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Abstract

Motivation: Current state-of-the-art tools for the de novo annotation of genes in eukaryotic genomes have to be spe-
cifically fitted for each species and still often produce annotations that can be improved much further. The funda-
mental algorithmic architecture for these tools has remained largely unchanged for about two decades, limiting
learning capabilities. Here, we set out to improve the cross-species annotation of genes from DNA sequence alone
with the help of deep learning. The goal is to eliminate the dependency on a closely related gene model while also
improving the predictive quality in general with a fundamentally new architecture.

Results: We present Helixer, a framework for the development and usage of a cross-species deep learning model
that improves significantly on performance and generalizability when compared to more traditional methods. We
evaluate our approach by building a single vertebrate model for the base-wise annotation of 186 animal genomes
and a separate land plant model for 51 plant genomes. Our predictions are shown to be much less sensitive to the
length of the genome than those of a current state-of-the-art tool. We also present two novel post-processing techni-
ques that each worked to further strengthen our annotations and show in-depth results of an RNA-Seq based com-
parison of our predictions. Our method does not yet produce comprehensive gene models but rather outputs base
pair wise probabilities.

Availability and implementation: The source code of this work is available at https://github.com/weberlab-hhu/
Helixer under the GNU General Public License v3.0. The trained models are available at https://doi.org/10.5281/zen
odo.3974409

Contact: alisandra.denton@hhu.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Annotating genes is an integral part of genomic DNA sequence ana-
lysis, with many downstream taks dependent on annotation quality.
Gene annotation can be performed at different levels of precision,
from simple coding—non-coding classification to detailed structural
labeling. Because of the sheer size of genomes alone, manual gene
annotation is generally intractable. Instead, researchers can use pipe-
lines such as Maker (Cantarel et al., 2007), PASA (Haas et al.,
2003) or those offered by genomic database providers like NCBI
(Thibaud-Nissen et al., 2013) and Ensembl (Aken et al., 2016).
These pipelines integrate experimental data (from e.g. RNA-seq or
proteogenomics) with homologous sequences in the database and
ab-initio gene predictions. The latter is an attractive approach, be-
cause it is cheap and fast. State-of-the-art performance is achieved

by higher order hidden markov models (HMMs), such as Genscan
(Burge and Karlin, 1997), AUGUSTUS (Stanke and Waack, 2003)
or SNAP (Johnson et al., 2008). Their accuracy, however, leaves
room for improvement. By encoding possible states and transitions
in a probalistic model, designers of HMMs assume structure in the
sequence that may limit its predictive power. In practice HMMs
have trouble generalizing across species and the actual learning of
sequence motifs is limited to very short sequences that indicate state
transitions.

In the last decade, deep neural networks (DNN) have been
applied with great success in many areas of statistical modeling,
including biology (Ching et al., 2018). For sequence data, such as
DNA, speech or text, a special kind of recurrent neural network
(RNN) called long-short term memory (LSTM) (Hochreiter and
Schmidhuber, 1997) is an established building block for many
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different architectures. LSTM units can also be used to process se-
quential input starting from both ends, forming a bidirectional
LSTM (BLSTM). It has also been shown that HMMs can be success-
fully combined with DNNs (Liu et al., 2016a,b).

For the purpose of gene annotation, RNNs have already shown
promising results. (Choudhary, 2017) carries out preliminary explo-
rations on the potential of BLSTMs for cross species gene prediction
and trains his model on human genes to test it later on two more
species. DeepAnnotator (Amin et al., 2018) uses BLSTMs for gene
finding in prokaryotes. Gene prediction in prokaryotes is considered
more amenable than in eukaryotes, as genes in prokaryotes are pro-
portionately more frequent in the genome, feature simpler control
structures and do not use splicing (Wang et al., 2004). DanQ
(Quang and Xie, 2016) proposes the use of a BLSTM after a convo-
lutional neural net (CNN) to find detailed motifs in the human gen-
ome. DeePromoter (Oubounyt et al., 2019) trains a similar
architecture for the recognition of promoter regions. Recently, sev-
eral groups (Jaganathan et al., 2019; Wang et al., 2019) successfully
used CNNs to find splicing sites.

In this work, we present Helixer, a novel prototype software for
training and utilizing a general purpose DNN for the ab-initio cross-
species base-wise gene annotation of large eukaryotic genomes using
only DNA sequence as input. Our model is trained to differentiate
between four regions: Intergenic, Untranslated (UTR), Coding
(CDS) and Intron. We demonstrate the effectiveness of this ap-
proach by training two models, one each for the annotation of a
large set of genomes from the domains metazoa and viridiplantae,
respectively, which we will call animal and plant from now on. We
worked with the full data of 192 animal genomes and 60 plant
genomes. These datasets were rich in vertebrates and land plants, re-
spectively, which is reflected in a much better average model per-
formance on those phylogenetic groups. We will thus call our
models vertebrate model and land plant model.

Both the ability to generalize across species as well as the scope
of the evaluation represent cutting edge progress in this field. The
source code and all input data are publicly available.

2 Materials and methods

2.1 Datasets
The foundation of our work are 192 animal and 60 plant genomes.
The data of each genome consists of the latest publicly available gen-
omic assembly in form of a FASTA file and the latest annotation in
the GFF format. We used one genome for each animal species in
EnsemblMetazoa 45 (Howe et al., 2020; Supplementary Table S1)
as well as all non-embargoed plant species from the JGI Phytosome
13 database (Goodstein et al., 2012; Supplementary Table S2); The
exact genomes are listed in the aforementioned tables. Data was
downloaded on the October 15, 2019 and March 29, 2019 from
EnsembleMetazoa and Phytozome respectively. Both data groups
were used completely separately throughout.

Directly after obtaining the data, we split off 19 or 6 test
genomes from either group of genomes and set those aside for the
final evaluation at the very end of the development process (Fig. 1).
These genomes were chosen to be of decent quality and diversity
based on collected metadata (see Supplementary Section S1 and
Supplementary Dataset S1) while also representing a broad phylo-
genetic spread.

The remaining genomes were seperated into a set of training
genomes, which were used to actually train the neural networks,
and evaluation genomes, which provided crucial feedback on the
generalization capabilities during development (Fig. 1). The exact
division of which genomes we train with and which are just used for
evaluation was changed multiple times and was found to be crucial
for model performance.

To select the training genomes, we had to balance multiple con-
flicting trade-offs. On the one hand, we want to train with as much
data as possible, but on the other not all data has sufficient quality
to enable a powerful generalization. It is also very desirable to have
diverse training genomes with a broad phylogenetic spread, a variety

of genome sizes and average gene lengths as the model is increasing-
ly unlikely to generalize well beyond the borders given by the train-
ing data. However, it also may be difficult for the model to learn
and generalize if the genomic patterns inside the data are too differ-
ent from each other. Practically, it was important for us to limit the
size of our training genomes set to be small enough that we could
get experimental results within a couple of days and thereby be able
to test many different data and model configurations.

We used an iterative approach to effectively select a proper set of
training genomes. We started with 3–4 genomes that were expected
to be of the highest quality and then evaluated the performance of
the resulting model on all training and evaluation genomes individu-
ally. There, we looked for candidates to add to the set of training
genomes (which were evaluation genomes and had high Genic F1)
or to remove from it (which were training genomes and had a rather
low Genic F1). To make these decisions, we also factored in infor-
mation like genomic metadata (Supplementary Section S1 and
Supplementary Dataset S1) and the phylogenetic spread our new set
of training genomes would have. This process was repeated multiple
times alternatingly with the model search as the decisions about the
model architecture and the training data tend to depend on each
other. We stopped this process when we saw no more room for sub-
stantial improvement given our computational constraints.

We report only the generalization performance on the combined
set of evaluation and test genomes as the evaluation genomes are by
far the largest set, and there was not a noticeable difference in per-
formance between those two groups (see Supplementary Section S2
for a performance breakdown by each species).

Once a set of training genomes was selected, we further split the
sequences therein into a training and validation set. This split of the
training genomes was done to get a quicker sense of the generaliza-
tion capabilities and was used after each training epoch. We split off
the validation set by selecting 20% of the FASTA sequences above
and below the N90 of each training genome at random, ensuring a
proper distribution of large and short sequences in both sets and a
split on the chromosome level. Evaluation of the annotations on all
training and evaluation genomes was done regularly after a promis-
ing model candidate was found based on its validation set perform-
ance. Ultimately we used the cross-species performance on all
evaluation genomes as the decisive measure of model quality.

2.2 Data pre-processing
We first pre-processed and stored the raw genomic information by
using GeenuFF (https://github.com/weberlab-hhu/GeenuFF). GeenuFF
is a tool for checking and exploring genomic data and annotations,
that stores all information inside a SQL database. Training and

Fig. 1. Division of the total set of genomes in both the animal and plant case

5292 F.Stiehler et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa1044#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa1044#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa1044#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa1044#supplementary-data
https://github.com/weberlab-hhu/GeenuFF


evaluation-ready data was generated by querying this database and

then transforming the returned data into a numerical format suitable
for machine learning. The encoding of the genomic sequence was done
in line with the IUPAC nucleic acid notation and the structural gene an-

notation used as labels during training is transformed to a one hot
encoding with the four classes Intergenic, UTR, CDS and Intron. See

Table 1 for a more detailed description of the generated data types.
During data generation, we queried for the transcript with the

longest protein of each gene and disregard FASTA sequences that
have no structural gene annotation as it is ambiguous whether such
sequences contain no genes or were simply not annotated in the ref-

erence. GeenuFF checks the genomic annotations for potential
errors during import and is able to mark those areas. We used this

information to effectively mask those bases during training by using
the sample weights described in Table 1. The vast majority of
masked bases lie in the intergenic region as the most prevalent error

is a missing UTR and GeenuFF marks a potentially large intergenic
region for it. Table 2 shows statistics about the masking.

For the training itself, we divided each continuous genomic se-
quence into 20 000 bp long subsequences, for which one-hot vectors
of the base pairs and annotations are generated and respectively

used as input and label for the neural network together with the
sample weights. We appended zero padding if the subsequences are

shorter than 20 000 bp. If a subsequence is fully marked as errone-
ous, we excluded it from all analyses.

2.3 Metrics
We mainly used two metrics to judge model performance against the

references. The Genic F1 was selected as our primary metric and
provides the most comprehensive picture of annotation quality in

one number. The Subgenic F1 is similar to the Genic F1, except that
it does not take UTR predictions into account. This was calculated
for comparability with AUGUSTUS as further explained in

Supplementary Section 2.7.
Both metrics work by first transforming the probalistic output of

the model into concrete predictions with an argmax operation, as is
commonly done in classification. As we are now given the true and
predicted class of each base, we calculate the full confusion matrix

for all classes. From there, the True Positives (TP), False Positives
(FP) and False Negatives (FN) of each considered class are summed

up. This means that if, for example, an intronic base is incorrectly
labeled as CDS, it would lead to a FP for the CDS class and FN for
the intron class. These three values are then combined into precision

and recall before the final F1 score is calculated. The formulas 1-6
describe the calculations given the confusion matrix with C contain-

ing the set of the considered classes.

TP ¼
X

c2C

TPc; (1)

FP ¼
X

c2C

FPc; (2)

FN ¼
X

c2C

FNc; (3)

Precision ¼ TP

TPþ FP
; (4)

Recall ¼ TP

TPþ FN
; (5)

F1 ¼ 2 � Precision � Recall

PrecisionþRecall
: (6)

Neither metric includes the intergenic class, as this class is very
abundant and appears to be by far the easiest to predict. (See
Table 2 for the class distribution and Supplementary Tables S3 and
S4 for a more in-depth report our model performance including the
intergenic class). In the case of the Genic F1, this means that effect-
ively only the TP of the intergenic class were disregarded. The met-
rics essentially provide a weighted mean of the performances in the
considered classes, with weights proportional to class frequency.

In Figure 2c, we also report on the overall base pair level accur-
acy (correctly predicted base pairs/total base pairs) besides the Genic
F1.

2.4 Model architecture and training
We used a 4-layer deep stacked BLSTM network with 256 units per
layer and layer normalization (Ba et al., 2016) between each
BLSTM layer to produce the predictions in the form of a base pair
wise classification. The model consists of circa 5.4 million parame-
ters and was implemented with the deep learning library Keras
(https://keras.io) on top of TensorFlow (Abadi et al., 2016). We
tested multiple different architectures before arriving at this model
configuration, including convolutional neural networks (CNN) and
hybrid architectures. We also used class weights as the class frequen-
cies are both unbalanced and vary greatly between animals and
plants. For example, the trade-off between the number of intergenic
and intronic bases is quite different in both groups (see Table 2).

A class wise evaluation including the calculation of the Genic F1
score was performed on the validation set after every epoch. The
best model from any training run was selected as the model with the
highest Genic F1 after either maximum epochs were reached or
Genic F1 stopped improving and training was interrupted.

The hyperparameters were optimized by a combination of man-
ual and automatic optimization. Automatic optimization was car-
ried out by using either the TPE algorithm (Bergstra et al., 2011),
random search or grid search depending on the situation. We used
NNI (https://github.com/microsoft/nni) to facilitate the search. All
relevant hyperparameters can be found in Supplementary Tables S6
and S7 or in the Helixer source code repository.

Our final model (Supplementary Figs S5 and S6) was trained
with 10 bases of genomic sequence as input during each time step

Table 1. Data arrays generated and used by Helixer

Name Information

Input Genomic sequence in the 4-dimensional IUPAC encoding

(one hot encoding for non-ambiguous bases)

Output Labels in a 4-dimensional one hot encoding representing

the classes Intergenic, UTR, CDS and Intron

Sample

weights

One of f0, 1g; whether there is an error at a base

Note: The encoding does not differentiate between introns in coding and

non-coding regions.

Table 2. Data group statistics for all data

Animals Plants

Average genome size in Gbp 2.936 (61.562) 0.787 (60.995)

Average gene length 31 223 (613 974) 3368 (61510)

Geenuff error rate 0.311 (60.129) 0.351 (60.249)

Fraction of class Intergenic 0.777 (60.042) 0.799 (60.089)

Fraction of class UTR 0.006 (60.006) 0.017 (60.016)

Fraction of class CDS 0.016 (60.014) 0.085 (60.071)

Fraction of class Intron 0.201 (60.035) 0.099 (60.057)

Note: Values are averages of the individual values of each genome in a data

group. All statistics except the average gene lengths exclude FASTA sequences

without a gene and any 20 000 bp subsequences that were masked as com-

pletely erroneous. Each strand of DNA was counted separately. The gene

length was determined by the length of the pre-mRNA of the longest protein

at each loci. Brackets show the standard deviation.
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and produces individual predictions for each of those 10 bases sim-
ultaneously. This grouping enabled us to train effectively with far
longer sequences than usual, as 10 bases can be processed essentially
in the time of 1. The tradeoff is, that the data setup is now more
complex from the point of view of the neural network. A donor
splice site at the beginning of a 10 base pair block now has to result
in a fundamentally different set of 40 (10 bases x 4 classes) floating
point numbers than a donor splice site at the end.

These four floating point numbers per base are the final output
of our model as we are currently not producing a fully coherent gene
model in the form of a GFF file.

We also compared our final models to a dilated CNN (dCNN)
and a hybrid architecture, that we call DanQ after an existing ap-
proach (Quang and Xie, 2016). These were chosen as both dilated
CNN and hybrid architectures have been used when working with
DNA data as input (Trabelsi et al., 2019). Details of the neural
architecture search are given in Supplementary Section S3.

2.5 Inference techniques
We also used multiple techniques to improve the prediction quality
after the training was done. One very effective way for genomes
with larger genes was inputting longer sequences during inference
than during training. This was done for all animal genomes except
the invertebrates. The input sequences were up to 10 times longer,
depending on the phylogenetic group and assembly quality. This
also demonstrates the ability of our model to generalize as it is able
to make successful prediction on far longer sequences than it has
ever seen. The concrete lengths were chosen to keep the typical aver-
age gene length roughly proportional to the length of the sequence
input. For more implementation details on this see Supplementary
Section S9 or the source code.

The final predictions of a single model were constructed by over-
lapping predictions, which were made from a sliding window and
then cropped to a core sequence. This was done to strongly reduce a
typical drop in performance of the models toward the beginning and
end of each sequence (see Fig. 2c). It also improves the average
model performance by providing the model with multiple different
starting points. The different overlapping sequences were combined

by averaging the individual softmax values of each base. The figures
in Supplementary Section S10 show the effect of overlapping for
each genome, ordered by N75. We found that overlapping tends to
work best if the genomes are not very fragmented and we used it for
both animals and plants.

For both the vertebrate and land plant model, a model ensemble
with 8 components was used to generate the final predictions for
each species. To produce these 8 components, we performed 4 sep-
arate training runs and selected two checkpoints each
(Supplementary Table S19). First we selected the checkpoint from
the epoch with the highest genic F1, which, as it happens, also had
either the highest precision or recall. The second checkpoint was
selected to complement this, so that checkpoints from the epochs
with both the best precision and the best recall were ultimately
selected. This was done to increase the diversity of the model ensem-
ble. As with the overlapping, the fusion of the eight individual pre-
dictions was done by simply averaging the softmax values of each
base pair prediction.

2.6 Training and inference times
The training of one vertebrate and one land plant model took on
average 9.5 or 5 h per epoch, respectively. The best model perform-
ance in terms of Genic F1 was reached in 7–9 epochs with the ani-
mal data and 10–13 epochs for the plants. We stopped the training
when either there was no improvement in Genic F1 larger than
0.0001 for at least 2 epochs or the training diverged into a situation
where a loss of zero was output for only intergenic predictions. This
was likely caused by a floating point overflow in the GPU and usual-
ly happened as the improvements in model performance appeared to
taper off.

We used a single Nvidia GeForce GTX 1080 TI provided by the
HPC of the University of Dusseldorf for the training of six of the
eight models that make up the final ensembles and a Nvidia
GeForce RTX 2080 TI inside a desktop PC with a SSD attached for
the other two (with one full GPU per training in each scenario). All
times reported here are for the former setup up and training on the
latter was roughly 1.5 times faster.

Fig. 2. Main overall results and other investigations. The top and bottom rows show the animal and plant data, respectively. Orange dots are for AUGUSTUS and the blue

ones are for Helixer (top vertebrate model, bottom land plant model). (a) Swarm—and boxplots showing the Subgenic F1 versus the reference scores for all evaluation and test

genomes. Each dot represents the prediction performance for one genome. The median prediction scores are shown by the red line. Details of how AUGUSTUS was used are

given in Supplementary Section S2.7. (b) Scatterplots showing the prediction performances measured in Subgenic F1 versus the reference by genome length. The regression line

is shown with a 95% confidence interval. (c) The average Genic F1 (in red) and basepair wise accuracy (in purple) versus the reference with respect to the position in the

20 000 basepair long input sequences. The dashed line shows the same without overlapping. Each value is the average performance of a 200 basepair long subsection by one of

the models of the final ensemble. See Supplementary Section S10 of for the effects of overlapping in individual species
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Inference on Homo sapiens (circa 6.12Gbp, including padding)
took about 8.5 h with overlapping and circa 70 min without.
Generating probalistic predictions for Arabidopsis thaliana (about
0.22Gbp) finished after close to 7 min. Inference was done on a
Nvidia GeForce RTX 2080 TI attached to a regular HDD.

2.7 Evaluation of AUGUSTUS
Due to the practical time constraints for retraining and running, we
decided to compare our Helixer models only to one existing de novo
tool, namely the popular gene caller AUGUSTUS (Stanke and
Waack, 2003). Typical usage requires retraining AUGUSTUS for
each species, with the exception of a few lucky cases where a model
for a sufficiently close relative is already available. To scale this for
the large plant and animal datasets, we used protein-homology to
create an AUGUSTUS training set and therefore could train and
evaluate only models without UTRs.

Orthologs of highly conserved generally single-copy genes were
identified in each genome using BUSCO (Sim~ao, 2015). The viridi-
plantae set was used for plants and the metazoa set for animals. The
training genbank files were generated directly by BUSCO, by utiliz-
ing the ‘–long’ parameter. For plants, the entire retraining could be
performed as above; however, for animals we randomly selected
only half the BUSCO-generated training set, which resulted in a
training set size and runtime comparable to the plants (about 400
genes and several CPU days per species). For animals the training
was carried out with the subsetted training file and using the follow-
ing scripts provided by AUGUSTUS. An untrained model was setup
with ‘new_species.pl’, and the model was fit by running ‘etraining’
before and after the major hyper-parameter optimization with ‘opti-
mize_augustus.pl’. Using the trained model for each species, we ran
the main prediction (‘augustus’) with ‘–UTR¼off’ and ‘–gff3¼on’.
The gffs produced by AUGUSTUS were imported into GeenuFF and
exported as HDF5 files in the same manor as the reference, allowing
for the direct comparison with both the reference and Helixer pre-
dictions. While this method was feasible for some 237 species, it
allowed neither training nor prediction of UTR regions with
AUGUSTUS, so the metric Subgenic F1, which disregards the class
UTR, was used for all comparisons between AUGUSTUS and
Helixer (see Supplementary Section S2.3 for more details).

2.8 Evaluation against independent RNAseq data
The reference annotations were created with existing tools and
largely with a pipeline incorporating de novo gene predictions with
RNAseq and homology data. As the references, like any data, are
expected to contain errors we chose to use RNAseq data for an inde-
pendent evaluation. In plants there is the additional concern that the
references may share biases with AUGUSTUS or HMMs as
AUGUSTUS was used as the de novo gene caller for the reference of
many plant species and other HMM-based tools for many more.
The Ensemble animal dataset by and large used the Ensembl annota-
tion pipeline, which primarily uses extrinsic data but never-the-less
incorporates Genscan (Burge and Karlin, 1997) predictions.

We downloaded and processed public RNAseq data to obtain an
independent option for evaluating model performance. We selected
three each of plant and animal genomes for detailed evaluation with
RNAseq. These were selected to have relatively good (Manihot escu-
lenta and Papio anubis), typical (Medicago truncatula and Equus
caballus) and poor (Theobroma cacao and Petromyzon marinus)
performance compared to AUGUSTUS (Supplementary Fig. S7 and
S8) within our generalizable range (i.e. excluding the outgroups
algae and invertebrates). Selections were further constrained by the
availability of stranded RNAseq data.

For each of these six species the following search was performed
on Sequence Read Archive (Leinonen et al., 2010) ‘((‘<species
name>’[Organism] OR <species name>[All Fields]) AND
stranded[All Fields]) AND (‘biomol rna’[Properties] AND ‘library
layout paired’[Properties])’. If more than 50 samples were identified,
every Nth sample was selected so that in total under 50 samples
were chosen for further processing (see Supplementary Table S15).
Each sample was prepped, mapped and quality controlled in a

pipeline using Trimmomatic (Bolger et al., 2014), Hisat2 (Kim
et al., 2019), Samtools (Li et al., 2009), PicardTools (http://broadin
stitute.github.io/picard/), FastQC (www.bioinformatics.babraham.
ac.uk/projects/fastqc/) and MultiQC (Ewels et al., 2016; see
Supplementary Table S16 for details). This pipeline was automated
and the results visualized with the code available here (https://
github.com/weberlab-hhu/RNAsleek). The samples were filtered to
those with relatively high mapping rates, high mapping to exonic
relative to non-exonic regions, low 3’ bias, normal FastQC and
Trimmomatic stats, and a stranded mapping pattern (2nd read is
sense strand). If more remained, seven of the high quality samples
were selected randomly.

Finally, the selected and mapped RNAseq samples (Supplementary
Table S15) were merged with Samtools and quantified to get the cover-
age (number of reads matching; i.e. cigar =, M or X), and spliced cover-
age (number of reads with gap or splice; i.e. cigar N or D) for every base
pair in the genomes as implemented in Helixer’s ‘training_rnaseq.py’
script.

2.9 In Silico mutagenesis
To get a better sense of how our models are making their predici-
tions, two types of In Silico mutagenesis were performed. Base pairs
of known motifs at targetted splice sites, start and stop codons were
replaced with ’N’ characters (encoded as [0.25, 0.25, 0.25, 0.25]) to
see how the network responded to an absence of the motif. We also
manipulated coding potential (Brocchieri et al., 2005) by scambling
the chosen region in 3 bp steps to remove any codon-positional
biases without changing the overall base composition. Perturbations
were performed on an arbitrarily selected example gene in
M.esculenta (Manes.01G003200.1.v6.1), and predictions for the
modified sequence were created with the single best land plant
bLSTM model (plants_a_e10.h5) with overlapping on.

3 Results

Figure 2a shows the side-by-side comparison of the distribution of
performances on all non-training genomes in the animal and plant
case by Subgenic F1 versus the reference. In the case of Helixer,
these scores represent cross-species predictions. We also compare
the median performances of different configurations of Helixer with
AUGUSTUS and a dilated CNN architecture in Table 3. The results
show a clear improvement over the AUGUSTUS both in higher me-
dian performance and reduced spread. We also outperform a dilated
CNN architecture, and, for plants the hybrid DanQ architecture.
Interestingly, during the review process, a single DanQ model
topped the performance of the single best vertebrate bLSTM model,
which will warrant further investigation.

Our models, however, tend to perform less well for the very
smallest and largest genomes or species that are phylogenetically the
furthest away from our training genomes. This is the case for both

Table 3. Summary of experimental results

Animals Plants

AUGUSTUS 0.632 0.757

Dilated CNN 0.666 0.802

DanQ hybrid 0.788 0.813

bLSTM model 0.770 0.833

bLSTM model þ varied input length 0.834 –

bLSTM model (þvaried input length) þ overlapping 0.844 0.843

Ensemble of 8 (þvaried input length) þ overlapping 0.868 0.863

Note: Values are the median in Subgenic F1 versus the reference across all

evaluation and test genomes of the respective group. Varied input length was

only used in the animal case. The shown best bLSTM model (for vertebrates:

animals_a_e07, for land plants: plants_a_e10) was chosen out of the eight

models of the ensemble for having the best performance on the validation set

of the training genomes.
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animals and plants and is visualized in Supplementary Figures S1
and S3. We do not, for example, consistently predict very well on
the algae nor on the non-avian reptiles. While one of the algae was
included in our training genomes it accounted for a tiny proportion
of the total training data and the non-avian reptiles were not
included at all.

AUGUSTUS outperforms us on some of the smallest genomes,
but falls off much more drastically as the genomes get larger. The
difference in prediction quality is especially strong for mammals,
which tend to have big genomes with very long genes as well as the
largest plants. Supplementary Figures S2 and S4 display the com-
parison to AUGUSTUS by phylogenetic position.

Two techniques were used during inference to improve perform-
ance and limit model bias. The usage of longer input lengths helped
especially for genomes that tend to have longer genes and was
enabled by our model architecture being a relatively simple BLSTM
stack without any fully connected layers on top. We also constructed
the final predictions out of overlapping ones, which greatly helped
to reduce prediction bias in most genomes. To our knowledge, nei-
ther technique has been used before in a model developed for gene
annotation.

To make an independent qualitative and quantitative evaluation
of performance we compared Helixer predictions, AUGUSTUS pre-
dictions and the reference to RNAseq coverage data. Evaluation
with RNAseq data was performed for three each of animal and plant
species. RNAseq coverage provides support for an exonic annota-
tion (UTR or CDS), spliced coverage provides support for an anno-
tation of intron, and neither coverage nor spliced coverage is
expected for intergenic annotations. Looking at selected subsequen-
ces (Fig. 3) we identified cases where RNAseq supported (i) both the
annotations of the reference and Helixer, (ii) neither, (iii) the refer-
ence, but not Helixer and (iv) Helixer, but not the reference.

Helixer models do not yet have post-processing to make finalized
single predictions, but instead output base-wise probabilities. We

see that the model exhibits higher uncertainty around transitions be-
tween annotation classes, for instance between UTR and CDS, or
more dramatically between UTR and intergenic even where Helixer
predictions closely match the reference and RNAseq data (a).
Helixer’s uncertainty around transitions from UTR to intergenic
regions may relate to a fundamentally harder problem (there is no
conserved motif at the site as is observed for splice sites and start/
stop codons), lack of a precise one base pair biological site (Carninci
et al., 2006; Hon et al., 2013) or noise in the reference, which we
observed relative to the RNAseq data (Supplementary Figs S13 and
S14).

Helixer models also sometimes showed uncertainty for larger
regions. In some cases where Helixer did not receive RNAseq sup-
port for its highest probability annotation, it assigned a low but
non-trivial probability to the RNAseq-supported exon/intron pat-
tern (Fig. 3b and c, Supplementary Fig. S11c). However, in the ex-
treme, there are cases where the Helixer model exhibits substantial
indecision or confusion and shifts gradually between classes with no
single class receiving a high probability for extended stretches
(Supplementary Fig. S11c and d). Notably, in one of the examples
(Supplementary Fig. S11d) the RNAseq shows evidence of alterna-
tive splicing; and in another (Supplementary Fig. S11c) Helixer’s
prediction falls between that of the reference and of AUGUSTUS.

Coverage and Spliced coverage were broken down by the confu-
sion matrix of both Helixer versus AUGUSTUS as well as Helixer
versus the reference for all genomes (Fig. 4 and Supplementary Fig.
S15). Where both tools agree on far left in the figure, coverage and
spliced coverage closely matched expectations. Specifically for CDS:
CDS and UTR: UTR most base pairs had some, and many had mod-
erate or high coverage. The same pattern was seen for intron: intron
and spliced coverage. Finally, intergenic: intergenic showed only a
small fraction of base pairs with any of either coverage or spliced
coverage. In all conflicts the amount of RNAseq support fell

Fig. 3. Four example helixer predictions in the context of RNAseq data, the reference and AUGUSTUS’ prediction for M.esculenta. The examples were chosen so that (a)

Helixer had high accuracy against the reference and the reference was supported by the RNAseq data, (b) Helixer had high accuracy but the reference was not supported by

the RNAseq data, (c) Helixer had low accuracy and the reference was supported by the RNAseq data and (d) Helixer had low accuracy but the reference was not supported by

RNAseq data. Feasibility for visualization was a major secondary consideration. Each subplot shows from top to bottom (i) the natural log of the coverage (‘cov’, solid) and

spliced coverage (‘sc’, dotted) þ 1, (ii) the reference annotation in matrix form, (iii) AUGUSTUS’ predictions in matrix form (the dashed line is a reminder that no UTR predic-

tions are expected) and (iv) Helixer’s predictions. The reference and AUGUSTUS have either 0 (white) or 1 (black) for each base pair and category, while Helixer emits a prob-

ability from 0-1 represented via gray-scale. ‘Ntrn’ stand for intron, and ‘IG’ stands for intergenic
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between the cases where tools agreed, indicating that all options
were at least capable of finding weak-spots in the other annotations.

In cases of conflict, Helixer’s predictions were substantially
more consistent with the RNAseq data than those of AUGUSTUS.
Specifically, for base pairs where one tool predicted CDS and the
other intergenic or intron, there was more coverage when Helixer
predicted CDS (Fig. 4a). Similarly, for base pairs where one tool pre-
dicted intron and the other CDS or intergenic, there was more
spliced coverage when Helixer predicted intron (Fig. 4b). These pat-
terns were consistent in direction but varied in magnitude in the in-
dividual species, with the exception of P.marinus where Helixer and
AUGUSTUS performed comparably at differentiating between CDS
and intron regions (Supplementary Fig. S16).

RNAseq-based comparison of Helixer and the reference was less
clear cut. Averaged across species, Helixer’s predictions received
slightly more support than the reference when differentiating CDS,
UTR and introns from intergenic; however Helixer’s predictions
received slightly less support than the reference when differentiating
CDS and UTR from introns (Supplementary Fig. S15). Performance
varies between individual species, from P.marinus, where the refer-
ence receives more support in every conflict, to T.cacao, where
Helixer models receive equivalent or more support in every conflict
(Supplementary Fig. S17). Interestingly, these two species were
selected as examples where Helixer had poor Subgenic F1 versus the
reference; for the former the RNAseq confirms relatively weak per-
formance for Helixer, while the for the latter RNAseq rather indi-
cates a sub-par reference.

Finally, to take a first look at how Helixer models respond to
known factors and motifs, we performed in silico mutagenesis on an
example gene. The Helixer predictions were sensitive to perturba-
tions of a donor and acceptor splice site, the stop codon and the cod-
ing potential, but indifferent to removal of the start codon
(Supplementary Figs S18–S22). Most perturbations induced uncer-
tainty in Helixer’s prediction, with the exception of removing the
stop codon, where the network could simply use a second, proximal
down-stream stop codon. This indicates the Helixer model often
uses, but does not entirely rely on, known patterns.

4 Discussion

With Helixer, we introduce a novel, deep-learning based framework
for the development of more effective tools for gene annotation pre-
diction. Helixer outperforms AUGUSTUS on base pair wise metrics
and on consistency with independent RNASeq data while also pre-
dicting cross-species for a wide range of genomes with one model.

We include trained models for land plants and vertebrates which
achieve high prediction accuracy on gene annotation for broad
phylogenetic groups (land plants and vertebrates, respectively).
Within these groups, this eliminates the dependency on retraining
and the expertise and data required therefore. Production of

comparable, single-method annotations for broad groups has the
potential to greatly facilitate downstream analyses; for instance it
could avoid some of the inconsistency and errors that are otherwise
seen in RNAseq analyses when different annotations are used
(Torres-Oliva et al., 2016; Zhao and Zhang, 2015).

We found our models to be highly sensitive to the training
genomes we chose. A different set could lead to a significant shift in
strengths and weaknesses of the model and a larger and more spread
out set of high quality genomes could also result in a wider range of
genomes with decent predictions. For this, more computational
resources would be required. Simply training with a similar amount
of data, but for a different group (e.g. invertebrates of fungi) could
also be used to increase the functional predictive range.

An avenue for future research could be the addition of RNASeq
data as additional input. This would bring Helixer on even footing
with current tools and could lead to real world applicable perform-
ance improvements if the results of this work are any indication, as
deep learning has been shown to excel in a multimodal settings
(Ching et al., 2018).

Finally, development of a post-processing method to go from
base pair wise predictions to integrated predictions for whole tran-
scripts at each loci could both further improve performance and
would greatly increase real world applications. A post-processing
method could for instance take the form of an HMM that worked
with the current Helixer output instead of or in addition to raw se-
quence, or could even take the form of additional neural network
layers that output precise locations of transitions (e.g. start & stop
codons).
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