.org/gbd-results-tool
(accessed on 10 March 2021).

7. Five morbidity indicators: The incidence in persons older than 65 years of the fol-
lowing diseases: a. cardiovascular disease: any disease of the circulatory system,
namely the heart (cardio) or blood vessels (vascular). Includes ACS, angina, stroke,
and peripheral vascular disease. Also known as circulatory disease. b. ischemic heart
disease: also heart attack and angina (chest pain). Also known as coronary heart
disease. c. chronic obstructive pulmonary disease (COPD): chronic respiratory dis-
eases (CRDs) are diseases of the airways and other structures of the lung. d. asthma:
it is a disease characterized by recurrent attacks of breathlessness and wheezing,
which vary in severity and frequency from person to person. This condition is due to
inflammation of the air passages in the lungs and affects the sensitivity of the nerve
endings in the airways so they become easily irritated. In an attack, the lining of the
passages swell causing the airways to narrow and reducing the flow of air in and
out of the lungs. e. tracheal, bronchial, and lung cancer (hereinafter designated as
“tracheal cancer” as shorthand covering all three types of cancer): tracheal cancer is
cancer that forms in tissue of the airway that leads from the larynx (voice box) to
the bronchi (large airways that lead to the lungs). Tracheal is also called windpipe.
Bronchus cancer is cancer that begins in the tissue that lines or covers the airways of
the lungs, including small cell and non-small cell lung cancer. Lung cancer is cancer
that forms in tissues of the lung, usually in the cells lining air passages. The two
main types are small cell lung cancer and non-small cell lung cancer. These types are
diagnosed based on how the cells look under a microscope.

GHDX. https://www.cancer.gov/publications/dictionaries (accessed on 10 March 2021).

8. Five mortality indicators: The rate of premature death among persons older than
65 years from each of the preceding five diseases: number of people with incidence
of cardiovascular diseases, ischemic heart disease, chronic obstructive pulmonary

https://ec.europa.eu/eurostat/statisticsexplained/index.php?oldid=477411#Statistical_population
https://ec.europa.eu/eurostat/statisticsexplained/index.php?oldid=477411#Statistical_population
https://ec.europa.eu/eurostat/cache/metadata/en/env_ac_ainah_r2_esms.htm
https://ec.europa.eu/eurostat/cache/metadata/en/env_ac_ainah_r2_esms.htm
http://ghdx.healthdata.org/gbd-results-tool
https://www.cancer.gov/publications/dictionaries
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disease (COPD), asthma, and tracheal, bronchus, and lung cancer; ages above 65,
according to the GBD study.

GHDX, http://ghdx.healthdata.org/gbd-results-tool (accessed on 10 March 2021).

9. Real gross domestic product (GDP) per capita is calculated as the ratio of real GDP
to the average population of a specific year. GDP measures the value of total final
output of goods and services produced by an economy within a certain period of
time. It includes goods and services that have markets (or which could have markets)
and products which are produced by general government and non-profit institutions.

Eurostat, Methodology and explanatory notes, https://ec.europa.eu/taxation_customs/
sites/taxation/files/taxation_trends_report_2018_methodology.pdf (accessed on 12 March 2021).

10. Health-related government expenditures per capita tracks all health spending in
a given country over a defined period of time regardless of the entity or institu-
tion that financed and managed that spending. It generates consistent and com-
prehensive data on health spending in a country, which in turn can contribute to
evidence-based policymaking.

World Bank, https://data.worldbank.org/indicator/SH.XPD.GHED.PC.CD (accessed
on 12 March 2021).

11. Environmentally related taxes as a percentage of GDP are important instrument for
governments to shape relative prices of goods and services. The characteristics of
such taxes included in the database (e.g., revenue, tax base, tax rates, exemptions, etc.)
are used to construct the environmentally related tax revenues with a breakdown by
environmental domain: energy products (including vehicle fuels); motor vehicles and
transport services; measured or estimated emissions to air and water, ozone depleting
substances, certain non-point sources of water pollution, waste management and
noise, as well as management of water, land, soil, forests, biodiversity, wildlife, and
fish stocks.

OECD, https://data.oecd.org/envpolicy/environmental-tax.htm (accessed on 1
March 2021).

12. Social security contributions as a percentage of GDP are paid on a compulsory or
voluntary basis by employers, employees and self- and non-employed persons, shown
as a percentage of GDP.

Eurostat, https://ec.europa.eu/eurostat/statisticsexplained/index.php?title=Glossary:
Social_contributions (accessed on 22 February 2021).

13. Overall government spending per capita captures the burden imposed by government
expenditures, which includes consumption by the state and all transfer payments
related to various entitlement programs.

Index of Economic Freedom, https://www.heritage.org/index/about (accessed on 15
February 2021).

14. The corruption perception index scores and ranks countries/territories based on how
corrupt a country’s public sector is perceived to be by experts and business executives.
It is a composite index, a combination of 13 surveys and assessments of corruption,
collected by a variety of reputable institutions. Corruption generally comprises illegal
activities, which are deliberately hidden and only come to light through scandals,
investigations, or prosecutions.

Transparency International, https://www.transparency.org/en/cpi (accessed on 15
February 2021).

15. The Gini coefficient of economic inequality is defined as the relationship of cumulative
shares of the population arrange according to the level of equivalized disposable
income, to the cumulative share of the equivalized total disposable income received
by them.

http://ghdx.healthdata.org/gbd-results-tool
https://ec.europa.eu/taxation_customs/sites/taxation/files/taxation_trends_report_2018_methodology.pdf
https://ec.europa.eu/taxation_customs/sites/taxation/files/taxation_trends_report_2018_methodology.pdf
https://data.worldbank.org/indicator/SH.XPD.GHED.PC.CD
https://data.oecd.org/envpolicy/environmental-tax.htm
https://ec.europa.eu/eurostat/statisticsexplained/index.php?title=Glossary:Social_contributions
https://ec.europa.eu/eurostat/statisticsexplained/index.php?title=Glossary:Social_contributions
https://www.heritage.org/index/about
https://www.transparency.org/en/cpi
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Eurostat, https://ec.europa.eu/eurostat/databrowser/view/tessi190/default/table?
lang=en (accessed on 13 February 2021).

We collected two additional variables. As explained in Section 2.1.1, we ultimately
confined the use of data on the welfare cost of PM2.5 alone to the instrumental variable,
two-stage least squares (IV2SLS) model. We ultimately excluded data on the welfare cost
of PM2.5 and PM10 pollution combined altogether. Nevertheless, we document these data
sources in the interest of completeness.

16. The welfare cost of premature deaths per capita among elderly persons from PM2.5
and PM10 combined shows the welfare cost of premature deaths per capita among
elderly persons from PM2.5 and PM10. Fine and coarse particulates (PM10) are those
whose diameter is less than 10 micrometers, while fine particulates (PM2.5) are those
whose diameters are less than 2.5 micrometers. Particulates can be carried deep into
the lungs where they can cause inflammation and a worsening of the condition of
people with heart and lung diseases.

Eurostat, https://ec.europa.eu/eurostat/cache/metadata/en/t2020_rn210_esmsip2.htm
(accessed on 10 March 2021).

17. The welfare cost of premature deaths per capita among elderly persons from PM2.5
alone shows data on mortality from exposure to environmental risks are taken from
GBD (2019), Global Burden of Disease Study 2019 Results. Welfare costs are calcu-
lated using a methodology adapted from OECD (2017b), The Rising Cost of Am-
bient Air Pollution thus far in the 21st Century: Results from the BRIICS and the
OECD Countries.

OECD, https://stats.oecd.org/Index.aspx?DataSetCode=EXP_MORSC (accessed on 1
March 2021).

Appendix B

Appendix B displays results from the imputation of missing values for PM2.5 exposure
(exposure); chronic obstructive pulmonary disease (COPD) mortality (copd_death); and
mortality from tracheal, bronchial, and lung cancer (tracheal_death).

Figure A1a,b illustrate the imputation of two values for exposure for Ireland and
Germany through LOESS and a linear spline. Figure A1c,d illustrate the use of LOESS
and a cubic spline to impute missing values for copd_death mortality from COPD and
tracheal, bronchial, and lung cancer. Figure A2 summarizes the imputation process through
histograms of all variables with imputed values, with “before” raw observations at left in
blue and “after” imputed values at right in red.

https://ec.europa.eu/eurostat/databrowser/view/tessi190/default/table?lang=en
https://ec.europa.eu/eurostat/databrowser/view/tessi190/default/table?lang=en
https://ec.europa.eu/eurostat/cache/metadata/en/t2020_rn210_esmsip2.htm
https://stats.oecd.org/Index.aspx?DataSetCode=EXP_MORSC
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Figure A1. Imputing missing values for exposure, copd_death, and tracheal_death using LOESS and linear or cubic splines.

Figure A2. A before-and-after comparison of imputed data series: Histograms of raw observations
and imputed values for incompletely reported variables.
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