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Simple Summary: Obesity is associated with the development of metabolic disorders and alterations
in immune responses. Notably, obesity-induced inflammation promotes the chronic activation of
T-cells, which may result in the aberrant expression of their regulatory markers. Programmed cell
death -1 (PD-1) and Fas (CD95) are some of the important modulators of T-cell function. Although it
is apparent that their expression is dysregulated in obesity, it remains unclear whether the eventual
T-cell dysfunction is due to the upregulation or downregulation of these markers. Therefore, this
study aimed to assess the expression of PD-1 and Fas in T-cells in metabolic disorders.

Abstract: This study was conducted to assess the expression of Fas (CD95) and programmed cell
death-1 (PD-1) on circulating T-cells in obesity using a diet-induced obesity mouse model. Further-
more, we aimed to determine if there are any associations between metabolic disorders and the
expression of T-cell regulatory markers. A total of 12 male C57BL/6 mice were randomized into
either a high-fat diet (HFD) or low-fat diet (LFD) group for 8 weeks (n = 6/group). Changes in
body weights were monitored on a weekly basis. The lipid, glucose, and hematological profiles, as
well as Fas and PD1 expression on the T-cell immunophenotype, were measured after 8 weeks of
feeding. The HFD-fed group had a higher percentage weight gain (29.17%) in comparison with the
LFD-fed group (21.74%) after the 8-week period. In addition, the HFD group had increased fasting
glucose and glucose excursion following a 2-h postprandial period. The levels of total cholesterol
were elevated in the HFD group when compared with the LFD group (p < 0.05). Notably, the absolute
white cell count (p = 0.0096), neutrophil count (p = 0.0022, lymphocytes (p = 0.0155), and monocyte
count (p = 0.0015) were elevated in the HFD group when compared with the LFD-fed group. How-
ever, the platelets (0.0680), red cell counts (0.3575), and their indices (p > 0.05) were comparable
between the two groups. Interestingly, HFD feeding was associated with elevated expression of
Fas on T-cells (p < 0.0001), which positively correlated with body weights (r = 0.93, p = 0.0333). No
associations were found between Fas expression and dyslipidemia or fasting blood glucose levels
(p > 0.05). The multivariant regression analysis showed that the association between the levels of Fas
on T-cells and body weights (coefficient: −1.00, t-value: 19.27, p = 0.0330) was independent of fasting
blood glucose, total cholesterol, and lymphocyte count. Lastly, the expression of PD-1 on T-cells was
comparable between the two diet groups (p = 0.1822). In all, immune activation, dyslipidemia, and
poor glucose control in the early stages of obesity may drive the pathogenesis of metabolic T-cell
disorders. Importantly, T-cell dysfunction in obesity is partially mediated by an upregulation of Fas
which is independent of dyslipidemia and hyperglycemia.
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1. Introduction

The prevalence of obesity has rapidly increased over the years [1], with more than
two-thirds of individuals with obesity at high risk of developing metabolic syndrome and
cardiovascular disease (CVD) [2,3]. Obesity is strongly associated with metabolic dys-
function and chronic T-cell activation [4,5]. For instance, obesity impairs insulin signaling
and promotes the secretion of cytokines and adipokines that dysregulate the transduction
of the Janus kinase (JAK)/signal transducer activator of transcription (STAT) pathway,
an important modulator of insulin function and T-cell responses [6,7]. Furthermore, the
exacerbated levels of interleukin (IL)-6 and leptin in obesity result in the downstream
activation of STAT3 signaling [8,9], which is closely associated with insulin resistance [10].
The manifestation of the latter has been attributed to the blockage of insulin signaling
transduction induced by an upregulation of suppressor of cytokine signaling 3 expression
in obesity [11]. We previously described the involvement of T-cells in obesity-induced
immune activation, insulin resistance, and impaired glucose control [7]. In fact, the former
is strongly associated with T-cell dysfunction [12], mediated by increased expression of
regulatory markers such as Fas (CD95) and programmed cell death-1 (PD-1) [13,14].

The binding of the Fas ligand (FasL) to its counter-receptor results in the downstream
activation of caspase 8 and activation-induced cell death [15]. However, alternative research
has also reported anti-apoptotic signaling modulated by the Fas-FasL axis [16]. In particular,
Fas signaling provides co-stimulatory transductions during T-cell activation [17]. Thus,
its aberrant expression may modulate alterations in the regulatory mechanisms of T-cell
responses as previously reported [16]. An upregulation of Fas expression on CD8+ T-
cells is directly associated with an increase in body mass index (BMI) in individuals with
obesity [13]. However, others observed a downregulation of Fas expression on CD4+ T-cells
in obese individuals with poor glucose control [18]. Despite these reported inconsistencies,
it is apparent that there is a close relationship between metabolic disorders and aberrant
Fas expression on T-cells. However, there is no clear understanding on whether the T-cell
dysfunction mediated by Fas in metabolic disorders is driven by poor glucose control,
obesity, or dyslipidemia.

Likewise, and apart from its well characterized negative inhibitory effect, PD-1 is also
essential in the co-stimulatory signaling that promotes T-cell activation upon binding to
its ligand (PD-L1 and PD-L2) [19]. Chronic T-cell activation can induce T-cell exhaustion,
which is characterized by an upregulation of PD-1 [20]. The activation of the PD-1–PD-L
axis results in transduction of a negative co-stimulatory signal that inhibits T-cell activa-
tion [21]. Notably, the upregulation of PD-1 is congruent with the loss of T-cell effector
function in a mouse model of diet-induced obesity (DIO) [22]. In contrast, the expression
of PD-1 on T-cells in individuals with poor glucose control was not associated with any
glucose profiles [18,23], with others even reported its downregulation in individuals with
Type 2 diabetes mellitus [24].

Therefore, using a mouse model of DIO, we aimed to assess whether T-cell dysfunction
in metabolic disorders is mediated by aberrant expression of Fas and PD-1. Moreover,
we aimed to determine if there are any associations between poor glucose control or
dyslipidemia and the expression of the T-cell regulators.

2. Materials and Methods
2.1. Animal Handling

Male C57BL/6 mice were purchased and housed in a cage at the Biomedical Research
Unit at University of KwaZulu-Natal (UKZN) in a controlled environment. The animals
were exposed to a controlled 12-h light/dark cycle at a temperature range of 23–25 ◦C and
a relative humidity of approximately 50%. The mice received standard laboratory food and
water ad libitum. All animal procedures were carried out in accordance with the UKZN
Animal Research Ethics Committee (AREC) protocol (AREC/086/016).
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2.2. Study Design

In this DIO model, a total of twelve 6-week-old male C57BL/6 mice were randomly
allocated into 2 diet groups (n = 6/group). These comprised of a low-fat diet (LFD,
10% energy from fat, Research Diets #D12450J) and a high-fat diet (HFD, 60% energy
from fat, Research Diets #D12492). The animals were allowed a 2-week acclimatization
period and their body weights were measured on a weekly basis for 8 weeks (Figure 1).
Hematological parameters and glucose and lipid profiles were measured after 8 weeks of
HFD or LFD feeding.
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Figure 1. Experimental design. A total of 12 6-week-old male C57BL/6 mice were used in this experiment. Briefly, the mice
were randomly allocated into two diets groups receiving a high-fat diet or a low-fat diet for 8 weeks (n = 6/group). The
weights were measured weekly, while the postprandial glucose levels, hematological parameters, and blood lipid profiles
were measured on the eighth week after diet feeding.

2.3. Measurements of Metabolic Profiles and Hematological Parameters

Glucose plasma concentrations were performed using the OneTouch select glucometer
(Life Scan Inc., Milpitas, CA, USA) and the 2-h oral postprandial glucose test was performed
as previously described [25]. In order to determine the lipid profiles, total cholesterol,
high-density lipoprotein (HDL) cholesterol and low-density lipoprotein (LDL) cholesterol
were measured using a mouse-specific enzyme-linked immunosorbent assay kit (Abcam,
Cambridge, MA, USA), according to the manufacturer’s instructions. All hematological
parameters were measured using a Beckman Coulter AcT5 Diff (Beckman Coulter, Miami,
FL, USA).

2.4. Measurements of FAS and PD-1 Levels on T-cells

The IMag™ Mouse T Lymphocyte Enrichment Set-DM (BD Biosciences, San Jose, CA,
USA) was used as per the manufacturer’s instructions to isolate T lymphocytes from whole
blood. In order to determine T-cell dysfunction in this DIO model, we enumerated the
levels of Fas and PD1 expression in CD3+ T-cells. Briefly, isolated T lymphocytes were
stained using the following monoclonal antibodies (mAbs) to assess the expression of Fas
and PD-1 in T-cells. Anti-mouse CD3-FITC (clone 17A2) and CD95-APC (clone J43) mAbs
were obtained from BioLegends, San Diego, CA, USA, whilst PD-1-BV421 (clone J43) mAb
was acquired from Beckton Dickinson (BD Biosciences, San Jose, CA, USA). Flow cytometry
analysis was performed using a BD FASCanto II (BD Biosciences, San Jose, CA, USA), and
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data were analyzed using FlowJo version 10.6.2 analysis software (BD Biosciences, San Jose,
CA, USA).

2.5. Statistical Analysis

The Kolmogorov–Smirnov test with Dallal–Wilkinson–Lilliefor p-values was per-
formed to test for normality. An unpaired Student’s t-test was performed for paramet-
ric data; and data are reported as means ± standard error. Non-parametric data were
log-transformed to meet the assumptions of normality prior to statistical analysis. The
Mann–Whitney U-test was used for non-parametric data, and the results are reported as
the median interquartile range (IQR). Correlations were performed using the Pearson’s
coefficient. A p-value of < 0.05 was considered as statistically significant. All statistical
analyses were performed using GraphPad Prism version 6 software (GraphPad Software
Inc., San Diego, CA, USA).

3. Results
3.1. High-Fat Diet Feeding Impaired Metabolic Function in Mice

In order to induce obesity, the mice were fed a HFD for a period of 8 weeks
(Figure 2A). As expected, the HFD-fed group had an increased percentage weight gain
(29.17%) in comparison with the LFD-fed group (21.74%). Furthermore, the HFD-fed group
had significantly elevated levels of fasting blood glucose (p = 0.007) after the 8-week HFD
feeding period (Figure 2B). Moreover, the HFD-fed group had a larger postprandial area
under the curve (AUC) when compared with the LFD-fed group (p = 0.0029) (Figure 2C). In
order to assess dyslipidemia in our DIO model, the lipid profiles were measured, and the
total cholesterol levels were significantly increased in the HFD-fed group when compared
with the LFD-fed group (p = 0.0079) (Figure 2D). However, HDL cholesterol and LDL
cholesterol were comparable between the two diet groups (p > 0.05) (Figure 2E,F, Table 1).
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Table 1. Characteristics of mice after 8 weeks of feeding on a low-fat diet versus a high-fat diet (n = 6/group).

Parameter Low-Fat Diet (n = 6) High-Fat Diet (n = 6) p-Value

Body weight (g) * 1.38 ± 0.12 1.47 ± 0.01 <0.0001
Fasting glucose (mg/dL) 3.08 ± 0.11 6.30 ± 0.39 0.0007

Area under the curve (mmol/L × 120
min) 692.70 ± 67.82 1062 ± 35.22 0.0029

Lipid profiles
Total cholesterol (µg/uL) 0.020 [0.014–0.023] 0.043 [0.039–0.048] 0.0079
HDL cholesterol (µg/uL) 0.114 ± 0.048 0.091 ± 0.004 0.6611
LDL cholesterol (µg/uL) 0.152 ± 0.025 0.093 ± 0.003 0.0803

White cell indices
White cell count (103/µL) 4.42 ± 0.47 9.26 ± 1.13 0.0096

Neutrophils (103/µL) 0.34 ± 0.09 1.01 ± 0.24 0.0022
Lymphocytes (103/µL) 3.98 ± 0.95 7.99 ± 2.36 0.0155

Monocytes (103/µL) 0.08 ± 0.02 0.23 ± 0.07 0.0015

Red cell indices
Red cell count (106/µL) 7.03 ± 0.27 6.52 ± 0.44 0.3575

Hemoglobin (g/dL) 27.13 ± 0.94 26.13 ± 1.03 0.4933
Hematocrit (%) 30.24 ± 1.29 27.44 ± 2.01 0.2809

Mean cell volume (FL) 43.00 [43.00–43.50] 42.00 [41.00–43.00] 0.119

Platelet indices
Platelet count 572.00 ± 124.60 888.60 ± 73.80 0.068

Mean platelet volume (FL) 5.47 ± 0.23 5.42 ± 0.13 0.8553

T-cell markers
% expression of Fas in CD3+ T-cells 40.23 ± 3.92 84.88 ± 4.49 <0.0001

% expression of PD-1 in CD3+ T-cells 0.59 ± 0.20 1.23 ± 0.39 0.1822

*: Log-transformed data. Results are expressed as the means ± standard error and the median interquartile range. Significant p-values
highlighted in bold.

3.2. Hematological Changes Following High-Fat Diet Feeding

HFD feeding significantly increased absolute white cell count (WCC) (p = 0.0096),
neutrophil count (p = 0.0022, lymphocytes (p = 0.0155), and monocyte count (p = 0.0015) in
comparison with the LFD-fed group (Table 1). However, the platelet (0.0680) and red cell
counts (0.3575), as well as their indices (p > 0.05), were comparable following 8 weeks of
HFD or LFD feeding (Table 1).

3.3. Expression of CD95 and PD-1 in T-cells

In order to assess T-cell dysfunction in obesity and poor glucose control, we measured
the expression Fas and PD-1 on T-cells following 8 weeks of HFD feeding (Table 1). Notably,
there was a significant increase in the expression of Fas on T-cells in the HFD-fed group
(84.88 ± 4.49) when compared with the LFD-fed group (40.23 ± 3.92), p < 0.0001 (Figure 3A).
However, PD-1 expression was comparable between the two groups (p = 0.1822) (Figure 3B).
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Figure 3. Changes in the expression of T-cell markers after 8 weeks of being on the respective diets
(n = 6/group). The high-fat diet (HFD)-fed group had increased levels of Fas (CD95) expression
when compared with the low-fat diet (LFD)-fed group (A). However, programmed cell death 1 (PD-1)
expression on CD3+ T-cells was comparable between the two groups (B). All data are presented as
means ± standard error (SE).

3.4. Associations between Fas-Mediated T-cell Dysfunction and Metabolic Disorders

Obesity is strongly characterized by poor glucose control and dyslipidemia [3,26].
We performed a correlation analysis to assess whether there is any association between
Fas expression and metabolic disorder. We found a strong positive correlation between
Fas expression and body weight (Pearson’s r = 0.91, p = 0.0012), and a strong negative
correlation with absolute monocyte counts (Pearson’s r = −0.89, p = 0.0460). There was
also a strong association between body weight and WCC (Pearson’s r = 0.94, p = 0.018)
and absolute lymphocyte counts (Pearson’s r = 0.95, p = 0.0130). However, there were no
significant correlations between Fas and PD-1 expression, or with glucose or lipid profiles
(p > 0.05). We further performed a multivariant regression analysis of potential modifiers
of Fas expression on T-cells. The association between the levels of Fas on T-cells and body
weight (β = 1432, p = 0.0330) was independent of fasting blood glucose (p = 0.0720), total
cholesterol (p = 0.0688), and lymphocyte count (p = 0.0947) (Table 2).

Table 2. A multivariable logistic regression of the potential modifiers of Fas expression in T-cells.

Parameter Beta Standard Error 95% Confidence
Interval t-Value p-Value

Intercept −1951 107 −3310 to −591.20 18.23 0.0349
Body weight 1432 74.33 487.8 to 2377 19.27 0.0330

Fasting plasma
glucose −4.21 0.48 −10.29 to 1.87 8.80 0.0720

Total cholesterol −489.20 53.06 −1163 to 185 9.22 0.0688
Lymphocyte count −2.59 0.39 −7.51 to 2.34 6.67 0.0947

Significant p-values highlighted in bold.

4. Discussion

The aim of this study was to assess the expression Fas and PD-1 on circulating T-cells in
obesity using a DIO mouse model. In this model, 8-week HFD feeding induced long-term
glucose impairment, dyslipidemia, and weight gain [27,28]. Interestingly, these changes are
analogous with the characteristic features of metabolic syndrome in humans [29], whereby
poor glucose control and increased total cholesterol have been reported in obese adults [30].
In our study, both lipid and glucose metabolism were altered following HFD feeding.
Notably, when we assessed the lipid profiles, only the total cholesterol levels were elevated
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in the HFD-fed group, whereas LDL cholesterol and HDL cholesterol remained comparable
between the two diet groups. The discordant cholesterol results may be attributed to
increased triglyceride levels in obesity, which, together with aberrant cholesterol levels,
predispose obese individuals to CVD [3].

It is established that leukocytosis is an indicator of immune activation and is closely as-
sociated with inflammation. In previous studies, obesity was positively associated with an
increase in WCC [31,32], whereby an increase in BMI was associated with neutrophilia [31].
Likewise, our results showed that HFD-fed mice gained weight and had a significantly
elevated WCC, which was indicative of a pro-inflammatory state in obesity. This may
suggest that leukocytosis in obesity is mainly driven by the increased proliferation of
neutrophils. Obesity-related leukocytosis is associated with dyslipidemia, which is charac-
terized by increased total cholesterol and LDL cholesterol and low HDL cholesterol [33].
Notably, increased WCC has been directly associated with aberrant cholesterol levels in
patients with metabolic syndrome [34]. Overall, our findings seem to suggest that increased
immune activation and dyslipidemia may be responsible for the pathogenesis of metabolic
syndrome in individuals with obesity.

Fas is one of the increasingly explored proteins for its modulatory role in immune
activation [16]. Apart from mediating apoptotic cell death, Fas signaling also induces
other non-apoptotic activities regulated by members of the tumor necrosis factor recep-
tor superfamily. These include the activation and proliferation of leucocytes [35], which
is well-described in patients with metabolic disorders, and experimental models of obe-
sity and non-alcoholic fatty liver disease [13,26,36,37]. In obese individuals, increased
expression of Fas on monocytes, neutrophils, and T-cells was associated with activation
of the pro-inflammatory pathways and differentiation of immune cells in conditions of
metabolic disease [13,26,36,38]. Interestingly, the blockage of Fas signaling can attenuate
obesity-induced adipose tissue inflammation by inhibiting IL-6 whilst promoting IL-10
secretion [26]. Subsequently, IL-10 can inhibit Fas expression and its signaling through the
activation of FLICE-like inhibitory protein (FLIP) [39]. In our study, we observed increased
Fas expression on T-cells and elevated lymphocyte counts in the HFD-fed, thus highlighting
the non-apoptotic effect of the Fas-FasL axis [15]. Lastly, as it is also one of the important
regulators of immune activation, we report on comparable levels of PD-1 expression on
T-cells between the HFD-fed and LFD-fed group. However, this is in contrast to previous
studies [22,40,41], where the upregulation of PD-1 was reported in patients with obesity.
The difference in the findings may be attributed to the immunological responses in early
stages of obesity-induced inflammation since the upregulation of PD-1 in T-cell exhaustion
is strongly linked with a chronic inflammatory state [42]. However, to be certain, different
experimental models must be explored to assess the expression levels of PD-1 on T-cells
under conditions of metabolic syndrome.

Our study had a few limitations. We did not assess the expression of Fas and PD-1 on
T-cell subsets, which would have provided insight to the expression of these regulatory
markers. However, a previous study [13] showed that the expression levels of Fas on CD4+
T-cells were comparable between obese and lean individuals. We therefore opted to assess
the expression of these regulatory markers on the major T-cell lineage. Secondly, we could
not assess oxidative stress or bone marrow and thymus parameters, which are closely
related to T-cell dysfunction. Future studies need to investigate these aspects. Nonetheless,
the upregulation of Fas on T-cells is compatible with low levels of perforin, granzyme B, and
interferon γ secretion and elevated levels of complement and caspase proteins in various
metabolic disorders [43–45]. Thus highlighting the role of Fas expression in mediating
the dysfunction of T-cells in inflammatory milieus. Lastly, we did not determine whether
the upregulation of Fas expression is directly associated with increased activation of Fas
signaling. Future studies need to investigate both these aspects to unveil and understand
the mechanisms mediated by Fas in T-cell dysfunction.
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5. Conclusions

Obesity is characterized by dyslipidemia, increased immune activation, and T-cell
dysfunction. Most importantly, altered T-cell function is partially mediated by the up-
regulation of Fas which is independent of dyslipidemia and hyperglycemia. Therefore,
therapeutic strategies that target the Fas-FasL axis may be of benefit for patients with
obesity who are also at risk of developing metabolic disease-related complications such as
CVD and Type 2 diabetes mellitus.
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