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Quantitative proteomics by 
SWATH-MS reveals sophisticated 
metabolic reprogramming in 
hepatocellular carcinoma tissues
Yanyan Gao1,2, Xinzheng Wang1, Zhihong Sang1, Zongcheng Li3, Feng Liu1, Jie Mao1, 
Dan Yan4, Yongqiang Zhao1, Hongli Wang1, Ping Li1, Xiaomin Ying5, Xuemin Zhang1, Kun He1 
& Hongxia Wang1

Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide, and understanding 
its molecular pathogenesis is pivotal to managing this disease. Sequential window acquisition of 
all theoretical mass spectra (SWATH-MS) is an optimal proteomic strategy to seek crucial proteins 
involved in HCC development and progression. In this study, a quantitative proteomic study of 
tumour and adjacent non-tumour liver tissues was performed using a SWATH-MS strategy. In total, 
4,216 proteins were reliably quantified, and 338 were differentially expressed, with 191 proteins up-
regulated and 147 down-regulated in HCC tissues compared with adjacent non-tumourous tissues. 
Functional analysis revealed distinct pathway enrichment of up- and down-regulated proteins. The 
most significantly down-regulated proteins were involved in metabolic pathways. Notably, our study 
revealed sophisticated metabolic reprogramming in HCC, including alteration of the pentose phosphate 
pathway; serine, glycine and sarcosine biosynthesis/metabolism; glycolysis; gluconeogenesis; fatty 
acid biosynthesis; and fatty acid β-oxidation. Twenty-seven metabolic enzymes, including PCK2, PDH 
and G6PD, were significantly changed in this study. To our knowledge, this study presents the most 
complete view of tissue-specific metabolic reprogramming in HCC, identifying hundreds of differentially 
expressed proteins, which together form a rich resource for novel drug targets or diagnostic biomarker 
discovery.

Liver cancer is one of the most common malignant cancers in the world, with more than 850,000 new cases 
worldwide annually1. This neoplasm is currently the second leading cause of cancer-related death globally, and 
the incidence is increasing2. Among all primary liver cancers, hepatocellular carcinoma (HCC) is the most com-
mon neoplasm, accounting for approximately 90% of all cases1,3–8. Hepatitis B virus (HBV) infection, hepatitis C 
virus (HCV) infection, alcohol abuse and intake of aflatoxin B1 are the main factors contributing to HCC1,3–7. In 
China, HCC has been ranked as the second most frequent fatal cancer since the 1990s9, and the majority of HCCs 
in China are caused by HBV infection10,11.

Currently, surgical resection and liver transplantation are considered the best treatment options for early-stage 
HCC and are curative therapies for approximately 30% to 40% of early-stage patients3,12. Due to the asymptomatic 
features of HCC at early stages, patients are often diagnosed at very advanced stages. Thus, there is an urgent need 
to find key carcinogenesis-associated molecules for HCC diagnosis and treatment.

Mass spectrometry (MS)-based proteomic analysis of human clinical tissues is a powerful tool to investigate 
cancer biomarkers and therapeutic targets13. Numerous clinical studies of HCC have been reported over the past 
decade using various quantitative techniques14–20, including SILAC (stable isotope labelling by amino acids in cell 
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culture), iTRAQ (isobaric tags for relative and absolute quantification) and CDIT (culture-derived isotope tags) 
labelling techniques as well as label-free proteomics approaches based on quantification by ion intensity or spec-
tral counting. Label-free approaches are relatively cheap compared to labelling approaches; when labelling rea-
gents are not required, high-throughput and sensitive analyses in a mass spectrometer are possible. Quantitative 
studies of HCC using spectral counting and ion intensities have also been reported19,20. SWATH-MS (sequential 
window acquisition of all theoretical mass spectra) is an emerging label-free quantification approach that com-
bines a highly specific data independent acquisition (DIA) method with a novel targeted data extraction strategy 
to mine the resulting fragment ion data sets. SWATH-MS has been widely used to compare protein expression 
and modify alterations21–24. To our knowledge, no SWATH-MS approach has been used to study HCC proteomics 
until now.

In this study, we compared the protein expression of tumourous (HCC) and adjacent non-tumourous 
(non-HCC) tissues from 14 HBV-associated HCC patients using a SWATH-MS technique to identify new HCC 
biomarkers and potential therapeutic target candidates. In total, 338 differential proteins were quantified, and 
most down-regulated proteins were involved in metabolism. Sophisticated reprogramming of cell metabolic 
pathways was revealed. These observations are essential to elucidate the mechanisms underlying the occurrence 
and progression of HCC and contribute to the discovery of new candidates for early HCC diagnosis.

Results
Differentially expressed proteins quantified by SWATH-MS analysis in HCC tissues. The exper-
imental scheme of the present study is shown in Fig. 1. HCC and non-HCC liver tissue samples were compared 
by SWATH-MS to identify differentially expressed proteins that can be used as biomarkers for HCC diagnosis 
or in HCC development and progression. To avoid individual differences and detect true HCC-related proteins, 
samples were analysed by equal pooling of two or three tissues from both groups to determine a quantitative 
expression ratio between HCC and non-HCC liver tissue groups based on total ion intensity normalization. Five 
biological replicates were analysed, and 14 pairs of tissue samples were used in total (Supplementary Table S1).

The targeted identification of peptides in SWATH-MS datasets requires a priori generation of a spectral 
library that includes essential coordinates for each targeted peptide, such as precursor ion masses, fragment 
ion masses, fragment ion intensities and retention times21. For each biological replicate, a spectral library was 
generated with a traditional data-dependent acquisition (DDA) mass spectrometry technique as described in 
the Methods section. Five libraries were obtained in total. On average, the spectral libraries contained approxi-
mately 2,491 distinct protein groups, and 26,586 peptides were identified with greater than 99% confidence and 
passed the global false discovery rate (FDR) from fit analysis using a critical FDR of 1% (Supplementary Table S2, 
Supplementary Figure S1). Taken together, these findings indicated that the experimentally generated spectral 
libraries contained only high-confidence proteins.

Following generation of the spectral library, the identification and quantification of HCC and non-HCC pro-
teins were performed using a SWATH-MS approach as described by Gill et al.21, with modifications. Proteins 
were digested by trypsin, and the peptides were separated using a gradient of 120 min on a reverse-phase nanoLC 
instrument. SWATH data from six injections for each biological replicate were submitted in unison to PeakView 

Figure 1. Quantitative proteomic workflow of human HCC and adjacent non-tumourous liver tissues 
analysed using a SWATH-MS approach. 
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software (Version 1.2, AB Sciex) for targeted data extraction, which resulted in the quantitative export of 2,122, 
2,681, 1,860, 2,115 and 2,346 unique proteins for the analysis of five biological replicates (Fig. 2a). In total, 4,216 
proteins were quantified in at least one biological replicate, and 1,903 proteins were quantified in at least three 
biological replicates, which accounted for 45% of all quantified proteins (Fig. 2b and Supplementary Table S3).

Relative protein quantification was analysed using MarkerView (Version 1.2.1, AB Sciex) and R (Version 3.3.1, 
the R foundation), as described in the Methods section. Normality distribution of each technical replicates was 
performed after log2 transformation for the peak intensities of all the MS measurements prior to further anal-
ysis and the histograms were shown in Supplementary Figure S2. In total, four criteria were used to filter out 
differential proteins. First, the Shapiro-Wilk test was used to test normality for each protein within one biolog-
ical replicate, and only proteins that met normality were used for further analysis. Second, Welch’s t-test and 
Benjamini-Hochberg multiple test correction were performed, and an adjusted p_value <  0.05 and fold change 
(FC) ≥  1.5 or FC ≤  1/1.5 was considered statistically significant. With these two criteria, 865, 884, 550, 715 and 
760 differentially expressed proteins were obtained for the five biological replicates (Fig. 2a). Third, up- or down- 
regulated proteins were detected in at least three biological replicates are shown in the Venn diagram (Fig. 2c). 
Fourth, the average ratio of up- or down-regulated proteins had to meet the 1.5-FC cutoff requirements. With 
the above mentioned four criteria, 191 up-regulated and 147 down-regulated proteins were obtained in total and 
are shown in the heatmap (Fig. 2d). Supplementary Table S4 and Table S5 present the differentially expressed 

Figure 2. Quantitative proteomic analysis between HCC and non-HCC tissues. (a) Numbers of proteins 
quantified by SWATH-MS in each biological replicate. Larger and smaller numbers in each column indicate 
total quantified and significantly changed proteins (p <  0.05, fold change (FC) ≥ 1.5 or FC ≤  1/1.5) in each 
biological replicate. Rep1 through Rep5 are abbreviations of biological replicates 1 through 5. (b) Protein 
distributions were quantified one to five times. Numbers in parentheses indicate the percentage of total 
proteins. Legend numbers 1–5 on the right side show the repeat times of the quantified proteins. (c) Venn 
diagram depicting overlap of significantly regulated proteins (p <  0.05, FC ≥ 1.5 or FC ≤  1/1.5) in five biological 
replicates. Red lines show proteins significantly regulated in at least 3 of 5 biological replicates. (d) Heatmap of 
338 significantly regulated proteins, including 191 up-regulated and 147 down-regulated proteins. The colour 
bar on the right side represents the expression level of the proteins, corresponding to log2-ratios of FC (HCC/
non-HCC). Red indicates up-regulation, and blue indicates down-regulation.
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proteins for the adjusted p_value <  0.05 and FC ≥ 1.5 or FC ≤  1/1.5 in five biological replicates and the final 
analysis results.

To evaluate our SWATH-MS data, comprehensive proteomics-based quantitative expression data obtained 
from five previously published studies of HCC and adjacent/normal tissues were used to perform side-by-side 
comparisons15,17,18,20,25. The differentially expressed proteins quantified in these five studies were 151, 573, 
71, 267 and 648. The comparison revealed that 49 (42), 155 (150), 28 (26), 68 (65) and 70 (62) differentially 
expressed proteins detected in our data were present in the five previous studies; the trends of the major pro-
teins were consistent with published data (numbers in brackets represent proteins with the same change trend) 
(Supplementary Table S6). In total, 214 (199) proteins in our dataset were detected in previous studies, which 
accounted for 63.31% (58.88%) of the 338 differential proteins. Among the 214 proteins, 99 proteins were 
detected in ≥ 3 studies, including our data (Supplementary Table S6). Among these 99 frequently identified 
common proteins, 41 proteins were up-regulated, and 58 were down-regulated. Among the 338 differentially 
expressed proteins, nine were validated by western blotting in previous studies, and five were validated by immu-
nohistochemical (IHC) methods. Seven of the nine western blotting-validated proteins (OTC, PEBP1, CPS1, 
BHMT, CLIC1, PPA1 and APEX1) and all five IHC-tested proteins (OTC, BHMT, CLIC1, PPA1 and APEX1) 
were detected in ≥ 3 data sets. All five proteins (OTC, BHMT, CLIC1, PPA1 and APEX1) were tested using 
both methods as HCC potential biomarkers. Our SWATH data were consistent with the western blotting- and 
IHC-validated results (Supplementary Table S6).

To decipher whether the differentially expressed proteins were detectable in plasma, we searched for these pro-
teins in the Human Plasma Proteome database (HPPD)26. Approximately 85.50% of the differentially expressed 
proteins (289/338) appeared in this database, suggesting that they had relatively strong potential to be secreted 
into the blood (Supplementary Table S7). Among these 289 proteins, the numbers of up- and down-regulated 
proteins were 169 and 120, respectively. Furthermore, 94 proteins were detected in ≥ 3 studies and were present in 
HPPD; among these, 38 proteins were up-regulated (Supplementary Table S7). These proteins were potential bio-
marker candidates for HCC; some may be tested using multiple reaction monitoring (MRM), as described by Hou 
et al.27. The above results show the reliability of our SWATH-MS proteomic results and indicate that these differ-
entially expressed proteins may be useful to delineate HCC properties and screen HCC biomarker candidates.

GO and KEGG pathway enrichment analysis. To investigate the function of these differentially 
expressed proteins, GO and KEGG pathway analyses of up-regulated and down-regulated proteins were per-
formed separately by DAVID (Version 6.8, LHRI & DAVID Bioinformatics)28,29. This method easily determined 
the characteristics of up- or down-regulated proteins. Liver proteins downloaded from the human proteome 
map (http://humanproteomemap.org) were used as the background dataset for enrichment analysis30. For 
up-regulated proteins, 34 significant enrichments were identified using GO analysis (p <  0.05, p_values were 
corrected using the Benjamini-Hochberg procedure). These were classified into three GO categories, includ-
ing biological processes (BP, 5), molecular functions (MF, 6) and cellular components (CC, 23) (Table 1). In 
BP, those items significantly participated in cell-cell adhesion (p =  7.12 ×  10−5), mRNA splicing via the splice-
osome (p =  4.60 ×  10−3), SRP-dependent cotranslational protein targeting to membrane (p =  6.97 ×  10−3) and 
translation initiation (p =  9.07 ×  10−3). The most significant terms for MF and CC were poly(A) RNA binding 
(p =  5.60 ×  10−20) and extracellular exosome (p =  1.30 ×  10−15), respectively. For the down-regulated proteins, 
66 significant enrichments were obtained, including 29 BP, 28 MF and 9 CC (Table 1). The five most signifi-
cant terms of BP were related to metabolic processes, including oxidation-reduction processes (p =  4.93 ×  10−21), 
xenobiotic metabolic processes (p =  1.03 ×  10−8), metabolic processes (p =  1.95 ×  10−8), drug metabolic processes 
(p =  3.32 ×  10−8) and epoxygenase P450 pathway (p =  7.15 ×  10−7). For MF and CC, the most significant terms 
were oxidoreductase activity (p =  1.03 ×  10−16) and mitochondrial matrix (p =  1.69 ×  10−18), respectively.

To locate the key pathways implicated in HCC development and progression, KEGG pathway enrichment 
analysis was performed for 338 differentially expressed proteins. As for GO analysis, up- and down-regulated 
proteins were analysed separately, and the background of the enrichment used liver proteins from the human pro-
teome map30. Pathway analysis showed that the up-regulated proteins were significantly enriched in term of spli-
ceosome (p =  4.24 ×  10−2). For down-regulated proteins, 37 terms were enriched, and the most significant terms 
were metabolic pathways (p =  3.36 ×  10−42), glycine, serine and threonine metabolism (p =  9.03 ×  10−13), retinol 
metabolism (p =  1.65 ×  10−12), drug metabolism - cytochrome P450 (p =  6.72 ×  10−12) and biosynthesis of antibi-
otics (p =  7.05 ×  10−11). The all five significant GO terms of the BP for up-regulated proteins and the top 10 most 
significant GO terms of the BP and KEGG pathways for down-regulated proteins are shown in Fig. 3(a–c). Those 
of MF and CC are in Supplementary Figure S3(a–d). All enriched terms are shown in Supplementary Table S8.

Enrichment terms
Up-regulated proteins 
enrichment (p < 0.05)

Down-regulated proteins 
enrichment (p < 0.05)

GO: BP 5 29

GO: MF 6 28

GO: CC 23 9

KEGG pathway 1 37

Total 35 103

Table 1.  GO and KEGG pathway analyses of up-regulated and down-regulated proteins by DAVID. BP, 
biological processes; CC, cellular components; MF, molecular functions.

http://humanproteomemap.org
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Western blot validation for nine selected proteins in clinical HCC tissues. Nine candidate proteins 
were selected for validation by western blot analysis using six sample pairs of HCC and non-HCC liver tissues 
that differed from those used in the proteomics studies (Supplementary Table S1 patient ID 15–20). The candidate 
proteins were selected based on either dramatic fold change or involvement in key metabolic pathways. Five can-
didate proteins were up-regulated, namely FBXO2, ACSL4, PLIN2, PKM2 and GFPT1. The four down-regulated 
proteins were CYP1A2, FTCD, UGT2B7 and PCK2. Here, the analysis showed differential expression of all the 
candidates in HCC tissues compared with non-HCC tissues. FBOX2, ACSL4 and PLIN2 showed strong expres-
sion in all six tumour samples but weak or no expression in non-tumour tissues. PKM2 and GFPT1 showed 
generally high expression levels in five HCC tissues compared with the control group. For all down-regulated 
proteins, low expression was detected in HCC tissues compared with non-HCC tissues (Fig. 4). The representative 
extracted ion chromatogram (XIC) comparisons in these nine proteins are shown in Supplementary Figure S4. 
Overall, the western blot analysis results for all nine proteins were consistent with the proteomics data, which 
indicated that our proteomics data were highly reliable and that some proteins are worthy of further investigation.

Discussion
The purpose of this study was to characterize proteomic changes in HCC tissues, provide potential protein can-
didates for biomarker discovery and suggest molecular mechanisms of HCC development and progression. 
Although much proteomic research has been performed, the biological mechanisms of HCC development and 
progression are still unclear.

Metabolic reprogramming is a hallmark of cancer31. Cancer cells can increase the amount of glucose and glu-
tamine to satisfy energy needs and macromolecular synthesis demands. Therefore, understanding the metabolism 
of tumours remains an intense study topic with important therapeutic potential32.

Figure 3. GO and KEGG pathway enrichment of 338 significantly regulated proteins according to DAVID 
functional annotation. (a) All 5 and significantly enriched biological processes of up-regulated proteins 
quantified using the SWATH-MS approach. (b,c) Top 10 significantly enriched biological processes and KEGG 
pathways of down-regulated proteins quantified using the SWATH-MS approach.
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Using the newly developed SWATH-MS technique, we quantified more than 4,000 proteins, and 338 proteins 
were differentially expressed in HCC. Sophisticated metabolic reprogramming was revealed as depicted in Fig. 5, 
including the following major aspects.

First, the oxidative pentose phosphate pathway (PPP) was up-regulated in HCC. PPP is the first branch 
pathway of glycolysis. In PPP, glucose-6-phosphate becomes partially oxidized to generate NADPH and ribose-
5-phosphate. PPP is frequently elevated in tumourigenesis. In our study, two key enzymes—the rate-limiting 
enzyme glucose-6-phophate dehydrogenase (G6PD) and transaldolase (TALDO)—were over-expressed in HCC. 
The over-expression of G6PD and TALDO was detected in previous HCC references18,25,33,34.

Second, the serine, glycine and sarcosine biosynthesis/metabolism pathways were significantly down-regulated 
in HCC. Serine biosynthesis is a key metabolic pathway for cell proliferation, contributing carbon to many ana-
bolic products, such as protein, glutathione, nucleotide and phospholipid biosynthesis35,36. Phosphoglycerate 
dehydrogenase (PHGDH) and phosphoserine aminotransferase (PSAT) are two key enzymes of serine biosyn-
thesis37,38. In our study, both PHGDH and PSAT were down-regulated in HCC tissues. The two proteins were 
quantified in the HCC proteomics study mentioned above, with the same trends. Overall, our data indicate that 
the serine biosynthesis pathway is down-regulated in HCC.

In line with PHGDH and PSAT, key enzyme of serine/glycine metabolism, serine hydroxymethyl-transferase 
1 (SHMT1) in the cytosol was down-regulated. SHMT catalyses the formation of glycine from serine, thereby 
generating 5,10-methylene-tetrahydrofolate (5,10-MTHF)39. Glycine-N-methyl transferase (GNMT), the enzyme 
that generates sarcosine from glycine, showed dramatically low expression. In addition to GNMT, sarcosine levels 
were regulated by sarcosine dehydrogenase (SARDH), the enzyme that converts sarcosine back to glycine and 
dimethylglycine dehydrogenase (DMGDH), which generates sarcosine from dimethylglycine40. Both SARDH 
and DMGDH were down-regulated in HCC tissues. In addition, betaine-homocysteine S-methyltransferase 1 
(BHMT1) converts betaine and homocysteine into dimethylglycine and methionine. In our study, BHMT1 was 
also down-regulated.

In addition to generating sarcosine, the glycine cleavage system is a catabolic mechanism for glycine. Three 
key glycine catabolism enzymes—glycine decarboxylase (GLDC), glycine cleavage system H protein (GCSH) and 
glycine N-acyltransferase (GLYAT)—were also decreased in HCC tissues. GLDC is a key component of the highly 
conserved glycine cleavage system in amino acid metabolism, which catalyses the breakdown of glycine to form 
CO2, NH3 and 5,10-MTHF to fuel one-carbon metabolism41. GLDC and GCSH are two members of the glycine 
cleavage system, and their down-regulation indicated the significantly low expression of the system. In total, 10 
serine, glycine and sarcosine metabolic enzymes were down-regulated in our study. The schematic pathway and 
changes in these enzymes are shown in Fig. 6.

PHGDH is the first enzyme in serine biosynthesis from a glycolic intermediate, is frequently amplified in 
breast cancer and is required for the growth of PHGDH-amplified cells in vitro37. The over-expression of GLDC 
in the tumour-initiating cells (TIC) of non-small cell lung cancer (NSCLC) was also reported to induce dramatic 
changes in glycolysis and glycine metabolism42. Sarcosine was identified as a differentially expressed metabolite 
that was highly elevated during prostate cancer progression to metastasis and is a potentially important metabolic 
intermediate of cancer cell invasion and aggression40. These studies showed that the up-regulation of serine/gly-
cine metabolism may contribute to the pathogenesis of several human cancers and may provide novel targets for 
improving anticancer therapies.

Overall, our observation was the opposite of earlier results, which may be due to different cancer types. 
GLDC, together with GCSH and eight other enzymes related to glycine metabolism, mainly catabolism, were 

Figure 4. Validation of nine selected proteins in clinical HCC tissues by western blotting. The abundance 
of FBXO2, ACSL4, PLIN2, PKM2, GFPT1, CYP1A2, FTCD, UGT2B7 and PCK2 proteins in HCC and adjacent 
non-HCC liver tissues were analysed by western blotting using six pairs of samples. The GAPDH protein was 
used as an internal reference.
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down-regulated in HCC. This indicated that glycine catabolism plays different roles in HCC other than NSCLC, 
and the function of glycine metabolism in HCC is worthy of further investigation. The down-regulation of the 
glycine catabolism pathway agreed well with the increased glycine in HCC serum compared with normal control 
samples in a recent metabolomics study43.

Third, fatty acid synthesis (FAS) was up-regulated in HCC. Fatty acid de novo synthesis is required for 
membrane synthesis and therefore for cell growth and proliferation. It has been revealed that fatty acid syn-
thesis requires several key enzymes, including pyruvate dehydrogenase (PDH) complex, citrate synthase (CS), 
ATP-citrate synthase (ACLY), acetyl-CoA carboxylase (ACC) and fatty acid synthase (FASN)44. Three of these, 
ACLY, ACC and FASN, were frequently up-regulated in transformed cells45. In our study, one subunit of PDH, CS, 
ACLY and FASN were all over-expressed in HCC. The over-expression of these four enzymes, especially the dra-
matic increase in ACLY and FASN, indicated the up-regulation of fatty acid biosynthesis in HCC. An increased 
capacity for producing lipids de novo facilitates the formation of lipid bilayers but also enables the cell to adapt to 
oxidative stress46. We speculate that similar mechanisms exist in HCC for fatty acid synthesis as in other cancers.

Moreover, fatty acid oxidation (FAO, also known as β -oxidation) was down-regulated in HCC. In most cases, 
the growth and survival of cancer cells is limited by levels of cytosolic NADPH. The production of FAO-derived 
cytosolic NADPH by cancer cells is critical to counteract oxidative stress47. In our study, 6 enzymes of FAO 
were quantified. Levels of all of these enzymes were decreased, including ACADS and ACADSB (which catalyse 
acyl-CoA dehydrogenase activity); ECHS1, ECHD2 and ECHD3 (which catalyse enoyl-CoA hydratase activ-
ity); and ACAA2 (which catalyse acetyl-CoA C-acyltransferase activity). The schematic diagrams of FAO and all 
altered enzymes are shown in Supplementary Figure S5. Evidence indicates that some tumours, including prostate 
tumours, leukaemia and large B-cell lymphoma, utilize FAO as their main energy supply for proliferation and 
survival48. The down-regulation of FAO in HCC indicated that FAO plays different roles in HCC, unlike other 
tumours.

In addition to the above mentioned pathways, glycolysis and gluconeogenesis are key metabolic pathways in 
human cells. Conversion of glucose to lactate is a major pathway of glucose metabolism in cancer cells even in the 

Figure 5. Sophisticated metabolic reprogramming in HCC. Our proteomic data revealed the up-regulation 
of glycolysis and pentose phosphate pathways and fatty acid biosynthesis and the down-regulation of 
gluconeogenesis; serine, glycine and sarcosine metabolism; and fatty acid β -oxidation. The red letters and 
arrows indicate up-regulated proteins and pathways, respectively, and the blue letters and arrows indicate down-
regulated proteins and pathways.
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presence of O2; this is known as the Warburg effect or aerobic glycolysis49. Pyruvate kinase (PK) catalyses the final 
rate-limiting reaction in glycolysis by transferring high-energy phosphate from phosphoenolpyruvate (PEP) to 
ADP to produce ATP and pyruvate50. PKM2 is the dominant M isoform in most adult tissues and is the major PK 
in proliferating and cancer cells50. Elevated PKM2 expression has been demonstrated in various human tumours, 
including lung, breast, prostate, blood, cervix, kidney, bladder and colon, when compared to matched normal 
tissues51. PKM2 promotes tumourigenesis by regulating the Warburg effect, as reported in a previous study50. In 
our proteomic data, PKM2 was over-expressed in HCC tissue, and the expression of PKM2 was also validated by 
western blotting. Thus, our results indicate that the change in PKM2 in HCC is consistent with the Warburg effect.

As shown in Fig. 5, pyruvate can be transformed into two different products, acetyl-CoA and oxaloacetate, 
by PDH and pyruvate carboxylase (PC). PDHA1, a pyruvate dehydrogenase E1 component subunit alpha, was 
over-expressed, while PC was down-regulated in our proteomic data set. The down-regulation of PC in HCC has 
been reported20. Thus, our data indicated that the increase in pyruvate was directed to acetyl-CoA for the TCA 
cycle, which may further be used for fatty acid synthesis.

Phosphoenolpyruvate carboxykinase (PCK) is the rate-limiting enzyme of gluconeogenesis in the liver 
and kidney. There are two isoforms of PCK: cytosolic PCK (PCK1) and a mitochondrial isoform of PCK 
(PCK2). PCK1, but not PCK2, was reported to be over-expressed in colorectal cancer and promotes tumour 
growth by increasing glucose and glutamine metabolism52. PCK2 expression was reported to be elevated in 
non-small-cell lung carcinoma (NSCLC) and is regulated by glucose and required for in vivo tumour growth53. 
The down-regulation of PCK2 in HCC has been documented in a previous study17. In our proteomic data set, 
both PCK1 and PCK2 were lowly expressed in HCC. The down-regulation of PCK2 was validated using western 
blot analysis and was consistent with the proteomic data. Thus, the down-regulation of PCK was a specific char-
acteristic of HCC, different from colorectal cancer and NSCLC in the literature. This observation is in agreement 
with the view that cancer cells display metabolic flexibility, and not all features are universal53. Taken together, 
these data demonstrate roles for PKM2, PC and PCK2 in HCC, which links metabolic flux and anabolic pathways 
to cancer cell proliferation.

In summary, we compared the proteomic profile of HCC tumour tissues (n =  14) with paired adjacent 
non-tumourous liver tissues (n =  14) using a SWATH-MS quantification strategy. To obtain reliable results, 

Figure 6. Down-regulation of serine, glycine and sarcosine biosynthesis/metabolism pathways in HCC. 
Ten enzymes involved in serine, glycine and sarcosine metabolic pathway were differentially expressed in our 
study and all were down-regulated. The down-regulated proteins are shown in blue.
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five biological replicates were performed, and strict filtration criteria were applied. In total, 338 differentially 
expressed proteins were obtained, and these proteins were involved in various key pathways. Compared with 
previous studies, more than 50% of proteins were quantified by others with the same change trend. Approximately 
85% of the differentially expressed proteins showed relatively strong potential to be secreted into the blood. It is 
noteworthy that sophisticated metabolic reprogramming in HCC was revealed by proteomic data, including the 
up-regulation of glycolysis, the pentose phosphate pathway and fatty acid biosynthesis and the down-regulation 
of gluconeogenesis; serine, glycine and sarcosine metabolism; and fatty acid-oxidation. This reprogramming 
showed the distinct metabolic flexibility of HCC. In total, 27 key metabolic enzymes were quantified in our study, 
including PCK2, PDH and G6PD, which are important for cancer development and progression. In addition 
to metabolic reprogramming, spliceosome pathway was significantly up-regulated. The results indicate that the 
SWATH-MS strategy is effective for identifying crucial proteins involved in HCC development and progression. 
Differentially expressed proteins form a rich resource for diagnostic biomarkers or therapeutic drug target dis-
covery. Furthermore, our findings into HCC-specific metabolic reprogramming may provide new insights into 
understanding HCC biology and direct optimal treatment.

Materials and Methods
Patients and Clinical Specimens. The following methods were carried out in accordance with approved 
guidelines. Access to human tissues complied with the guidelines of the Ethics Committee at Beijing 302 Hospital, 
and informed consent was obtained from all patients for collecting the specimens. All experimental protocols 
were approved by the National Center of Biomedical Analysis. HCC tissues and adjacent non-tumourous liver 
tissue counterparts used for this study were collected from 20 HBV-associated HCC patients who underwent 
hepatectomy at Beijing 302 Hospital between 2013 and 2014 (14 males and 6 females). The tumourous and 
non-tumourous liver tissues were determined by the experienced pathologist and pathological sections. None of 
these patients received anti-neoplastic therapy prior to surgery. All patients used for the quantitative proteomics 
study and western blotting verification had liver cirrhosis. Patients details are shown in Supplementary Table S1. 
Tissues were immediately snap-frozen in liquid nitrogen after surgical resection and stored at − 80 °C until use.

Reagents and Materials. Hepes, NaCl, Urea and thiourea were purchased from Sigma-Aldrich (St. Louis, 
MO, USA). Cocktail was purchased from Roche Diagnostics (Indianapolis, IN, USA). Trypsin were purchased 
from Promega (Madison, WI, USA). Protein Assay Dye Reagent Concentrate was purchased from Bio-Rad 
(Hercules, CA, USA). Dithiothreitol (DTT) was purchased from Amresco (Solon, OH, USA). Iodoacetamide 
(IAA) was purchased from Acros Organics (Morris Plains, NJ, USA). Acetonitrile (ACN, HPLC grade) and 
methanol were purchased from Fisher Scientific (Fair Lawn, NJ, USA). Formic acid (FA) was provided by Fluka 
(Milwaukee, WI, USA). SuperSignal West Pico was purchased from Thermo Scientific (Rockford, IL, USA). All 
water used in the experiments was purified using a Milli-Q system (Millipore, Billerica, MA, USA).

Protein Extractions and Trypsin Digestion. For each extraction, ~0.2 g of tissue was ground into powder 
in liquid nitrogen with a pre-cooled mortar and pestle. Samples were homogenized on ice in 1 ml of lysis buffer 
(50 mM Hepes, 6 M urea, 2 M thiourea and 1 ×  protease inhibitor cocktail). The samples were lysed by sonication 
for 1 min on ice (pulse on 3 s, pulse off 10 s). After centrifugation at 14,000 ×  g for 30 min at 4 °C, the supernatant 
was collected, and the protein concentration was determined by the Bradford method54 (Bradford Protein Assay, 
Bio-Rad). Twenty μ g proteins from each sample were digested with trypsin using filter-aided sample preparation 
(FASP) as previously described55,56. After digestion, the peptides were dried in a vacuum for MS analysis.

Mass Spectrometry Analysis. MS analysis was performed using an AB Sciex 5600+ TripleTOF mass spec-
trometer (Concord, Ontario, Canada) interfaced to an EkspertTM NanoLC 425 system (Dublin, CA) as previously 
described21–24. For library construction, peptides were trapped on a NanoLC pre-column (Chromxp C18-LC-3 μ 
m, size 0.35 ×  0.5 mm, Eksigent), eluted onto an analytical column (C18-CL-120, size 0.075 ×  150 mm, Eksigent) 
and separated by a 120-min gradient from 5 to 35% Buffer B (Buffer A: 2% ACN, 98% H2O, Buffer B: 98% ACN, 
2% H2O, 0.1% FA) at a flow rate of 300 nL/min. Full-scan MS was performed in positive ion mode with a nano-ion 
spray voltage of 2.3 kv from 350 to 1500 (m/z), with up to 50 precursors selected for MS/MS (m/z 100–1500). The 
selection criteria for parent ions included an intensity greater than 150 counts/s, a charge state from + 2 to + 5, a 
mass tolerance of 50 mDa and dynamic exclusion for 15 s. Ions were fragmented in the collision cell using rolling 
collision energy.

In SWATH™  acquisition, the parameters were essentially the same as those described by Gillet et al.21. With 
the same chromatographic conditions used in the DDA run described above and a variable isolation window 
obtained using variable window package software (including 1 Da for the window overlap), a set of 55 overlapping 
windows was constructed, covering the precursor mass range of 400–1250 Da. The collision energy for each win-
dow was determined based on the appropriate collision energy for a 2+  ion centred in the window with a spread 
of 15 eV. The high-sensitivity mode was used, allowing accurate extraction of the fragment ion masses.

Generating the Reference Spectral Library. For each bio-replicate analysis, three DDA injections 
were performed to increase protein coverage as described by Hou et al.27. All three mass spectrometry files were 
searched in unison using ProteinPilot software (Version 4.2, AB Sciex) with the Paragon algorithm as described 
by Haverland et al. with minor modifications22. Samples were input as unlabelled samples with the following 
parameters: iodoacetamide-cysteine alkylation, digestion with trypsin and no special factors. The search was 
conducted using a thorough identification effort and the human UniProt database (April 2013 release)57.



www.nature.com/scientificreports/

1 0Scientific RepoRts | 7:45913 | DOI: 10.1038/srep45913

SWATH-MS Data Analysis. Spectral alignment and targeted data extraction of DIA samples were per-
formed with the SWATH Processing Micro App in Peakview (Version 1.2, AB Sciex) using the reference spectral 
library generated above as described by Haverland et al. with modifications22. There was a reference library for 
each bio-replicate comparison. Six DIA raw files in one comparison group were loaded in unison using an extrac-
tion window of 15 min and the following parameters: 5 peptides, 8 transitions and peptide confidence of > 99%, 
including shared peptides and XIC width set at 50 ppm. After data processing, three distinct files were exported 
for further quantitation analysis. The processed mrkvw files containing protein information from PeakView were 
loaded into MarkerView (Version 1.2.1, AB Sciex) for normalization of protein intensity (peak area) for all runs 
using the built-in total ion intensity sum plug-in. Log2 transformation was performed prior to further statistical 
analysis. We plot the histogram to check the normality distribution of each technical replicate. Differential analy-
sis was performed using R (Version 3.3.1, the R foundation). In each biological replicate, normality tests of protein 
expression were performed for HCC/non-HCC groups using the Shapiro-Wilk normality test. Proteins whose 
expression values met the normality in both groups were retained for Welch’s t-test and the Benjamini-Hochberg 
multiple test correction. Mean values of protein expression were used for calculation of fold change (FC). Proteins 
with adjusted p <  0.05 and FC ≥  1.5 or FC ≤  1/1.5 in at least three biological replicates and average FC ≥  1.5 or 
FC ≤  1/1.5 were regarded as differentially expressed proteins in this study.

Functional Analysis. Protein IDs were converted to gene names using the UniProt Retrieve/ID mapping 
tool57. Heatmaps for expression of selected proteins in the five groups were created using the R (Version 3.3.1, 
the R foundation) heatmap package. The DAVID webserver (Version 6.8, LHRI & DAVID Bioinformatics) was 
employed for Gene Ontology enrichment analysis and KEGG pathway analysis28,29.

Western Blotting Validation. Prior to western blotting, the protein concentration of the samples 
was determined by the Bradford assay method54. Equal amounts of 20 μ g protein per sample were separated 
by SDS-PAGE on an 8–12% polyacrylamide gel. Proteins were subsequently transferred to PVDF membranes 
(Immun-Blot PVDF, Bio-Rad, Hercules, CA, USA), and membranes were blocked with 5% (w/v) skim milk in 
Tris-buffered saline with 0.1% Tween 20 (TBS-T) for 1 h at room temperature. The following antibodies were 
used: ACSL4 (1:1000), ADPR (1:1000), CYP1A2 (1:1000), FTCD (1:1000), FBXO2 (1:300) and UGT2B7 (1:100) 
from Proteintech (Rosemont, IL, USA); PKM2 (1:1000) and GFPT1 (1:1000) from Cell Signaling (Danvers, MA, 
USA); PCK2 (1:1000) from Abcam (Cambridge, MA, USA). These primary antibodies were diluted in 5% (w/v) 
skim milk in TBS-T and incubated with membranes overnight at 4 °C. After washing for five minutes in TBS-T 
three times, horseradish peroxidase-labelled secondary antibodies (Jackson ImmunoResearch, West Grove, PA, 
USA) were used for detection for 1 h at room temperature. Visualization of the immunoreactive proteins was 
accomplished using enhanced chemiluminescence (SuperSignal West Pico, Thermo, Rockford, IL, USA) followed 
by exposure to X-ray film (XBT, Carestream, Xiamen, Fujian, China).
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