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Abstract17

The human leukocyte antigen (HLA) region plays an important role in human health through in-18

volvement in immune cell recognition and maturation. While genetic variation in the HLA region is19

associated with many diseases, the pleiotropic patterns of these associations have not been system-20

atically investigated. Here, we developed a haplotype approach to investigate disease associations21

phenome-wide for 412,181 Finnish individuals and 2,459 traits. Across the 1,035 diseases with a22

GWAS association, we found a 17-fold average per-SNP enrichment of hits in the HLA region.23

Altogether, we identified 7,649 HLA associations across 647 traits, including 1,750 associations un-24

covered by haplotype analysis. We find some haplotypes show trade-offs between diseases, while25

others consistently increase risk across traits, indicating a complex pleiotropic landscape involving26

a range of diseases. This study highlights the extensive impact of HLA variation on disease risk,27

and underscores the importance of classical and non-classical genes, as well as non-coding variation.28
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Introduction29

The major histocompatibility complex (MHC) plays a crucial role in mediating tissue graft com-30

patibility and immune system recognition of pathogens and self [1–3]. The human MHC, referred31

to as the human leukocyte antigen (HLA) region, has been found to be associated with numerous32

diseases [2–8]. The tension between being able to recognize a diverse array of pathogens while33

avoiding autoimmunity suggests that variants within the HLA region may affect multiple distinct34

phenotypes simultaneously. Yet, little work has been done to characterize the patterns of pleiotropy35

and the trade-offs across diseases within the region.36

The HLA region is approximately 5 megabases in length, and contains hundreds of genes, but37

is most known for the classical HLA genes, which are involved in response to infection and autoim-38

munity [9]. The classical HLA genes, which include class I genes (HLA-A, -B, -C ) and class II39

genes (HLA-DR, -DQ, and -DP), encode cell surface proteins that present peptides to immune cells40

resulting in activation and maturation [10].41

The classical HLA genes are highly polymorphic, with each gene having multiple distinct alleles.42

These alleles are functionally diverse: some act as generalists, and others are specific to particular43

types of peptides [11–13]. Different HLA alleles vary in their ability to recognize certain pathogens,44

thus genetic variation modulating this ability can result in a variety of disease associations [9, 14].45

Meanwhile, some pathogens have evolved to avoid common HLA alleles in a host-pathogen arms46

race [15, 16]. This arms race has resulted in long-term balancing selection at classical HLA genes,47

leading to trans-species polymorphisms and extreme nucleotide diversity—more than 70-times the48

genome-wide average [17–19].49

At the individual level, this genetic variation in the classical HLA genes affects the ability of50

the immune system to detect pathogens, fight infections, and attack cancerous cells, as well as the51

ability to limit inappropriate immune responses, such as autoimmune diseases [2–5]. Furthermore,52

genetic variation in the HLA region can influence the balance between these conflicting goals of53

pathogen response and the prevention of autoimmunity, resulting in potential risk trade-offs [20–54

22]. On the other hand, the risk trade-offs between autoimmunity, infection, and other traits can be55

more complicated, as demonstrated by Epstein-Barr virus (EBV) infection. Chronic EBV infection56

is known to cause various cancers, including nasopharyngeal carcinoma and Hodgkin lymphoma [23–57

25], and it has also been shown to play a role in the development of multiple sclerosis, a degenerative58

demyelinating disease of the central nervous system caused by immune-mediated inflammation [26,59

27]. Although there is clinical evidence of the complex interplay between infection, autoimmunity,60

cancer, and other diseases, the genetic contribution to these disease trade-offs and risks has not61

been well-characterized at the biobank level [2, 20, 21, 23].62

Association studies have implicated particular HLA alleles in many diseases [6, 7]. These canon-63

ical HLA association studies have provided countless biologically and clinically informative associ-64

ations, for example, seronegative spondyloarthritis has been associated with the HLA-B27 allele65

family, Type 1 Diabetes with the HLA-DR3 allele family, and Rheumatoid arthritis with the HLA-66

DR4 allele family [28, 29]. In addition to providing biological insight into disease mechanisms, these67

studies have resulted in the use of HLA allele associations in the clinical setting [30–32].68

While there has been much focus on protein-coding variation within the classical HLA genes,69

there has been less work characterizing the majority of the genetic variation in the region, which70

falls outside of the coding regions of the classical HLA genes. Disease-associated variants are71

typically presumed to be protein-coding, affecting the peptide-binding groove of a classical HLA72

gene, but variation in regulatory regions may also be a major risk factor in a subset of diseases73
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by influencing gene expression [33–35]. Recent experimental studies have demonstrated that for74

some traits, regulatory variation in the region confers more risk than HLA coding variation [36].75

There is also evidence for disease associations with variation in non-HLA genes within the locus,76

including C4A [37], SLC44A4 [38], and NOTCH4 [39]. Therefore, investigation of genetic variation77

throughout the entire HLA region has the potential to reveal additional contributions beyond those78

found by HLA allele analysis alone.79

Analyses of the HLA region in genome-wide association studies (GWAS) in large cohorts such80

as FinnGen [40], UK Biobank [41], and Japan Biobank [42] have identified many trait associations81

with single nucleotide polymorphisms (SNPs) in the HLA region [43]. These traits span a variety82

of systems, including infections such as HIV [44] and Hepatitis B [45], and autoimmune conditions83

ranging from neurological conditions (such as multiple sclerosis [46]), gastrointestinal disorders84

(such as Celiac disease and inflammatory bowel disease [47]), and rheumatic disorders (such as85

systemic lupus erythematosus [48]). These studies typically either investigate associations with86

many traits across the entire genome [8, 39, 49], treating the HLA region as just another locus, or87

they specifically focus on the HLA region but consider only a small number of traits at a time [50,88

51]. However, in order to understand how genetic variation in the HLA region contributes to the89

complicated interplay between different disease risks, it is crucial to study associations for many90

traits simultaneously. This motivates the need for investigating the role of HLA loci in modulating91

trade-offs in these disease associations at the phenome-wide scale.92

In this study, we quantified how genetic variation and pleiotropy at the HLA region contribute to93

disease risk across a broad range of diseases. We analyzed data from 412,181 Finnish individuals for94

2,459 traits. We focused on understanding the spatial distribution of disease associations throughout95

the HLA region and the nature of pleiotropy between different traits. We developed a haplotype-96

based approach to robustly characterize patterns of disease associations throughout the entire HLA97

region, including non-coding variation and variation outside of classical HLA genes. We applied our98

approach at a phenome-wide scale and evaluated the role of HLA in modulating risk and trade-offs99

across a broad range of diseases in the context of the full complexity and breadth of HLA genetic100

variation.101
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Results102

Enrichment of significant trait associations in the HLA region103

To identify disease associations with genetic loci throughout the entire HLA region, we analyzed104

data from 412,181 Finnish individuals and 2,459 traits (Figure 1). We used fine-mapped GWAS105

summary statistics released by FinnGen, as well as new association data we generated at the level of106

individual phased haplotypes and HLA alleles. We corrected for sex, age, and the first ten principal107

components of the genome-wide genotype matrix (see Methods). Results from these association108

tests were used in subsequent analyses.109

Diagnostic data in 412,181 
individuals

and 2,459 diseases 

Haplotype analysis

Chr 6

TCATAGTCACTGCGACTACTCCTG

TCTGCTCACATAGGACTACTTCTG
CTGCTTCAGACTCGACTACTTTCC

Pleiotropic trait associations

SNPs

HLA

(b) Overview of Study

(a) Overview of HLA Region

Number of Traits

Figure 1: Study Overview. A. An overview of the HLA region showing the nearest genes to trait-
associated SNPs, colored by HLA class, spanning approximately 5 megabases. B. An overview of the study
data and design.

While the importance of HLA variation in disease has been well-established, we first sought to110

systematically quantify the enrichment of association signals across diseases, focusing on how en-111

richment varies by disease type. We considered the 1,035 disease traits in FinnGen that had at least112

one genome-wide significant association anywhere in the genome. We then identified independent113

genome-wide significant SNP associations for each trait, and binned these SNPs into 100 kb bins114

(Figure 2a). We found the mean number of significant associations per bin was 2.75, with a median115

of 1. One of the bins on chromosome 6 that overlaps the class II region of the HLA region had116

the highest number of associations in a single bin with 282 associations. Five of the six bins with117

the most associations overlapped the HLA region. The remaining bin is on chromosome 19 and118

has 101 associations. This bin contains an apolipoprotein gene cluster including APOE, APOC1,119

APOC2, APOC4, which are involved in lipid metabolism and affect Alzheimer’s disease risk. These120

results show that the HLA region harbors a higher density of disease associations than the rest of121

the genome.122
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While the role of HLA in infectious disease and autoimmunity is well-established, its role in123

other disease types is less clear. As such, we sought to quantify the enrichment of association signal124

stratified by disease groups. We classified the 1,035 diseases that had at least one GWAS association125

into 45 trait categories based on ICD codes. We then calculated the average per SNP enrichment of126

association signals for each disease category by comparing the number of independent associations127

inside the HLA region to the number in the rest of the genome (Supplementary Table 1).128

Overall, we found a 17x enrichment in the HLA region relative to the rest of the genome averaged129

across all 1,035 diseases that had at least one GWAS association anywhere in the genome. The130

individual disease category with the highest enrichment was the Infectious trait group, with a 396x131

enrichment relative to the rest of the genome (Figure 2b). The overall enrichment across all diseases132

remained relatively unchanged (16.6x) even after excluding all infectious traits. In addition, the133

majority of other trait groups, including groups such as Dental traits (71x), Dermatologic traits134

(63x enriched), Rheumatic traits (53x enriched), Hematologic (50x enriched), and Ear traits (45x135

enriched) also showed a major enrichment in the HLA region. In contrast, the Congenital group was136

the only group not enriched in the HLA region. This could be because the traits in the Congenital137

group are oligogenic, with an average of 2.2 hits outside the HLA region and none within the HLA138

locus. The most enriched trait groups showed enrichment for primarily two reasons (Supplementary139

Figure S1). First, some traits had high enrichment because they had many associations across the140

genome, with proportionately even more associations in the HLA region, such as the Rheumatic141

traits. Alternatively a subset of the enriched traits did not have many associations overall, but the142

few associations they had were in the HLA region, such as the Infectious traits.143

To ensure that our results were robust and not driven by the unusually high gene density or by144

differences in genotype array coverage of the HLA region, we repeated our analyses to identify per-145

gene and per-base pair enrichments. The results were qualitatively consistent, differing by factors of146

0.48x and 2.4x respectively. Overall, these results emphasize the involvement of the HLA region in147

a broad range of disease groups, including those from a variety of different pathologic mechanisms148

and organ systems.149

In order to understand how the HLA region contributes to disease mechanisms, we next examined150

traits that had associations within the locus (N = 572 diseases). To remove essentially redundant151

traits, we focused on the subset of these traits that had LDSC genetic correlation ≤ 0.95. This152

included 269 diseases and 3 continuous traits (height, weight, body mass index). We then used153

forward stepwise regression to identify conditionally independent SNP associations for each trait.154

This resulted in 428 associations (MAF > 1%, P < 10−6) across all traits.155
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(c) Overview of Hits by Traits(b) HLA Enrichment Relative to Background

(a) Number of Fine-mapped GWAS Hits Across FinnGen Traits

HLA Region

Apolipoprotein
Cluster

Figure 2: Distribution of GWAS hits across the genome and trait group enrichment. A.
Distribution of fine-mapped GWAS hits throughout the genome across 1,035 FinnGen disease traits, binned
into 100 kb bins. B. Enrichment of association signal in the HLA region by disease group. The 1,035 diseases
were categorized into 45 disease groups based on ICD codes and the average per SNP enrichment in the HLA
region was calculated by comparing the number of independent associations in the HLA region relative to
that in the rest of the genome. C. Classification of traits with at least one significant association in the HLA
region by shared pathophysiology.

Classifying disease categories by ICD code, as was done in the enrichment analysis above, pri-156

marily results in anatomical groups as opposed to groups based on shared pathophysiology. To157

understand the contribution of HLA to biological disease mechanisms, we manually classified the158

269 HLA-associated diseases based on pathophysiology (Figure 2c, Supplementary Table 2). For159

traits where the underlying mechanism is unknown or ambiguous, we classified by the organ system160

affected.161

We calculated the number of traits in each of these trait categories that had at least one sig-162

nificant HLA association in the HLA region (Figure 2c). Two of the top disease categories were163

Rheumatic (40 traits) and Infectious (38 traits). In contrast to the enrichment analysis, addi-164

tional multi-system disease groups beyond Rheumatic and Infectious traits were well-represented,165

including Autoimmune (27 traits) and Cardiometabolic (27 traits).166
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Pleiotropy and spatial structure of significant SNP association signal within the167

HLA region168

We aimed to evaluate the spatial distribution of the significant SNP association signal across the169

HLA region. We first categorized the associations by assigning each variant to its nearest gene170

(Figure 3a). We observed association signals throughout the extended HLA region with the highest171

density of associations near the twelve classical HLA genes, particularly the class II genes. However,172

associations were spread broadly across the region, with a total of 75 genes that were the nearest173

gene for at least one association, 59 of which were non-HLA genes. Overall, the associations were174

spread relatively consistently across trait groups, although the autoimmune and rheumatic traits had175

slightly higher signal near the class I genes than the other trait groups did, likely driven at least in176

part by the well-known associations of HLA-B alleles with rheumatic traits [52, 53] (Supplementary177

Figure S2).178

We next evaluated the role of genetic variation in the HLA region in modulating disease risk179

trade-offs. We calculated normalized Z-scores for each association discovered in the forward stepwise180

analysis (sign(Z)*Z2/(max Z2 of trait); See Methods), and visualized how these association signals181

were spread across the locus (Figure 3b). We found that 99% of the associations were also significant182

(P < 10−6) for one or more diseases beyond the trait for which they were identified as a conditionally183

independent significant association. Moreover, we found variants that significantly increased the184

risk for one disease while significantly decreasing risk for another disease suggesting a possible risk185

trade-off between traits.186

The normalized Z-scores visually clustered around three main genomic regions within the HLA187

locus. The first cluster spanned two non-classical and one class I HLA gene (HLA-F, HLA-G, HLA-188

A). The second spanned two class I HLA genes and one non-HLA gene (HLA-C, HLA-B, MICA).189

The third spanned one non-HLA gene and two sets of class II HLA genes (NOTCH4, HLA-DR,190

HLA-DQ).191

The overall pleiotropic structure revealed large blocks of SNPs spanning hundreds of kilobases192

that have similar effects across traits. These encompass multiple genes, and likely arise due to the193

high gene density and the extensive linkage disequilibrium (LD) in the region (Figure 3; Supple-194

mentary Figure S3).195

Pleiotropic disease associations at the haplotype level196

The HLA region is particularly challenging for standard association studies because of its strong LD,197

multiallelic sites, and large effect coding variants within the classical HLA genes. Motivated by the198

block-like structure of the HLA locus (Figure 3b), we developed an approach to explore pleiotropy199

at the haplotype level, with haplotype blocks spanning multiple genes and including non-classical200

HLA, non-HLA, and non-coding regions.201
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(a) Nearest Gene Distribution of GWAS Hits

(b) Pleiotropic Associations of GWAS Hits Across HLA-Associated Traits

(c) Linkage Disequilibrium of HLARegion

Genome Position (Mb)

2.9e+07 3.0e+07 3.1e+07 3.2e+07 3.3e+07
Genome Position

NOTCH4
HLA-DR
HLA-DQ

HLA-C
HLA-B
MICA

HLA-F
HLA-G
HLA-A

sign(Z)*Z2/
(max Z2 of trait)

Figure 3: Pleiotropic structure of the HLA region. A. Distribution of significant SNP associ-
ations across the HLA region, binned by nearest gene. Each bar represents a different gene and the width
corresponds to the length of the gene boundaries. B. Heatmap of normalized Z-scores for the 428 variants in
the HLA region significantly associated with at least one trait. The x-axis corresponds to the genome position
of the variant, the y-axis corresponds to the HLA-associated traits. Associations with all HLA-associated
traits are shown for all variants that had an independent significant association with at least one trait. The
three blocks used in subsequent analysis are circled, underlined, and labeled by well-known genes within each
block. C. Linkage disequilibrium as measured by r2 and D′ of the approximately 40,000 SNPs covering the
HLA region (MAF > 1%).
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The three main regions ("blocks") described above were selected based on the density of signal202

from the significant SNP associations, overlapping LD patterns, and functional relevance. We203

defined haplotypes for each of the three regions by the unique combination of phased nucleotides204

at 1,000 randomly selected biallelic SNPs with MAF > 1% (Figure 4; see Methods for additional205

details). We then clustered related haplotypes into groups (Supplementary Table 3; Supplementary206

Information 1), and for each block performed association analyses between the haplotype groups and207

the 269 HLA-associated diseases. We discovered 469 significant trait-haplotype group associations208

(|Z| > 4) across blocks (Figure 5; Supplementary Table 4), representing 64 traits. Of these traits,209

25 had significant associations with all three blocks. Celiac disease had the most trait-haplotype210

group associations with 36 total (8 in Block 1, 16 in Block 2, 12 in Block 3), followed by rheumatic211

disease prescriptions with 34, spondylopathies with 32, and iridocyclitis and type 1 diabetes with212

25 each.213

2.9e+07 3.0e+07 3.1e+07 3.2e+07 3.3e+07
Genome Position

HLA-F
HLA-G
HLA-A

NOTCH4
HLA-DR
HLA-DQ

HLA-C
HLA-B
MICA

Group 1

Group 2

Group 3

...

Group 4

0 1 1 0 … 1 0
1 1 1 0 … 1 1
0 0 1 0 … 0 0
0 1 0 0 … 1 0
1 0 1 1 … 1 1
1 1 1 1 … 1 1
1 1 1 1 … 0 1
1 0 1 1 … 0 0

…
1 1 1 1 … 1 0

Unique Haplotypes

trait ~ group 1 + group 2 + … + sex + age + PC{1:10}

Haplotype Group Regression

Figure 4: Haplotype group regression analysis pipeline. Overview of the pipeline for identifying
the haplotype groups for each of the three blocks in the HLA region and performing trait associations. For
each block, all unique phased combinations of nucleotides at 1,000 randomly selected SNPs were considered
as haplotypes. We then clustered related haplotypes into groups by recursively splitting the dendrogram at
each branch point (see Methods). Finally, for each of the three blocks, we performed association analyses
between the haplotype groups and the 269 HLA-associated diseases, including all haplotype groups for a given
block except the most frequent in each regression, as well as sex, age, and the first ten principal components
of the genome-wide genotype matrix as covariates.

We sought to explore the patterns of pleiotropy within these blocks. For each block, we consid-214

ered all traits with at least one association (|Z| > 4) in that block, and all haplotype groups with at215

least one trait association or total copies greater than the minimum cutoff of 20,000 copies (Figure216

5). This resulted in 41 traits and 23 haplotype groups for Block 1, 46 traits and 25 haplotype groups217

for Block 2, and 36 traits and 21 haplotype groups for Block 3.218

The majority of the haplotype groups were significantly associated with multiple traits. A subset219

of haplotype groups were associated with increased risk for some diseases, but decreased risk for oth-220

ers, consistent with disease risk trade-offs. For example, in Block 1, haplotype group 6 is associated221

with increased risk (Z > 3) for 10 traits, including GI autoimmune disorders, thyroid conditions,222

and connective tissue and rheumatic disorders. However, this haplotype group is also associated223

with decreased risk for 8 traits, mostly other rheumatic and inflammatory traits (Supplementary224

8

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 31, 2024. ; https://doi.org/10.1101/2024.07.29.24311183doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.29.24311183
http://creativecommons.org/licenses/by-nc/4.0/


Table 4). Overall, of the 58 haplotype groups that showed a significant disease association (|Z| > 4),225

the mean number of associations (|Z| > 3) per haplotype group was 5 risk-increasing associations,226

and 7 risk decreasing associations (Supplementary Figure S4; Supplementary Information 2).227

In contrast to these haplotype groups showing disease risk trade-offs, we also observed that some228

haplotype groups had the same direction of effect across the majority of associated traits (Figure229

5). For example, haplotype group 49 in Block 1 was one of the rarest haplotype groups (0.09%230

frequency), but all 6 of the diseases with which it was significantly (|Z| > 3) associated were in the231

risk increasing direction, including depression and phobic anxiety disorders. This finding motivated232

us to calculate overall disease burden proportions for each haplotype group (Supplementary Fig-233

ure S5). We defined the set of relevant diseases for each block as any disease that was significantly234

associated with at least one of the haplotype groups in that block. Then for each haplotype group235

in a given block, we identified the proportion of individuals in the haplotype group that had a236

diagnosis of at least one of the block’s relevant diseases. To identify the overall disease proportion237

as a baseline comparison, for each block we identified the proportion of all 412,181 individuals that238

had a diagnosis of at least one of the block’s relevant diseases. We then compared the haplotype239

group disease proportion to the overall disease proportion (Supplementary Figure S6). For example,240

compared to the baseline prevalence in FinnGen of 67.5%, we found that haplotype group 49 in241

Block 1 had one of the highest block-relevant disease burdens with 73% of carriers having at least242

one of the block’s significantly associated (|Z| > 4) diseases (P = 0.001). Our findings indicate that243

while some haplotypes had trade-offs in which diseases they increased and decreased the risk of,244

other haplotypes had an overall net positive or net negative impact across traits.245
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(a) Block 1 Haplotype Association Results

(b) Block 2 Haplotype Association Results

(c) Block 3 Haplotype Association Results

Figure 5: Haplotype group regression results. A dendrogram showing the clustering of the 40 most
frequent haplotypes per haplotype group, with white representing the reference allele and black representing the
effect allele. Genes are labeled below the corresponding SNPs overlapping their genome position, indicating
which are within gene boundaries and which are intergenic. Heatmap showing the Z-scores from the haplotype
group regression analysis across associated traits for A. Block 1, B. Block 2, and C. Block 3, including all
traits with at least one association |Z| > 4 in that block, and all haplotype groups with at least one trait
association or total copies greater than the minimum cutoff of 20,000 copies. For visualization purposes,
traits are clustered and Z-scores were set to a maximum of |Z| of 5.

Comparison of effects on trait pairs across haplotype groups246

Many diseases have shared underlying pathology resulting in comorbidity. As a result, we expected247

to see sharing of associations across these diseases for the HLA haplotype groups. Indeed, our anal-248

ysis recapitulated shared pathology for many traits, such as rheumatoid arthritis and seropositive249

rheumatoid arthritis, with similar associations across haplotype groups. More broadly we found that250
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the inflammatory and rheumatic traits, such as spondylopathies, iridocyclitis, polyarthropathies,251

and rheumatoid arthritis clustered together throughout the three blocks (Figure 5). This could252

result from phenotypic correlations, caused, for example, by being co-morbid. An alternative ex-253

planation is that these traits have a shared biological mechanism modulated by genetic variation254

in the HLA region. Finally, it is possible that these correlations are an artifact of long-range LD255

extending beyond the haplotypes.256

In contrast, we observed a surprising lack of concordance for a subset of seemingly similar traits,257

such as IBD and "IBD with primary sclerosing cholangitis" (IBD with PSC) (Figure 5). IBD with258

PSC is an idiopathic chronic liver disease complication developed by a subset of IBD patients, in259

which the bile ducts become inflamed and scarred, causing liver damage. IBD and IBD with PSC260

have a genome-wide genetic correlation of 0.45 and have similar effects across haplotypes in Block 3261

(Pearson’s correlation of 0.57, SE = 0.12, P = 0.005), suggesting a shared etiology (Supplementary262

Figure S7). However, the haplotype groups have essentially uncorrelated effects on the two diseases263

in Block 1 (Pearson’s correlation of 0.10, SE = 0.13, P = 0.47). In fact, some haplotype groups264

in Block 1, such as group 6, are associated with increased risk for IBD with PSC, but not IBD265

(Supplementary Figure S7).266

The difference in haplotype group effects on IBD and IBD with PSC is particularly interesting267

because it is difficult for clinicians to predict which IBD patients will develop liver damage and268

the mechanism leading to this damage is unknown [54]. Thus, understanding which parts of the269

genome are associated with increased risk for both a disease and its complications—as opposed to270

loci that differentially affect a disease and its complications—may help us better understand the271

factors that modulate the risk of certain disease complications. Understanding these differences272

may help explain why individuals with the same disease can present with a wide range of symptoms273

and outcomes.274

(a) Correlations of Significant Trait Pairs (b) Correlation Comparison Between Graves Disease
and Rheumatoid Arthritis

HLA-F
HLA-G
HLA-A

HLA-C
HLA-B
MICA

NOTCH4
HLA-DR
HLA-DQ

Figure 6: Correlation of haplotype associated traits. A. Overview and comparison of the
pairwise relationships between traits that were significantly associated with the haplotype group regression
analysis, comparing genome-wide LDSC genetic correlations, Pearson’s correlation across haplotype groups
in each block, and phenotypic correlations. B. Comparison of correlation measures between Graves Disease
and Rheumatoid Arthritis.

To better disentangle whether these pleiotropic associations were due to LD, comorbidity, or275

shared biological pathways, we quantified the genome-wide LDSC genetic correlation, phenotypic276

correlation, and Pearson’s correlation across haplotype group trait associations for all pairwise com-277

binations of haplotype group-associated traits for each block (Figure 6a). We discovered 1,520 pairs278

of traits with genome-wide genetic correlations greater than 0.3 where both traits are significantly279
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associated (|Z| > 4) with at least one block. Of these trait pairs, 408 have a correlation across280

haplotype group effects > 0.3 for all three blocks, and surprisingly 256 had a discordant correlation281

of less than -0.3 in at least one block. We also observed discordant association signals for diseases282

with previously well-defined genetic associations and with clinical impact [52, 55, 56], such as Graves283

Disease and Rheumatoid Arthritis (Figure 6b).284

Graves disease is a condition where autoantibodies against the TSH receptor lead to overstimula-285

tion of the thyroid gland resulting in hyperthyroidism. Rheumatoid Arthritis is an idiopathic chronic286

inflammatory autoimmune disorder, primarily affecting the joints. Graves Disease and Rheumatoid287

Arthritis have a genome-wide genetic correlation of 0.35 (P = 0.0002), despite a phenotypic correla-288

tion of approximately 0 (P = 0.6). The correlation of effects within Block 2 is concordant—although289

not significantly so (Pearson’s correlation of 0.28, P = 0.18)—with this genome-wide genetic cor-290

relation. However, the effects in Blocks 1 and 3 are significantly negatively correlated (Pearson’s291

correlations of -0.37 and -0.59, P = 0.006 and 0.004 respectively). A potential explanation of this292

discordance between the genome-wide genetic correlation and the correlation within HLA regions is293

that these discordant regions affect a biochemical mechanism that breaks shared pathology, resulting294

in an increased risk in one trait while decreasing risk in another, when relevant variants elsewhere295

in the genome typically cause a shared increase or decrease risk in both traits. In previous work, we296

showed that such mechanisms can result in associations with opposite signs on the traits, in spite297

of a positive genome-wide genetic correlation, driven by variants acting at the shared biochemical298

pathways between both diseases [57].299

Evaluation of haplotype group signal independent of HLA alleles300

While protein-coding variation within the HLA genes likely contributes significantly to the disease301

associations at the haplotype level, a feature of the haplotype analysis is that it includes genetic302

variation beyond coding variants in classical HLA genes, including non-classical HLA genes, non-303

HLA genes, and non-coding variation. Therefore, we sought to determine if the haplotype analysis304

was able to capture signal beyond the HLA alleles. To be conservative, we only considered signal305

entirely independent (directly, or indirectly due to LD) of the HLA alleles by performing the hap-306

lotype group regressions while including all classical HLA alleles (frequency > 1%) in each block as307

covariates. Overall, we found that 129 haplotype associations remained significant (|Z| > 4) after308

accounting for HLA allelic variation (Supplementary Figure S8; Supplementary Table 4), particu-309

larly for Block 1. Specifically, Block 1 had 171 significant associations across 48 unique traits in our310

original analysis, and 50 significant associations (|Z| > 4) across 18 unique traits after adjusting for311

the alleles.312

This indicates that many associations cannot be explained by HLA allele variation or signal313

tagged by it, and demonstrates that the haplotype group analysis was able to pick up on disease314

associations that would have been missed in traditional allele association analysis. Block 1 over-315

lapped only one classical HLA gene, HLA-A, suggesting that our haplotype regression approach316

may be particularly beneficial for regions of the HLA that cover non-classical HLA genes. More-317

over, including the HLA alleles as covariates increased the strength of 42 significant haplotype-trait318

associations, indicating that the haplotypes explain some variation independent of that explained319

by the HLA alleles.320

To further disentangle the information provided by haplotypes, SNPs, and HLA alleles, we321

performed association analyses at each of these levels separately. For the allele associations, we322

performed regressions using two approaches. The first approach used the standard method of323
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including one allele per regression, while the second performed a multivariable regression of all324

alleles (variance inflation factor < 5) within a given block. The results of our association analyses325

at the haplotype, SNP, and HLA allele level on the full cohort across all 2,459 traits are available in326

Supplementary Tables 4-6. In total, we identified 7,649 associations and 647 HLA-associated traits327

across the combined association analyses. In particular, we identified 1,750 significant associations328

within the HLA locus in the haplotype analysis, including 27 traits not identified in the SNP or329

HLA allele analyses. These traits included non-organic psychotic disorders, otorrhagia, vascular330

dementia, and rectal cancers. This emphasizes that analyzing variation at the haplotype level331

provides orthogonal information about the role of the HLA region in disease.332

Discussion333

In this work, we investigated how genetic variation throughout the HLA region associates with334

disease with a focus on broad pleiotropic patterns. We quantified the enrichment of association335

signal in the HLA region relative to the rest of the genome. We found a strong enrichment of disease336

associations across a broad range of disease groups and organ systems. Unsurprisingly, infectious337

traits were almost 400-fold enriched in the HLA region compared to the rest of the genome, in338

spite of infections making up a minority of the HLA-associated traits. We also found enrichment339

across multiple disease categories and organ systems including cardiovascular and neuropsychiatric340

diseases. Overall, these findings indicate HLA is a major locus for disease risk, not only for infectious341

diseases, but for diseases across many organ systems and etiologies.342

Even with the extreme enrichment for infection-related associations, we expect that there is still343

substantially more information to be gleaned about the role of HLA in mediating infection. Our344

enrichment analysis controls for how well-powered a trait is by using the number of associations in345

the rest of the genome as a baseline. However, while we find a huge enrichment, the absolute number346

of total associations is small. Infectious traits are often under-reported in large biobank cohorts:347

identifying cases requires patients to seek care for the infection, followed by testing to confirm348

the specific pathogen. The infectious traits that we identified with the clearest signal tended to349

be those with more consistent reporting such as sexually transmitted infections. Therefore, our350

findings indicate that there is likely more signal for infectious traits that will be discovered with351

larger samples or more systematic reporting.352

We performed disease association testing with SNPs, HLA alleles, and haplotypes to capture353

disease associations throughout the entire HLA region, including non-classical HLA genes and non-354

coding regions. We developed a haplotype analysis approach that includes genetic variation outside355

of the classical HLA alleles. While many diseases strongly associate with canonical HLA alleles,356

the HLA region harbours hundreds of genes, many of which also play an important role in immune357

response and other biological processes. Our haplotype approach discovered disease associations in358

the HLA region that remained after adjusting for classical HLA alleles, particularly in the region359

that overlaps more non-HLA and non-classical HLA genes.360

Furthermore, we found some haplotype groups that displayed disease risk trade-offs, being pro-361

tective for some diseases and risk-increasing for others. Meanwhile, we found some haplotype362

groups that were more consistently associated with increased disease burden across tested diseases.363

In addition, our haplotype analysis discovered that local genetic correlation, genome-wide genetic364

correlation and phenotypic correlation between trait pairs are not always concordant. This discor-365

dance suggests that the HLA region plays not only an important, but also a distinct role relative to366

the rest of the genome in contributing to the shared biology underlying these diseases.367
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In total we identified 7,649 significant trait associations across 647 unique diseases in the HLA368

region. Here, we highlight interesting patterns across these traits and example associations, but369

we have only begun to explore the thousands of disease associations generated by these analyses.370

Therefore we are releasing the association test results as a resource for future studies of the HLA371

region (Supplementary Tables 4-6). For example, our haplotype association results identify multiple372

traits or disease complications of previously unknown pathology that cluster with traits with known373

mechanism. It could be fruitful to use these clusters to generate hypotheses about the biology374

underlying idiopathic traits. In addition, the haplotypes present in FinnGen represent only a fraction375

of the genetic diversity present in the world. As more large cohort data continue to become available376

from regions around the world, future studies will benefit from application of these methods in other377

cohorts to study the HLA region as the haplotype level.378

In conclusion, this work offers insights into the role of the HLA region in modulating the complex379

interplay between hundreds of diseases. Our findings highlight haplotype regression analysis as an380

additional approach for studying genetic variation in the region beyond the classical HLA alleles.381

Our results also provide insight into the nature of pleiotropy in the region and highlight novel382

pathological processes for not only infectious and autoimmune diseases typically associated with383

HLA, but also across a broad range of diseases.384
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Methods385

Biobank samples and participants386

The FinnGen study (see Supplementary Table 7 for full list of FinnGen contributors) is a large-scale387

genomics initiative that has analyzed over 500,000 Finnish biobank samples and correlated genetic388

variation with health data to understand disease mechanisms and predispositions. The project is a389

collaboration between research organisations, biobanks within Finland, and international industry390

partners. Here, we used data from FinnGen Data Freeze 10, which is comprised of samples from391

412,181 Finnish individuals, 21,311,942 variants, and 2,459 traits.392

FinnGen Identification of SNP Associations393

The summary statistics used in this study were generated using Regenie v2.2.4 and the FinnGen394

Regenie pipeline [58]. Current age or age at death, sex, genotyping chip, genetic relationship, and395

the first 10 principal components of the genome-wide genotype matrix were included as covariates396

[59]. Fine-mapping was performed using the SuSiE "Sum of Single Effects" model [60], excluding397

the HLA region. Further details are available at https://www.finngen.fi/en.398

Defining the HLA region399

The HLA region was defined as 28,510,120-33,480,577 based on the Genome Reference Consortium400

Assembly Grch38.p14 (hg38) (https://www.ncbi.nlm.nih.gov/grc/human/regions/MHC).401

Protein coding genes were identified by overlapping FinnGen annotated genes with the protein402

coding gene file from HGNC (https://www.genenames.org/download/statistics-and-files).403

The LD plot represents linkage disequilibrium as measured by r2 and D′ for 41,183 SNPs covering404

the HLA region. This set of SNPs corresponds to the subset of the 41,234 SNPs (MAF > 1%)405

within the HLA boundaries remaining after pruning with "plink -ld-window 999999 –ld-window-kb406

1000 –ld-window-r2 0.1".407

GWAS hit processing408

GWAS results were filtered to include all traits with at least one hit in the HLA region with P409

< 10−6. LD score regression [61] was used to generate genetic correlation estimates, with relevant410

eur_*_ld_chr files downloaded from https://data.broadinstitute.org/alkesgroup/LDSCORE/.411

To remove essentially redundant traits, we further filtered to traits with LDSC genetic correlation412

< 0.95 with all remaining traits. We filtered to the most significant SNP (MAF > 1%) in the413

HLA region for each of the remaining traits. We then used stepwise forward conditional analysis414

with Plink2 (https://www.cog-genomics.org/plink/2.0/) for each trait to identify additional415

independent significant SNPs (MAF > 1%) in the HLA region with P < 10−6. A significance416

threshold of P < 10−6 was selected modified from the genome-wide significance threshold of 5×10−8
417

because here we are only considering SNPs in the HLA region.418

In the conditional analysis, we considered only unrelated individuals, reducing the sample size419

to 259,802. We adjusted for age, sex and 10 principal components of the genome-wide genotype420

matrix. Z-scores were calculated from the GWAS results for the associations of the 428 hits in421

the HLA region with all the 272 HLA-associated traits. For visualizing effects across traits, we422
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normalized squared Z-scores for each trait by the maximum Z2 for that trait. The sign of each423

SNP’s effects were assigned such that the SNP had a positive median Z-score across traits.424

Enrichment analysis425

All traits with at least one associated SNP (MAF > 1% and P < 10−6) anywhere in the genome were426

included, and binned into trait groups. A threshold of P < 10−6 was chosen for ascertaining SNP427

associations in the genome outside HLA to conservatively match the significance threshold used to428

identify significant associations in the HLA region via the method described above. Enrichment429

was calculated for each trait group by dividing the number of independent hits per SNP in the HLA430

region by the number of independent hits per SNP outside the HLA region. For verification that431

this enrichment was not driven by SNP density, this process was also repeated using enrichment432

per genes and per base pair.433

Defining Haplotype Groups434

Three regions ("blocks") in the HLA region were selected based on the density of signal from the435

significant SNP associations, overlapping LD patterns, and functional relevance. The first block436

was defined as 100kb below the start of the gene boundary of HLA-F to 100kb past the end of the437

gene boundary of HLA-A, 29,622,820 to 30,045,616 (Grch38.p14) and contained 5,022 SNPs. The438

second block was defined as 100kb below the start of the gene boundary of HLA-C to 100kb past439

the end of the gene boundary of MICB, 31,168,798 to 31,611,071 (Grch38.p14) and contained 8,073440

SNPs. The third block was defined as 100kb below the start of the gene boundary of NOTCH4441

to 100kb past the end of the gene boundary of HLA-DQA2, 32,094,910 to 32,847,125 (Grch38.p14)442

and contained 11,027 SNPs.443

Each block was then subset down to 1,000 randomly selected biallelic SNPs with MAF > 1% due444

to computational constraints of the clustering process. Each individual’s two phased haplotypes at445

these 1,000 positions were identified. Haplotypes were clustered by first removing rare haplotypes446

(defined as < 10 total copies across all participants), generating a dendrogram, and recursively447

splitting the dendrogram at each branch point from the root toward the tips until the total number448

of haplotypes below each node was less than the maximum threshold (defined as 80,000 copies or the449

maximum in a single haplotype, whichever was greater). Once the haplotype groups were identified,450

the rare haplotypes were then added to the group with which they clustered.451

Performing haplotype regression analysis452

Logistic regression was then performed separately for each block for each of the 269 diseases with453

at least one SNP association in the HLA region for all haplotype groups, leaving out the haplotype454

group with the highest frequency. Sex, age, and the first ten principal components of the genome-455

wide genotype matrix were included as covariates. The left out haplotype group was then set to 0456

and the Z-scores of the regression results were then rescaled for each trait to have a mean of 0. A457

significance threshold of |Z| > 4 was chosen based approximately on the Bonferroni correction for458

the number of regressions (one for each of the 269 diseases) for each block at a significance level of459

0.05.460

In a follow-up analysis, we additionally performed haplotype regression analysis for all traits461

regardless of whether there was a GWAS hit in the HLA region for that trait, and for these regressions462
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we applied a more stringent significance threshold of P < 6.7× 10−6 to account for the additional463

traits tested (2459 traits * 3 blocks).464

Analysis of haplotype regression results465

Subsequent analyses investigating patterns of pleiotropy of these haplotype groups focused on only466

the subset of diseases with at least one association |Z| > 4 in that block and the subset of haplotype467

groups with at least one trait association or total copies greater than the minimum cutoff of 20,000468

copies. For these analyses, a significant threshold of |Z| > 3 was chosen based on the Bonferroni469

correction for the number of regressions (41 traits for Block 1, 46 for Block 2, and 36 for Block 3)470

for each block at a significance level of 0.05.471

To calculate the overall disease burden proportion for each haplotype group, we defined the set472

of relevant diseases for each block as any disease that was significantly associated with at least one473

of the haplotype groups in that block. Then for each haplotype group in a given block, we identified474

the proportion of individuals in the haplotype group that had a diagnosis of at least one of the475

block’s relevant diseases. An individual was considered to be in a haplotype group if they were a476

carrier for at least one haplotype in the haplotype group. To identify the overall disease proportion477

as a baseline comparison, for each block we identified the proportion of all 412,181 individuals that478

had a diagnosis of at least one of the block’s relevant diseases. We performed an exact binomial test479

to determine the significance of the disease burden for haplotype group 49 in Block 1 to the block’s480

baseline disease prevalence of 67.5%.481

Allele regression analysis482

To determine the extent to which the haplotype group signal remained after adjusting for the483

classical HLA alleles, we reran the haplotype group regressions while adjusting for the HLA alleles484

in each block (frequency > 1% and variance inflation factor < 5). We performed Firth’s Bias-485

Reduced Logistic Regression for all haplotype groups and alleles for each block and each trait using486

logistf (https://cran.r-project.org/web/packages/logistf/index.html). We then compared487

the Z-scores from the regression before and after adjusting for the alleles, using |Z| > 4 for the488

significance threshold. A significance threshold of |Z| > 4 was chosen based approximately on the489

Bonferroni correction for the number of regressions (one for each of the 269 diseases) for each block490

at a significance level of 0.05.491

We performed the allele associations on all traits, regardless of whether there was a GWAS hit492

in the HLA region, using two approaches with sex, age, and 10 PCs included as covariates. For the493

first approach, we performed logistic regression separately for each block and each trait with one494

allele included in each regression, with a significance threshold of P < 2 × 10−7. This threshold495

was chosen to account for the additional traits tested (2459 traits * 98 alleles). For the second496

approach, we modeled all alleles within a block together jointly after we iteratively removed one497

regression variable at a time until all remaining had variance inflation factor < 5 to minimize issues498

of multi-collinearity, and applied a significance threshold of P < 6.7 × 10−6. This threshold was499

chosen to account for the additional traits tested (2459 traits * 3 blocks).500
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Ethics statement501

Participants in FinnGen provided informed consent for biobank research based on the Finnish502

Biobank Act. Alternatively, separate research cohorts, collected before the Finnish Biobank Act503

came into effect (in September 2013) and the start of FinnGen (August 2017), were collected based504

on study-specific consents and later transferred to the Finnish biobanks after approval by Fimea505

(Finnish Medicines Agency), the National Supervisory Authority for Welfare and Health. Re-506

cruitment protocols followed the biobank protocols approved by Fimea. The Coordinating Ethics507

Committee of the Hospital District of Helsinki and Uusimaa (HUS) approved the FinnGen study508

protocol (number HUS/990/2017).509

The FinnGen study is approved by the Finnish Institute for Health and Welfare (permit numbers:510

THL/2031/6.02.00/2017, THL/1101/5.05.00/2017, THL/341/6.02.00/2018, THL/2222/6.02.00/2018,511

THL/283/6.02.00/2019, THL/1721/5.05.00/2019 and THL/1524/5.05.00/2020), the Digital and512

population data service agency (permit numbers: VRK43431/2017-3, VRK/6909/2018-3, VRK/4415/2019-513

3), the Social Insurance Institution (permit numbers: KELA 58/522/2017, KELA 131/522/2018,514

KELA 70/522/2019, KELA 98/522/2019, KELA 134/522/2019, KELA 138/522/2019, KELA 2/522/2020,515

KELA 16/522/2020), Findata permit numbers (THL/2364/14.02/2020, THL/4055/14.06.00/2020,516

THL/3433/14.06.00/2020, THL/4432/14.06/2020, THL/5189/14.06/2020, THL/5894/14.06.00/2020,517

THL/6619/14.06.00/2020, THL/209/14.06.00/2021, THL/688/14.06.00/2021, THL/1284/14.06.00/2021,518

THL/1965/14.06.00/2021, THL/5546/14.02.00/2020, THL/2658/14.06.00/2021, THL/4235/14.06.00/2021),519

Statistics Finland (permit numbers: TK-53-1041-17 and TK/143/07.03.00/2020 (earlier TK-53-90-520

20) TK/1735/07.03.00/2021, TK/3112/07.03.00/2021) and the Finnish Registry for Kidney Diseases521

permission/extract from the meeting minutes on 4th July 2019.522

The Biobank Access Decisions for FinnGen samples and data utilized in FinnGen Data Freeze523

10 include: THL Biobank BB2017_55, BB2017_111, BB2018_19, BB_2018_34, BB_2018_67,524

BB2018_71, BB2019_7, BB2019_8, BB2019_26, BB2020_1, BB2021_65, Finnish Red Cross525

Blood Service Biobank 7.12.2017, Helsinki Biobank HUS/359/2017, HUS/248/2020, HUS/430/2021526

§28, §29, HUS/150/2022 §12, §13, §14, §15, §16, §17, §18, §23, §58, §59, HUS/128/2023 §18, Au-527

ria Biobank AB17-5154 and amendment #1 (August 17 2020) and amendments BB_2021-0140,528

BB_2021-0156 (August 26 2021, Feb 2 2022), BB_2021-0169, BB_2021-0179, BB_2021-0161,529

AB20-5926 and amendment #1 (April 23 2020) and its modifications (Sep 22 2021), BB_2022-530

0262, BB_2022-0256, Biobank Borealis of Northern Finland (2017_1013, 2021_5010, 2021_5010531

Amendment, 2021_5018, 2021_5018 Amendment, 2021_5015, 2021_5015 Amendment, 2021_5015532

Amendment_2, 2021_5023, 2021_5023 Amendment, 2021_5023 Amendment_2, 2021_5017, 2021_5017533

Amendment, 2022_6001, 2022_6001 Amendment, 2022_6006 Amendment, 2022_6006 Amend-534

ment, 2022_6006 Amendment_2, BB22-0067, 2022_0262, 2022_0262 Amendment), Biobank of535

Eastern Finland (1186/2018 and amendment 22§/2020, 53§/2021, 13§/2022, 14§/2022, 15§/2022,536

27§/2022, 28§/2022, 29§/2022, 33§/2022, 35§/2022, 36§/2022, 37§/2022, 39§/2022, 7§/2023, 32§/2023,537

33§/2023, 34§/2023, 35§/2023, 36§/2023, 37§/2023, 38§/2023, 39§/2023, 40§/2023, 41§/2023),538
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Supplement581

Supplementary Figures582
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Figure S1: Enrichment by hits. Enrichment of fine-mapped GWAS hits in the HLA region relative to
the number of hits throughout the genome outside the HLA region by trait group, compared to A. the number
of HLA hits and B. the number of genome hits. C. Number of HLA hits versus the number of genome hits
for each trait group.
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Figure S2: HLA distribution of significant SNP associations. Distribution of the significant
SNP associations throughout the HLA region by trait group.
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Figure S3: LD boundaries of hits. Genome position of the significant SNP associations in the HLA
region with points corresponding to the SNP position and horizontal lines with the bounds corresponding to
the lowest and highest genome position of SNPs in LD r2 > 0.8 with each hit.
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Figure S4: Haplotype group trait associations. Number of traits positively and negatively associ-
ated (|Z| > 3) with each haplotype group for all three blocks.
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Figure S5: Disease burden analysis overview. Schematic of disease burden proportion analysis.
For each haplotype group in a given block, the haplotype disease burden was defined as the proportion of
individuals who were a carrier of at least one copy of a haplotype in the haplotype group that had a diagnosis
of at least one of the block’s relevant diseases (example shown). For each block, the overall disease proportion
across all individuals was calculated as the proportion of all individuals that had a diagnosis of at least one
of the block’s relevant diseases.

Figure S6: Haplotype group disease burden. Fraction of individuals in each haplotype group who
had a diagnosis of at least one of the block’s significant traits, for each block. The overall disease proportion,
or base rate, was defined as the fraction of individuals in all of FinnGen who had a diagnosis of at least one
of the block’s significant traits and is shown in green. Haplotype groups with burden below the block’s base
rate are in blue and those above are in red.
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Figure S7: Comparison of IBD and IBD with PSC. Correlation measures between IBD and IBD
with PSC. The inset for the haplotype group regression correlation for Block 1 corresponds to the Z-scores
for individual haplotype groups in Block 1.

Figure S8: Allele adjusted haplotype group regressions. Comparison of the effects of the
haplotype group regressions before and after adjusting for the classical HLA alleles across traits for each
block. The points on the scatter plots correspond to Z-scores for different combinations of haplotype group
trait associations.
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Supplementary Tables583

Supplementary Table 1: Enrichment of GWAS hits in the HLA region for each trait group for all584

traits in FinnGen with at least one GWAS hit (MAF > 1%) anywhere in the genome.585

Supplementary Table 2: Manual trait group classification for the 269 non-redundant diseases586

with at least one significantly associated SNP (P < 10−6; MAF > 1%) in the HLA region, by587

pathophysiology first (Category) and then by affected organ system (Subcategory).588

Supplementary Table 3: Haplotype and haplotype group statistics and assignments. Haplotype589

statistics are for all haplotypes with > 10 total copies for privacy policy reasons.590

Supplementary Table 4: Regression results for haplotype groups across all 3 blocks. The first591

tab has the data plotted in the heatmap of Figure 5, which is the values of the regression Z-scores592

rescaled to add back in the dropped haplotype group for each block. The next two tabs have the593

(non-rescaled) regression results for all traits, with and without jointly modeling with the relevant594

classical HLA alleles in the block.595

Supplementary Table 5: Regression results for the SNP-trait associations for significant SNP596

associations remaining after step-wise conditional analysis in the HLA region.597

Supplementary Table 6: Regression results for all allele associations for all traits, for both the598

approach jointly modeling alleles within a given block together (tab 1) and for the approach with599

one allele per regression (tab 2).600

Supplementary Table 7: List of FinnGen contributors.601
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Supplementary Information602

Supplementary Information 1: Related haplotypes were clustered into haplotype groups for each603

block (Supplementary Table 3). This resulted in 53 haplotype groups for Block 1, with a mean604

of 15,554 total copies and a maximum of 81,997 copies (in haplotype group 15). Block 2 had 25605

haplotype groups, with a mean of 32,974 copies and a maximum of 77,943 (in haplotype group606

2). There were 22 haplotype groups for Block 3, with a mean of 37,471 copies and a maximum of607

76,329 (for haplotype group 21). In Block 1, the mean number of trait associations per haplotype608

group was 6.25 traits, and haplotype group 14 had the maximum number of significant (|Z| > 4)609

associations with 25 trait associations. In Block 2, the mean trait associations per haplotype group610

was 8.4, and haplotype group 11 had the most with 30 trait associations. Block 3 had a mean of611

6.8 trait associations per haplotype group, with haplotype group 8 having the maximum number of612

associations at 19. Across blocks, the mean number of significant trait associations for each of the613

block’s relevant haplotype groups was 7.2.614

Supplementary Information 2: Multiple haplotype groups were positively associated with some615

traits and negatively associated with others. Haplotype group 22 in Block 1 is another example of616

a group with both positive and negative associations, including 8 traits with association Z > 2, and617

13 with Z < -2. This haplotype group was associated with increased risk of Celiac disease, Graves618

disease and thyrotoxicosis. However, it was also associated with increased risk of hypothyroidism,619

Sjogren’s, and lichen planus. It was again negatively associated with traits like spondyopathies,620

iridocyclitis, rheumatoid arthritis, but also Type 1 diabetes, chronic tonsil/adenitis, and retinal621

disorders. In Block 2, haplotype group 10 is positively associated (Z>2) with 13 traits, including622

sexually transmitted diseases, chronic hepatitis, and Immune disorders. It is negatively associated623

with 14 traits, including many rheumatic disorders, as well as papulosquamous disorders, and pso-624

riatic arthropathies. Similarly, haplotype group 7 of Block 3, is positively associated with 10 traits,625

such as multiple sclerosis, degenerative CNS disorders, and demyelinating diseases, and negatively626

associated with 16 traits, such as type 1 diabetes, retinal disorders, Lichen sclerosus, and juvenile627

arthritis.628
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